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void accessArray(Object o, int i) {
/* B1 */ if (o != null) {
/* B2 */ if (i >= 0 && i < len(o)) {
/* B3 */ normalAccess(o, i);

} else {
/* B6 */ indexOutOfBoundsEx(o, i);

}
/* B4 */ } else {
/* B7 */ if (SHOULD_DEOPT) {
/* B8 */ toInterpreter(o, i);

} else {
/* B10 */ nullPointerEx();

}
/* B9 */ }
/* B5 */}

(a) Java source code for arrayAccess
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The source code and control-�ow graph for an accessArray snippet. Red blocks are frequently executed (hot), gray blocks are less important

(cold). The path through the normalAccess branch (B3) is the common case. The blocks are partitioned into traces (T1–T4); registers are allocated

per trace using di�erent strategies (Linear Scan or Bottom-Up) based on their probability.

Figure 1. A Motivating Example

Abstract
Compilers often use global register allocation approaches

such as linear scan or graph coloring. The �exibility of these

approaches is limited since they process a whole method at

once. We developed a novel trace register allocation frame-

work which competes with global approaches in both com-

pile time and code quality. Instead of processing the whole

method, our allocator processes linear code segments (traces)

independently and is therefore able to select di�erent alloca-

tion strategies based on the characteristics of a trace. This
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provides us with �ne-grained control over the trade-o� be-

tween compile time and peak performance.
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1 Motivation
When looking at the example in Figure 1, we see that not all

parts of the method are equally important. Most optimizing
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Figure 2. Overview of our framework

compilers use global register allocation [3, 4, 8, 9, 13–15,

22–25], i.e., they process a whole method at once. Compiler

optimizations, such as inlining or code duplication [11, 16],

cause methods to become large. This poses two problems:

• Register allocation time increases with method com-

plexity, often in a non-linear fashion [15].

• Di�erent regions contribute di�erently to the overall

performance of the compiled code [1].

We assume that most time is spent in a small portion of the

method [1]. Global allocators do not di�erentiate between

important and unimportant parts, or only in a limited way.

2 Idea
We solved the problems with a non-global approach based on

traces, i.e., a sequence of sequentially executed blocks [12].

Traces are constructed using pro�ling feedback (Figure 1b).

They are allocated independently, potentially using di�erent

strategies. We use strategies that yield good code quality for

important traces and fast strategies for the others.

Figure 2 shows the components of our framework [6, 7].

Trace Building partitions the blocks of the control-�ow

graph into traces (Figure 1b).

Global Liveness Analysis captures the liveness of variables
at trace boundaries.

Allocate Traces: For each trace, we select the most suitable

register allocation strategy, i.e.:

• Linear Scan for high-quality code

• Bottom-Up for fast allocation

Due to the linear structure of traces, strategies are signi�-

cantly simpler compared to a global algorithm.

Data-flow Resolution is required since the locations of

variables might be di�erent across an inter-trace edge.

3 Results
To validate our approach, we need to answer the following

questions:

• Can a trace-base approach achieve peak performance

similar to that of a global approach [6]?

• Can we improve compile time and/or peak perfor-

mance by switching allocation strategies within a

method [7]?

We implemented our approach in GraalVM [5, 10, 16, 18,

21] and evaluated it using standard benchmarks, including

DaCapo [2, 17], SPECjvm2008 [20] and SPECjbb2015 [19].

Figure 3 depicts our results. It shows that our approach can

compete with a global allocator. In addition, the �exibility

allows us to save up to 40% allocation time.

4 Conclusion
Wepresented the trace register allocation framework, a novel,

�exible, non-global and extensible register allocation ap-

proach. It eliminates the limitations of global allocators while

exhibiting similar or better compile time and peak perfor-

mance results.
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The TraceLSRA con�guration (baseline) uses only the linear scan algorithm. The results show that it can compete with the global linear scan

algorithm (GlobalLSRA) in both compile time and code quality. In the bottom-up only con�guration (BottomUp) we reduce register allocation

time by 40% by only using the bottom-up strategy. We also show results for mixed policies (Ratio): p = 0.3 means that we use linear scan for 30%

of the traces and the bottom-up strategy for the others. The results illustrate the �exibility of our approach. For more details see our previous

work [7].

Figure 3. Benchmark results for (Scala) DaCapo on AMD64
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