
Divide and Allocate:
The Trace Register Allocation Framework∗

Extended Abstract

Josef Eisl
†

Institute for System Software

Johannes Kepler University Linz

Austria

josef.eisl@jku.at

void accessArray(Object o, int i) {
/* B1 */ if (o != null) {
/* B2 */ if (i >= 0 && i < len(o)) {
/* B3 */ normalAccess(o, i);

} else {
/* B6 */ indexOutOfBoundsEx(o, i);

}
/* B4 */ } else {
/* B7 */ if (SHOULD_DEOPT) {
/* B8 */ toInterpreter(o, i);

} else {
/* B10 */ nullPointerEx();

}
/* B9 */ }
/* B5 */}

(a) Java source code for arrayAccess

T1 T2 T3 T4

B1

B2

B3

B4

B5

B6 B8

B7

B9

B10

Linear Scan Bo�om-Up

hot

cold

(b) Control-�ow graph divided into traces

The source code and control-�ow graph for an accessArray snippet. Red blocks are frequently executed (hot), gray blocks are less important

(cold). The path through the normalAccess branch (B3) is the common case. The blocks are partitioned into traces (T1–T4); registers are allocated

per trace using di�erent strategies (Linear Scan or Bottom-Up) based on their probability.

Figure 1. A Motivating Example

Abstract
Compilers often use global register allocation approaches

such as linear scan or graph coloring. The �exibility of these

approaches is limited since they process a whole method at

once. We developed a novel trace register allocation frame-

work which competes with global approaches in both com-

pile time and code quality. Instead of processing the whole

method, our allocator processes linear code segments (traces)

independently and is therefore able to select di�erent alloca-

tion strategies based on the characteristics of a trace. This

∗
This research project is partially funded by Oracle Labs.

†
Advisor: Hanspeter Mössenböck, Johannes Kepler University Linz

CGO’18 SRC, February 2018, Vienna, Austria

2018. This is the author’s version of the work. It is posted here for your

personal use. Not for redistribution. The de�nitive Version of Record was

published in Proceedings of International Symposium on Code Generation

and Optimization Student Research Competition (CGO’18 SRC), h�ps://doi.

org/10.1145/nnnnnnn.nnnnnnn.

provides us with �ne-grained control over the trade-o� be-

tween compile time and peak performance.

CCS Concepts • Software and its engineering→Com-
pilers; Just-in-time compilers;Dynamic compilers;Vir-
tual machines;

Keywords trace register allocation, trace compilation, lin-

ear scan, just-in-time compilation, dynamic compilation, vir-

tual machines

ACM Reference Format:
Josef Eisl. 2018. Divide and Allocate: The Trace Register Alloca-

tion Framework: Extended Abstract. In Proceedings of International

Symposium on Code Generation and Optimization Student Research

Competition (CGO’18 SRC). ACM, New York, NY, USA, 3 pages.

h�ps://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Motivation
When looking at the example in Figure 1, we see that not all

parts of the method are equally important. Most optimizing

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


CGO’18 SRC, February 2018, Vienna, Austria Josef Eisl

Linear Scan

Bo�om-Up

. . .

for each trace

Global Liveness Analysis

Trace Building

Data-flow Resolution

Allocate trace

Left (gray): Phases that are only executed once per method. Right

(blue): Allocation strategies that are used for processing a single

trace.

Figure 2. Overview of our framework

compilers use global register allocation [3, 4, 8, 9, 13–15,

22–25], i.e., they process a whole method at once. Compiler

optimizations, such as inlining or code duplication [11, 16],

cause methods to become large. This poses two problems:

• Register allocation time increases with method com-

plexity, often in a non-linear fashion [15].

• Di�erent regions contribute di�erently to the overall

performance of the compiled code [1].

We assume that most time is spent in a small portion of the

method [1]. Global allocators do not di�erentiate between

important and unimportant parts, or only in a limited way.

2 Idea
We solved the problems with a non-global approach based on

traces, i.e., a sequence of sequentially executed blocks [12].

Traces are constructed using pro�ling feedback (Figure 1b).

They are allocated independently, potentially using di�erent

strategies. We use strategies that yield good code quality for

important traces and fast strategies for the others.

Figure 2 shows the components of our framework [6, 7].

Trace Building partitions the blocks of the control-�ow

graph into traces (Figure 1b).

Global Liveness Analysis captures the liveness of variables
at trace boundaries.

Allocate Traces: For each trace, we select the most suitable

register allocation strategy, i.e.:

• Linear Scan for high-quality code

• Bottom-Up for fast allocation

Due to the linear structure of traces, strategies are signi�-

cantly simpler compared to a global algorithm.

Data-flow Resolution is required since the locations of

variables might be di�erent across an inter-trace edge.

3 Results
To validate our approach, we need to answer the following

questions:

• Can a trace-base approach achieve peak performance

similar to that of a global approach [6]?

• Can we improve compile time and/or peak perfor-

mance by switching allocation strategies within a

method [7]?

We implemented our approach in GraalVM [5, 10, 16, 18,

21] and evaluated it using standard benchmarks, including

DaCapo [2, 17], SPECjvm2008 [20] and SPECjbb2015 [19].

Figure 3 depicts our results. It shows that our approach can

compete with a global allocator. In addition, the �exibility

allows us to save up to 40% allocation time.

4 Conclusion
Wepresented the trace register allocation framework, a novel,

�exible, non-global and extensible register allocation ap-

proach. It eliminates the limitations of global allocators while

exhibiting similar or better compile time and peak perfor-

mance results.

References
[1] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo:

A Transparent Dynamic Optimization System. In: PLDI ’00. ACM,

2000. doi: 10.1145/349299.349303.

[2] S. M. Blackburn et al. The DaCapo Benchmarks: Java Benchmarking

Development and Analysis. In: OOPSLA’06. ACM Press, 2006. doi:

10.1145/1167473.1167488.

[3] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements

to graph coloring register allocation. In: TOPLAS’94 (1994). issn:

0164-0925. doi: 10.1145/177492.177575.

[4] Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke,

Martin E Hopkins, and Peter W Markstein. Register Allocation via

Coloring. In: Computer languages (1981). doi: 10.1016/0096-0551(81)

90048-5.

[5] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wim-

mer, Doug Simon, and Hanspeter Mössenböck. An Intermediate

Representation for Speculative Optimizations in a Dynamic Com-

piler. In: VMIL’13 (2013). doi: 10.1145/2542142.2542143.

[6] Josef Eisl, Matthias Grimmer, Doug Simon, Thomas Würthinger, and

Hanspeter Mössenböck. Trace-based Register Allocation in a JIT

Compiler. In: PPPJ ’16. ACM, 2016. doi: 10.1145/2972206.2972211.

[7] Josef Eisl, Stefan Marr, Thomas Würthinger, and Hanspeter Mössen-

böck. Trace Register Allocation Policies: Compile-time vs. Perfor-

mance Trade-o�s. In: ManLang 2017. 2017. doi: 10.1145/3132190.

3132209.

[8] GCC. Integrated Register Allocator in GCC. 2017. url: h�ps://github.

com/gcc-mirror/gcc/blob/216fc1bb7d9184/gcc/ira.c.

[9] Lal George and Andrew W. Appel. Iterated register coalescing. In:

TOPLAS’96 (1996). issn: 0164-0925. doi: 10.1145/229542.229546.

[10] Graal Authors. Graal Compiler & Tru�e Partial evaluator. 2016. url:

h�ps://github.com/graalvm/graal-core (visited on 05/06/2016).

[11] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl,

Doug Simon, and Hanspeter Mössenböck. Dominance-based Dupli-

cation Simulation (DBDS) – Code Duplication to Enable Compiler

Optimizations. In: CGO’18. 2018. doi: 10.1145/3168811.

https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/177492.177575
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1145/3132190.3132209
https://doi.org/10.1145/3132190.3132209
https://github.com/gcc-mirror/gcc/blob/216fc1bb7d9184/gcc/ira.c
https://github.com/gcc-mirror/gcc/blob/216fc1bb7d9184/gcc/ira.c
https://doi.org/10.1145/229542.229546
https://github.com/graalvm/graal-core
https://doi.org/10.1145/3168811


Divide and Allocate: The Trace Register Allocation Framework CGO’18 SRC, February 2018, Vienna, Austria

(low
er

is
be�

er)

B
enchnark

Execution
Tim

e

(low
er

is
be�

er)

R
egister

A
llocation

Tim
e

Global-

LSRA

Trace-

LSRA

Ratio

p=0.8

Ratio

p=0.5

Ratio

p=0.3

BottomUp

90%

95%

100%

105%

110%

115%

120%

125%

130%

40%

60%

80%

100%

120%

140%

160%

180%

200%

V
a
l
u
e
s
r
e
l
a
t
i
v
e
t
o
T
r
a
c
e
L
S
R
A
m
e
a
n

The TraceLSRA con�guration (baseline) uses only the linear scan algorithm. The results show that it can compete with the global linear scan

algorithm (GlobalLSRA) in both compile time and code quality. In the bottom-up only con�guration (BottomUp) we reduce register allocation

time by 40% by only using the bottom-up strategy. We also show results for mixed policies (Ratio): p = 0.3 means that we use linear scan for 30%

of the traces and the bottom-up strategy for the others. The results illustrate the �exibility of our approach. For more details see our previous

work [7].

Figure 3. Benchmark results for (Scala) DaCapo on AMD64

[12] P. Geo�rey Lowney, Stefan M. Freudenberger, Thomas J. Karzes,

W. D. Lichtenstein, Robert P. Nix, John S. O’donnell, and John C.

Ruttenberg. The Multi�ow Trace Scheduling Compiler. In: Journal

of Supercomputing (1993). doi: 10.1007/BF01205182.

[13] OpenJDK. Chaitin Allocator in C2. 2017. url: h�p://hg.openjdk.java.

net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/opto/chaitin.hpp.

[14] OpenJDK. Linear Scan Register Allocator in C1. 2017. url: h�p://hg.

openjdk.java.net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/c1/c1_

LinearScan.hpp.

[15] Massimiliano Poletto and Vivek Sarkar. Linear Scan Register Allo-

cation. In: TOPLAS’99 (1999). issn: 0164-0925. doi: 10.1145/330249.

330250.

[16] Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and

Thomas Würthinger. Making Collection Operations Optimal with

Aggressive JIT Compilation. In: SCALA 2017. ACM, 2017. doi: 10.

1145/3136000.3136002.

[17] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder.

Da capo con scala. In: OOPSLA’11 (2011). doi: 10.1145/2048066.

2048118.

[18] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq,

Lukas Stadler, and Thomas Würthinger. Snippets: Taking the High

Road to a Low Level. In: TACO’15 (2015). issn: 1544-3566. doi: 10.

1145/2764907.

[19] SPECjbb2015: Java Server Benchmark. url: h�ps://www.spec.org/

jbb2015/ (visited on 05/25/2016).

[20] SPECjvm2008: Java Virtual Machine Benchmark. url: h�ps://www.

spec.org/jvm2008/ (visited on 06/15/2015).

[21] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, Thomas

Würthinger, and Doug Simon. An Experimental Study of the In-

�uence of Dynamic Compiler Optimizations on Scala Performance.

In: SCALA’13. ACM, 2013. doi: 10.1145/2489837.2489846.

[22] Omri Traub, Glenn Holloway, and Michael D. Smith. Quality and

Speed in Linear-scan Register Allocation. In: PLDI ’98. ACM, 1998.

doi: 10.1145/277650.277714.

[23] WebKit. Graph Coloring Register Allocator in WebKit. 2017. url:

h�ps://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/

JavaScriptCore/b3/air/AirAllocateRegistersByGraphColoring.h.

[24] WebKit. Linear Scan Register Allcoator in WebKit. 2017. url: h�ps://

github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/

b3/air/AirAllocateRegistersAndStackByLinearScan.h.

[25] Christian Wimmer and Hanspeter Mössenböck. Optimized Interval

Splitting in a Linear Scan Register Allocator. In: VEE’05. ACM, 2005.

doi: 10.1145/1064979.1064998.

https://doi.org/10.1007/BF01205182
http://hg.openjdk.java.net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/opto/chaitin.hpp
http://hg.openjdk.java.net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/opto/chaitin.hpp
http://hg.openjdk.java.net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/c1/c1_LinearScan.hpp
http://hg.openjdk.java.net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/c1/c1_LinearScan.hpp
http://hg.openjdk.java.net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/c1/c1_LinearScan.hpp
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/3136000.3136002
https://doi.org/10.1145/3136000.3136002
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1145/2764907
https://doi.org/10.1145/2764907
https://www.spec.org/jbb2015/
https://www.spec.org/jbb2015/
https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/277650.277714
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersByGraphColoring.h
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersByGraphColoring.h
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersAndStackByLinearScan.h
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersAndStackByLinearScan.h
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersAndStackByLinearScan.h
https://doi.org/10.1145/1064979.1064998

	Abstract
	1 Motivation
	2 Idea
	3 Results
	4 Conclusion

