
PREPRINT

Trace Register Allocation ∗

Josef Eisl
Johannes Kepler University, Linz

josef.eisl@jku.at

Abstract
This paper proposes the idea of Trace Register Allocation,
a register allocation approach that is tailored for just-in-
time (JIT) compilation in the context of virtual machines
with run-time feedback.

The basic idea is to offload costly operations such as
spilling and splitting to less frequently executed branches
and to focus on efficient registers allocation for the hot parts
of a program. This is done by performing register allocation
on traces instead of on the program as a whole.

We believe that the basic approach is compatible to Lin-
ear Scan, the predominant register allocation algorithm for
just-in-time compilation, in both code quality and allocation
time, while our design leads to a simpler and more extensi-
ble solution. This extensibility allows us to add further en-
hancements in order to optimize the allocation based on the
run-time profile of the application and thus to outperform
current Linear Scan implementations.

Categories and Subject Descriptors D.3.4 [PROGRAM-
MING LANGUAGES]: Processors—Code generation, Com-
pilers, Optimization

General Terms Performance, Algorithms, Experimenta-
tion

Keywords register allocation, trace compilation, linear
scan, just-in-time compilation, virtual machines

1. Introduction
Register allocation is considered as an important compiler
optimization [4, 16, 24] that has been researched intensively.
Chaitin et al. [6] introduced Register Allocation via graph
coloring, which was the first widely applied approach for

∗ This research project is funded by Oracle Labs

[Copyright notice will appear here once ’preprint’ option is removed.]

global register allocation, in which registers are allocated
for the whole compilation unit (method) at once instead of
allocating them per block. Later numerous refinements and
improvement where proposed including Briggs et al. [4],
Smith et al. [19], or George et al. [8]. Chaitin et al. showed
that register allocation is in general NP-complete [6], so all
approaches use heuristics to achieve polynomial run-time
behavior.

In spite of these heuristics, the worst-case complexity of
graph-coloring register allocation is usually quadratic, which
makes it suboptimal for just-in-time compilation. JIT com-
pilers therefore often use the simpler Linear Scan approach,
which was introduced by Poletto et al. [16] and extended in
many subsequent contributions [22, 24, 23]. Linear Scan is
used in numerous dynamic compilers including the HotSpot
client compiler [12], Jikes RVM [2], Googles JIT compiler
for JavaScript (V8), and initially also in LLVM [13].

2. Problem
As the name suggests, Linear Scan works on a lineariza-
tion of the control-flow graph. Although a carefully selected
block ordering can improve the code generated by the al-
gorithm [23], a linearization of blocks is in general a poor
approximation of the program structure and lead to subop-
timal decisions because unrelated control-flow paths influ-
ence each other. This is even more problematic in the context
of dynamic compilation where we have run-time feedback
about the program behavior available.

Spilling and splitting is difficult in Linear Scan because
the natural positions, such as control splits, are not directly
visible to the algorithm. Heuristics that were proposed to
overcome this (e.g. Wimmer et al. [24]), give some remedy
but still spilling and splitting does not fit nicely into the
simple Linear Scan model.

In addition to that, exact lifetime information is compli-
cated to compute and maintain because an interval might
contain holes [22], i.e. ranges where the value is not live.
This increases the complexity of the algorithm [24].

3. Approach
When thinking about register allocation in a dynamic com-
piler we can make two key observations:

SPLASH ’15 Doctoral Symposium (accepted for publication) 1 2015/8/12



B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

T1 T2 T3 T4

hot

cold

Figure 1. Trace representation of a control-flow graph

• The register allocation is done at run time so it must be
fast. We cannot afford complex approaches. The goal is
an algorithm with linear or near to linear time complexity.

• The compiler is invoked dynamically by a runtime sys-
tem that can provide profiling information about the ap-
plication. The register allocation algorithm should utilize
this knowledge for improving the quality of the gener-
ated code, assuming that the program behavior does not
change.

These observations are the basis for the following considera-
tions. The idea is to offload the code for spilling and splitting
to infrequently executed branches of the compilation unit.
This is similar to the approach of Lueh et al. [15], but in-
stead of striving for the best possible global allocation, we
want to find a good allocation for the fast path in acceptable
time.

Trace Representation. Based on profiling information we
divide the control-flow graph into distinct regions of sequen-
tially executed blocks. Due to similarities to trace compila-
tion [14] we call these regions traces.

To build a new trace we select a block with no predeces-
sors or where all predecessors are already part of another
trace. If there are multiple candidates we choose the block
with the highest execution frequency. The block is added to
the trace and we proceed with the successor of highest prob-
ability. We repeat this until there is no more successor that
is not already assigned to a trace. The algorithm continues
as long as there are blocks that are not yet part of a trace.
Figure 1 depicts an example. Each trace is associated with
a probability that can be calculated from the profiling infor-
mation.

After the traces are built we process one trace at a time in
order of decreasing probability. For each trace we perform a
liveness analysis, make spilling and splitting decisions and
allocate registers. There is no need to visit blocks of other
traces. Since traces of higher priority have already been

allocated we can use the mappings of variables to registers or
spill slots at the control-flow splits and joins in order to guide
the allocation of the current trace. Values that are live on an
edge to a trace that has not yet been allocated are ignored.

We use a special intermediate representation to capture
the variable mappings at trace boundaries. It can be seen as
a generalization of the φ and σ functions in Static Single
Information (SSI) form as introduced by Ananian [1]. The
representation adheres to the single definition and the dom-
inance property, i.e. for variable there is just a single defi-
nition and this definition dominates all usages. This allows
us to use simple liveness analysis algorithms. The control-
flow graph does not contain critical edges which makes the
placement of spill and split code easier.

In the course of this project we want to answer the follow-
ing research questions. How do the profiles for real world ap-
plications look like? Are there many equally hot traces or is
there usually just one hot trace and many less frequently ex-
ecuted ones? Are loops represented well enough by traces to
achieve good register allocation, or do we need special han-
dling? This is particularly interesting when there are control-
flow splits inside the loop.

The trace model and the special intermediate representa-
tion create a lot of opportunities for register coalescing. Are
register hints [24] sufficient or are stronger approaches re-
quired?

Register Allocation for Traces. In general, register alloca-
tion for a trace is independent of how the traces are built:
any approach can be used for that. Nevertheless, traces have
special properties that are worth exploiting. A trace is a lin-
ear sequence of basic blocks and can therefore be viewed
as a single extended basic block. This property can be uti-
lized as suggested by Guo et al. [10]. As there are no life-
time holes in this extended block the liveness information
is much simpler to compute and maintain than in the global
Linear Scan algorithm, and the analysis can be done in a sin-
gle backwards pass over the trace. The heuristics for spilling
and splitting can and should be adapted to move such code
to less frequently executed traces. The interference graphs
of programs in SSA form are chordal [5, 11] and can there-
fore be optimally colored in linear time [17]. This allows the
application of decoupled register allocation as suggested by
Brisk [5] or Hack et al. [11].

We want to stress again that the traces are built and treated
independently, so it is possible to use different algorithms
for different traces. For instance, a better but more expen-
sive algorithm can be used for traces with higher execution
frequencies, whereas a faster but less optimal algorithm can
be used for others.

4. Evaluation Methodology
In order to evaluate our approach we will implement an al-
locator for the Graal compiler [9, 7], a research compiler
for the HotSpot VM. The performance of code produced by

SPLASH ’15 Doctoral Symposium (accepted for publication) 2 2015/8/12



Graal is comparable to production compilers. The Truffle
language implementation framework [25], that is build on
top of Graal, allows us to evaluate our implementation with
languages other than Java including JavaScript, R and Ruby.
This makes it a perfect target for our experiments. The base-
line is the Linear Scan implementation [24] that is currently
used by Graal.

4.1 Hypothesis
The experiment will be performed in two phases. In the first
phase we want to study the trace register allocation model in
general. For the allocation of traces we apply the unmodified
Linear Scan algorithm to each trace independently. We ex-
pect results comparable to the global Linear Scan algorithm
with respect to code quality and compile time. The advan-
tage of the proposed approach lies in the simplicity of life-
time analysis and interval representation (no lifetime holes).

In the second phase we focus on exploiting the unique
properties of trace register allocation as described above.
Compared to the global Linear Scan algorithm we expect
to achieve better allocation for the hot parts of the program,
which leads to better run-time performance. As a result the
number of dynamically executed instructions is decreased
due to the better placement of spill and split code. Addition-
ally, the code density for the hot paths increases, which has
a positive effect on instruction cache behavior.

Please note that we explicitly accept suboptimal code
for less frequently executed parts (i.e. code that is possibly
slower and larger than the code generated with the global
Linear Scan allocation). The focus of our approach is on
the frequently executed parts and thus on increased overall
performance.

4.2 Experimental Setup
In order to ensure that our implementation is not biased
towards a specific architecture we perform the evaluation on
Intel x86 64 as well as on the SPARCv9 platform.

Using the HotSpot VM as a platform for our exper-
iments we can verify our approach with a wide range
of well-known benchmarks including SPECjvm2008 [21],
SPECjbb2013 [20], DaCapo [3], and Scala DaCapo [18].
Truffle further extends the space of benchmarks to languages
that do not directly target the JVM.

The ultimate metrics are the performance numbers of
the benchmarks which are, for instance, run time, score, or
operation per time unit, depending on the harness.

In order to gain further insights into the characteristics of
the algorithm, other metrics are also of interest. To verify
that our approach is offloading code to the less frequently
parts we count the dynamically executed move operations.
Additionally, the number of emitted instructions should be
monitored to avoid regressions due to increased code size. To
gain confidence that the complexity of our implementation
is linear or nearly linear we record the compilation time per
number of source instructions.

References
[1] C. Scott Ananian. “The Static Single Information Form”. MA thesis.

Princeton University, 1997.
[2] Matthew Arnold et al. “Adaptive Optimization in the Jalapeño

JVM”. In: SIGPLAN Not. (2000). DOI: 10 . 1145 / 1988042 .

1988048.
[3] S. M. Blackburn et al. “The DaCapo Benchmarks: Java Benchmark-

ing Development and Analysis”. In: OOPSLA ’06. 2006. DOI: 10.
1145/1167473.1167488.

[4] Preston Briggs, Keith D. Cooper, and Linda Torczon. “Improve-
ments to graph coloring register allocation”. In: TOPLAS’94 (1994).
DOI: 10.1145/177492.177575.

[5] Philip Brisk. “Advances in Static Single Assignment Form and
Register Allocation”. PhD thesis. 2006.

[6] Gregory J Chaitin et al. “Register Allocation via Coloring”. In:
Computer languages (1981). DOI: 10 . 1016 / 0096 - 0551(81 )
90048-5.

[7] Gilles Duboscq et al. “An Intermediate Representation for Specu-
lative Optimizations in a Dynamic Compiler”. In: VMIL’13 (2013).
DOI: 10.1145/2542142.2542143.

[8] Lal George and Andrew W. Appel. “Iterated register coalescing”. In:
TOPLAS’96 (1996). DOI: 10.1145/229542.229546.

[9] Graal Project. OpenJDK Community. URL: http://openjdk.
java.net/projects/graal/.

[10] Jia Guo, Maria Jesus Garzaran, and David Padua. “The Power of
Belady’s Algorithm in Register Allocation for Long Basic Blocks”.
In: LCPC’03. 2003. DOI: 10.1007/978-3-540-24644-2_24.

[11] Sebastian Hack, Daniel Grund, and Gerhard Goos. “Register Alloca-
tion for Programs in SSA-Form”. In: CC’06. 2006. DOI: 10.1007/
11688839_20.

[12] Thomas Kotzmann et al. “Design of the Java HotSpotTM client
compiler for Java 6”. In: TACO’08 (2008). DOI: 10 . 1145 /

1369396.1370017.
[13] Chris Lattner and Vikram Adve. “LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation”. In: CGO
’04. 2004. DOI: 10.1109/CGO.2004.1281665.

[14] P. Geoffrey Lowney et al. “The Multiflow Trace Scheduling Com-
piler”. In: Journal of Supercomputing (1993). DOI: 10 . 1007 /

BF01205182.
[15] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai.

“Fusion-based Register Allocation”. In: TOPLAS’00 (2000). DOI:
10.1145/353926.353929.

[16] Massimiliano Poletto and Vivek Sarkar. “Linear Scan Register Allo-
cation”. In: TOPLAS’99 (1999). DOI: 10.1145/330249.330250.

[17] Hongbo Rong. “Tree Register Allocation”. In: MICRO 42. 2009.
DOI: 10.1145/1669112.1669123.

[18] Andreas Sewe et al. “Da capo con scala”. In: OOPSLA’11 (2011).
DOI: 10.1145/2048066.2048118.

[19] Michael D. Smith, Norman Ramsey, and Glenn Holloway. “A gen-
eralized algorithm for graph-coloring register allocation”. In: SIG-
PLAN Not. (2004). DOI: 10.1145/996893.996875.

[20] SPECjbb2013: Java Server Benchmark. URL: https : / / www .
spec.org/jbb2013/.

[21] SPECjvm2008: Java Virtual Machine Benchmark. URL: https://
www.spec.org/jvm2008/.

[22] Omri Traub, Glenn Holloway, and Michael D. Smith. “Quality
and Speed in Linear-scan Register Allocation”. In: SIGPLAN Not.
(1998). DOI: 10.1145/277652.277714.

[23] Christian Wimmer and Michael Franz. “Linear Scan Register Al-
location on SSA Form”. In: CGO ’10. 2010. DOI: 10 . 1145 /

1772954.1772979.
[24] Christian Wimmer and Hanspeter Mössenböck. “Optimized Interval

Splitting in a Linear Scan Register Allocator”. In: VEE ’05. 2005.
DOI: 10.1145/1064979.1064998.

[25] Thomas Würthinger et al. “One VM to rule them all”. In: Onward!
’13. 2013. DOI: 10.1145/2509578.2509581.

SPLASH ’15 Doctoral Symposium (accepted for publication) 3 2015/8/12

http://dx.doi.org/10.1145/1988042.1988048
http://dx.doi.org/10.1145/1988042.1988048
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/177492.177575
http://dx.doi.org/10.1016/0096-0551(81)90048-5
http://dx.doi.org/10.1016/0096-0551(81)90048-5
http://dx.doi.org/10.1145/2542142.2542143
http://dx.doi.org/10.1145/229542.229546
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/
http://dx.doi.org/10.1007/978-3-540-24644-2_24
http://dx.doi.org/10.1007/11688839_20
http://dx.doi.org/10.1007/11688839_20
http://dx.doi.org/10.1145/1369396.1370017
http://dx.doi.org/10.1145/1369396.1370017
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1007/BF01205182
http://dx.doi.org/10.1007/BF01205182
http://dx.doi.org/10.1145/353926.353929
http://dx.doi.org/10.1145/330249.330250
http://dx.doi.org/10.1145/1669112.1669123
http://dx.doi.org/10.1145/2048066.2048118
http://dx.doi.org/10.1145/996893.996875
https://www.spec.org/jbb2013/
https://www.spec.org/jbb2013/
https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/
http://dx.doi.org/10.1145/277652.277714
http://dx.doi.org/10.1145/1772954.1772979
http://dx.doi.org/10.1145/1772954.1772979
http://dx.doi.org/10.1145/1064979.1064998
http://dx.doi.org/10.1145/2509578.2509581

	1 Introduction
	2 Problem
	3 Approach
	4 Evaluation Methodology
	4.1 Hypothesis
	4.2 Experimental Setup

	References

