
Sulong, and Thanks for All the Fish∗

Manuel Rigger
Johannes Kepler University Linz

Austria
manuel.rigger@jku.at

Roland Schatz
Oracle Labs
Austria

roland.schatz@oracle.com

Jacob Kreindl
Johannes Kepler University Linz

Austria
jacob.kreindl@jku.at

Christian Häubl
Oracle Labs
Austria

christian.haeubl@oracle.com

Hanspeter Mössenböck
Johannes Kepler University Linz

Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Dynamic languages rely on native extensions written in languages
such as C/C++ or Fortran. To efficiently support the execution of
native extensions in the multi-lingual GraalVM, we have imple-
mented Sulong, which executes LLVM IR to support all languages
that have an LLVM front end. It supports configurations with re-
spect to memory-allocation andmemory-access strategies that have
different tradeoffs concerning safety and interoperability with na-
tive libraries. Recently, we have been working on balancing the
tradeoffs, on supporting inline assembly and GCC compiler builtins,
and on executing a complete libc on Sulong.

CCS CONCEPTS
• Software and its engineering → Virtual machines; Inter-
preters; Dynamic compilers;

KEYWORDS
Sulong, LLVM, GraalVM
ACM Reference Format:
Manuel Rigger, Roland Schatz, Jacob Kreindl, ChristianHäubl, andHanspeter
Mössenböck. 2018. Sulong, and Thanks for All the Fish. In Proceedings of
2nd International Conference on the Art, Science, and Engineering of Program-
ming (<Programming’18> Companion). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3191697.3191726

1 INTRODUCTION
The GraalVM [19, 20] is a multilingual virtual machine that can
execute Ruby [14], JavaScript, R [16], and Python [21]. The individ-
ual language implementations are built on a common framework
(called Truffle), which is written in Java [18]. Thus, a common com-
piler (called Graal) can optimize the execution of these languages
during run time [2, 7, 15, 17].

Programmers of dynamic languages make frequent use of foreign
function interfaces to call native extensions written in languages
such as C/C++ or Fortran. To support native extensions efficiently,
∗The title is a reference to Douglas Adams’ fourth book So Long, and Thanks for All
the Fish of the Hitchhiker’s Guide to the Galaxy.

<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings
of 2nd International Conference on the Art, Science, and Engineering of Programming
(<Programming’18> Companion), https://doi.org/10.1145/3191697.3191726.

executing them on Truffle would be desirable, as the compiler could
optimize across language boundaries and mitigate the overhead
that other native function interfaces incur [4, 5]. To tackle this
issue and to provide an efficient native function interface, we have
implemented a Truffle language implementation as part of project
Sulong [9].

Sulong’s Truffle interpreter executes LLVM IR [6], which is a
machine-independent format that specifies an instruction set resem-
bling RISC assembly. By executing LLVM IR, Sulong can execute
programs written in many languages, including C/C++ and For-
tran. Recently, we have been working on enabling the use of native
libraries in programs while still providing a partially safe execu-
tion, on supporting execution of a complete libc, and on supporting
inline assembly and GCC builtins.

2 ARCHITECTURE
Figure 1 gives an overview of the Sulong system.

LLVM. Sulong’s interpreter executes LLVM IR, which is part of
the LLVM compiler framework [6] and can be produced by many
language front ends. For example, LLVM’s Clang front end can
compile C/C++ code, Flang and GCC (with the DragonEgg plugin)
can compile Fortran code to LLVM IR.

LLVM IR interpreter. Sulong’s interpreter is written in Java
using the Truffle language implementation framework. Truffle is
a language implementation framework that facilitates the imple-
mentation of interpreters based on Abstract Syntax Trees (ASTs).
Each operation is implemented as a node that returns its result in
an execute() method. If a function is executed frequently, Truffle
uses the Graal compiler to compile it to machine code, by inlining
through all nodes’ execute() methods (which is a form of partial
evaluation [3]). As described below, Sulong’s interpreter can be
configured to use different strategies for handling allocations and
accessing memory in the user program; depending on its strategy,
we refer to Sulong as Native Sulong, Safe Sulong, orManaged Sulong.

Native Sulong. Native Sulong1 prioritizes compatibility with
native libraries over safety [10]. It supports passing objects allocated
by the LLVM IR interpreter in the user program (e.g., an allocation
by malloc in C) to machine-code functions. Native Sulong achieves
this by allocating unmanaged memory for all user-program objects,
1Available at https://github.com/graalvm/sulong and shipped as part of the GraalVM
at http://www.oracle.com/technetwork/oracle-labs/program-languages/overview/
index.html.

https://doi.org/10.1145/3191697.3191726
https://doi.org/10.1145/3191697.3191726
https://github.com/graalvm/sulong
http://www.oracle.com/technetwork/oracle-labs/program-languages/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/program-languages/overview/index.html

<Programming’18> Companion, April 9–12, 2018, Nice, France M. Rigger, R. Schatz, J. Kreindl, C. Häubl, and H. Mössenböck

Clang

C/C++ Fortran ...

GCC+
DragonEgg

Other LLVM
frontend

LLVM IR

Truffle

 GraalVM

LLVM IR Interpreter

Graal

compile to

runs on

Safe
Strategy

Native
Strategy

Managed
Strategy

Figure 1: Overview of the Sulong system.

and by using raw pointers to memory as references. However, a
drawback is that buffer overflows and other memory errors can
corrupt memory content or crash the JVM.

Safe Sulong. Due to the seriousness of buffer overflows—they
belong to the most dangerous software errors overall [1]—we have
implemented Safe Sulong, which prioritizes safety over native com-
patibility [8, 12]. It allocates Java objects for allocations in the user
program and detects buffer overflows through automatic checks of
the underlying JVM, which then aborts execution. It can also detect
other errors such as use-after-free errors, double-free errors, and
accesses to non-existent variadic arguments and has found errors in
open-source programs that state-of-the-art bug-finding tools failed
to detect [12]. Additionally, we have shown that exposing run-time
information tracked by Safe Sulong, such as object bounds or types,
helps programmers to improve the robustness of their libraries [13].
The main drawback of Safe Sulong is that in addition to the appli-
cation itself it also requires all libraries used by the application to
be available as LLVM IR as well because it cannot pass Java objects
to native libraries.

Managed Sulong. We are currently working on combining the
advantages of Safe Sulong and Native Sulong, providing memory
safety were possible, while retaining the ability to use native li-
braries. To this end, we are implementing Managed Sulong, which
can handle both managed and native allocations. Additionally, we
are experimenting with executing machine code on the Truffle plat-
form, using either an x86 Truffle interpreter or by lifting machine
code to LLVM IR, which could then be executed in a safe way.

3 EXECUTING LIBC ON SULONG
Most LLVM IR instructions can be mapped to similar Java op-
erations or methods in Java’s standard library. However, C/C++
projects contain elements such as inline assembly and compiler
builtins, which resemble external calls after being compiled to
LLVM IR. The call target, either an inline assembly snippet or a
compiler builtin, needs to be implemented by Sulong’s interpreter.

The x86 architecture offers about 1000 instructions, which leads
to a high implementation effort even for this single instruction set
architecture. Similarly, several compilers provide their own builtins
and, for example, GCC alone provides several thousand builtins.

We have studied the usage of inline assembly [11] and builtins in
GitHub projects to add support for the commonly used x86 inline
assembly instructions and GCC builtins. As a result, Native Sulong
can now execute system libraries such as libc (namelymusl libc2) on
the JVM, with the exception of system calls, for which it still relies
on the operating system. As part of our future work, we also want
to support the execution of libc with Safe Sulong and Managed
Sulong.

4 CONCLUSION
We have introduced Sulong and its configurations that differ in their
tradeoffs regarding safety and interoperability with native libraries.
Further, we have discussed that Sulong can execute platform-specific
elements in LLVM IR such as x86 inline assembly and compiler
builtins. In the context of the GraalVM, Sulong is an important part
to efficiently execute programs written in low-level languages such
as C/C++ and Fortran.

ACKNOWLEDGMENTS
Wewant to thankOracle Labs, which partly funded the authors from
Johannes Kepler University Linz. We thank all Sulong, Truffle, and
Graal contributors, the members of Oracle Labs, and themembers of
the Institute for System Software at the Johannes Kepler University
Linz for their contributions. Finally, we thank Stefan Marr, Stephen
Kell, Bram Adams, and David Leopoldseder for their assistance
in analyzing the usage of inline assembly and/or GCC compiler
builtins to help their implementation in Sulong.

REFERENCES
[1] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole.

2000. Buffer overflows: Attacks and defenses for the vulnerability of the decade.
In DARPA Information Survivability Conference and Exposition, 2000. DISCEX’00.
Proceedings, Vol. 2. IEEE, 119–129.

[2] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug
Simon, and Hanspeter Mössenböck. 2013. An Intermediate Representation for
Speculative Optimizations in a Dynamic Compiler. In Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate Languages (VMIL ’13). ACM, New
York, NY, USA, 1–10. https://doi.org/10.1145/2542142.2542143

[3] Yoshihiko Futamura. 1999. Partial evaluation of computation process–an ap-
proach to a compiler-compiler. Higher-Order and Symbolic Computation 12, 4
(1999), 381–391.

[4] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger, and
Hanspeter Mössenböck. 2015. High-performance Cross-language Interoperability
in a Multi-language Runtime. In Proceedings of DLS 2015. 78–90.

[5] Matthias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter Mössen-
böck. 2015. Dynamically Composing Languages in a Modular Way: Supporting
C Extensions for Dynamic Languages. In Proceedings of the 14th International
Conference on Modularity (MODULARITY 2015). ACM, New York, NY, USA, 1–13.
https://doi.org/10.1145/2724525.2728790

[6] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong
program analysis transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/CGO.2004.
1281665

[7] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon,
and Hanspeter Mössenböck. 2018. Dominance-based Duplication Simulation
(DBDS): Code Duplication to Enable Compiler Optimizations. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization (CGO
2018). ACM, New York, NY, USA, 126–137. https://doi.org/10.1145/3168811

2https://www.musl-libc.org/

https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/2724525.2728790
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3168811
https://www.musl-libc.org/

Sulong, and Thanks for All the Fish <Programming’18> Companion, April 9–12, 2018, Nice, France

[8] Manuel Rigger. 2016. Sulong: Memory Safe and Efficient Execution of LLVM-
Based Languages. In ECOOP 2016 Doctoral Symposium. http://ssw.jku.at/General/
Staff/ManuelRigger/ECOOP16-DS.pdf.

[9] Manuel Rigger, Matthias Grimmer, and Hanspeter Mössenböck. 2016. Sulong -
Execution of LLVM-based Languages on the JVM: Position Paper. In Proceedings
of the 11th Workshop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems (ICOOOLPS ’16). ACM, New York, NY,
USA, Article 7, 4 pages. https://doi.org/10.1145/3012408.3012416

[10] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas Würthinger, and
Hanspeter Mössenböck. 2016. Bringing Low-level Languages to the JVM: Efficient
Execution of LLVM IR on Truffle. In Proceedings of the 8th International Workshop
on Virtual Machines and Intermediate Languages (VMIL 2016). ACM, New York,
NY, USA, 6–15. https://doi.org/10.1145/2998415.2998416

[11] Manuel Rigger, Stefan Marr, Stephen Kell, David Leopoldseder, and Hanspeter
Mössenböck. [n. d.]. An Empirical Analysis of x86-64 Inline Assembly in C
Programs. In Virtual Execution Environments (VEE 2018). https://doi.org/10.1145/
3186411.3186418

[12] Manuel Rigger, Roland Schatz, Rene Mayrhofer, Matthias Grimmer, and
Hanspeter Mössenböck. [n. d.]. Sulong, and Thanks For All the Bugs: Find-
ing Errors in C Programs by Abstracting from the Native Execution Model.
In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2018).
https://doi.org/10.1145/3173162.3173174

[13] Manuel Rigger, Roland Schatz, Rene Mayrhofer, Matthias Grimmer, and
Hanspeter Mössenböck. 2018. Introspection for C and its Applications to Library
Robustness. The Art, Science, and Engineering of Programming 2 (2018).

[14] Chris Seaton. 2015. Specialising Dynamic Techniques for Implementing The Ruby
Programming Language. Ph.D. Dissertation. University of Manchester.

[15] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger,
and Doug Simon. 2013. An Experimental Study of the Influence of Dynamic

Compiler Optimizations on Scala Performance. In Proceedings of the 4th Workshop
on Scala (SCALA ’13). ACM, New York, NY, USA, Article 9, 8 pages. https:
//doi.org/10.1145/2489837.2489846

[16] Lukas Stadler, Adam Welc, Christian Humer, and Mick Jordan. 2016. Optimizing
R Language Execution via Aggressive Speculation. In Proceedings of the 12th
Symposium on Dynamic Languages (DLS 2016). ACM, New York, NY, USA, 84–95.
https://doi.org/10.1145/2989225.2989236

[17] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Par-
tial Escape Analysis and Scalar Replacement for Java. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization (CGO
’14). ACM, New York, NY, USA, Article 165, 10 pages. https://doi.org/10.1145/
2544137.2544157

[18] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-optimizing
Runtime System. In Proceedings of the 3rd Annual Conference on Systems, Pro-
gramming, and Applications: Software for Humanity (SPLASH ’12). 13–14. https:
//doi.org/10.1145/2384716.2384723

[19] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017.
Practical Partial Evaluation for High-performance Dynamic Language Runtimes.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 662–676.
https://doi.org/10.1145/3062341.3062381

[20] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, New York, NY, USA, 187–204. https://doi.org/10.
1145/2509578.2509581

[21] Wei Zhang. 2015. Efficient Hosted Interpreter for Dynamic Languages. Ph.D.
Dissertation. University of California, Irvine.

http://ssw.jku.at/General/Staff/ManuelRigger/ECOOP16-DS.pdf
http://ssw.jku.at/General/Staff/ManuelRigger/ECOOP16-DS.pdf
https://doi.org/10.1145/3012408.3012416
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/3186411.3186418
https://doi.org/10.1145/3186411.3186418
https://doi.org/10.1145/3173162.3173174
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2989225.2989236
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Architecture
	3 Executing Libc on Sulong
	4 Conclusion
	Acknowledgments
	References

