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ABSTRACT
Dynamic languages rely on native extensions written in languages
such as C/C++ or Fortran. To efficiently support the execution of
native extensions in the multi-lingual GraalVM, we have imple-
mented Sulong, which executes LLVM IR to support all languages
that have an LLVM front end. It supports configurations with re-
spect to memory-allocation andmemory-access strategies that have
different tradeoffs concerning safety and interoperability with na-
tive libraries. Recently, we have been working on balancing the
tradeoffs, on supporting inline assembly and GCC compiler builtins,
and on executing a complete libc on Sulong.
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1 INTRODUCTION
The GraalVM [19, 20] is a multilingual virtual machine that can
execute Ruby [14], JavaScript, R [16], and Python [21]. The individ-
ual language implementations are built on a common framework
(called Truffle), which is written in Java [18]. Thus, a common com-
piler (called Graal) can optimize the execution of these languages
during run time [2, 7, 15, 17].

Programmers of dynamic languages make frequent use of foreign
function interfaces to call native extensions written in languages
such as C/C++ or Fortran. To support native extensions efficiently,
∗The title is a reference to Douglas Adams’ fourth book So Long, and Thanks for All
the Fish of the Hitchhiker’s Guide to the Galaxy.
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executing them on Truffle would be desirable, as the compiler could
optimize across language boundaries and mitigate the overhead
that other native function interfaces incur [4, 5]. To tackle this
issue and to provide an efficient native function interface, we have
implemented a Truffle language implementation as part of project
Sulong [9].

Sulong’s Truffle interpreter executes LLVM IR [6], which is a
machine-independent format that specifies an instruction set resem-
bling RISC assembly. By executing LLVM IR, Sulong can execute
programs written in many languages, including C/C++ and For-
tran. Recently, we have been working on enabling the use of native
libraries in programs while still providing a partially safe execu-
tion, on supporting execution of a complete libc, and on supporting
inline assembly and GCC builtins.

2 ARCHITECTURE
Figure 1 gives an overview of the Sulong system.

LLVM. Sulong’s interpreter executes LLVM IR, which is part of
the LLVM compiler framework [6] and can be produced by many
language front ends. For example, LLVM’s Clang front end can
compile C/C++ code, Flang and GCC (with the DragonEgg plugin)
can compile Fortran code to LLVM IR.

LLVM IR interpreter. Sulong’s interpreter is written in Java
using the Truffle language implementation framework. Truffle is
a language implementation framework that facilitates the imple-
mentation of interpreters based on Abstract Syntax Trees (ASTs).
Each operation is implemented as a node that returns its result in
an execute() method. If a function is executed frequently, Truffle
uses the Graal compiler to compile it to machine code, by inlining
through all nodes’ execute() methods (which is a form of partial
evaluation [3]). As described below, Sulong’s interpreter can be
configured to use different strategies for handling allocations and
accessing memory in the user program; depending on its strategy,
we refer to Sulong as Native Sulong, Safe Sulong, orManaged Sulong.

Native Sulong. Native Sulong1 prioritizes compatibility with
native libraries over safety [10]. It supports passing objects allocated
by the LLVM IR interpreter in the user program (e.g., an allocation
by malloc in C) to machine-code functions. Native Sulong achieves
this by allocating unmanaged memory for all user-program objects,
1Available at https://github.com/graalvm/sulong and shipped as part of the GraalVM
at http://www.oracle.com/technetwork/oracle-labs/program-languages/overview/
index.html.
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Figure 1: Overview of the Sulong system.

and by using raw pointers to memory as references. However, a
drawback is that buffer overflows and other memory errors can
corrupt memory content or crash the JVM.

Safe Sulong. Due to the seriousness of buffer overflows—they
belong to the most dangerous software errors overall [1]—we have
implemented Safe Sulong, which prioritizes safety over native com-
patibility [8, 12]. It allocates Java objects for allocations in the user
program and detects buffer overflows through automatic checks of
the underlying JVM, which then aborts execution. It can also detect
other errors such as use-after-free errors, double-free errors, and
accesses to non-existent variadic arguments and has found errors in
open-source programs that state-of-the-art bug-finding tools failed
to detect [12]. Additionally, we have shown that exposing run-time
information tracked by Safe Sulong, such as object bounds or types,
helps programmers to improve the robustness of their libraries [13].
The main drawback of Safe Sulong is that in addition to the appli-
cation itself it also requires all libraries used by the application to
be available as LLVM IR as well because it cannot pass Java objects
to native libraries.

Managed Sulong. We are currently working on combining the
advantages of Safe Sulong and Native Sulong, providing memory
safety were possible, while retaining the ability to use native li-
braries. To this end, we are implementing Managed Sulong, which
can handle both managed and native allocations. Additionally, we
are experimenting with executing machine code on the Truffle plat-
form, using either an x86 Truffle interpreter or by lifting machine
code to LLVM IR, which could then be executed in a safe way.

3 EXECUTING LIBC ON SULONG
Most LLVM IR instructions can be mapped to similar Java op-
erations or methods in Java’s standard library. However, C/C++
projects contain elements such as inline assembly and compiler
builtins, which resemble external calls after being compiled to
LLVM IR. The call target, either an inline assembly snippet or a
compiler builtin, needs to be implemented by Sulong’s interpreter.

The x86 architecture offers about 1000 instructions, which leads
to a high implementation effort even for this single instruction set
architecture. Similarly, several compilers provide their own builtins
and, for example, GCC alone provides several thousand builtins.

We have studied the usage of inline assembly [11] and builtins in
GitHub projects to add support for the commonly used x86 inline
assembly instructions and GCC builtins. As a result, Native Sulong
can now execute system libraries such as libc (namelymusl libc2) on
the JVM, with the exception of system calls, for which it still relies
on the operating system. As part of our future work, we also want
to support the execution of libc with Safe Sulong and Managed
Sulong.

4 CONCLUSION
We have introduced Sulong and its configurations that differ in their
tradeoffs regarding safety and interoperability with native libraries.
Further, we have discussed that Sulong can execute platform-specific
elements in LLVM IR such as x86 inline assembly and compiler
builtins. In the context of the GraalVM, Sulong is an important part
to efficiently execute programs written in low-level languages such
as C/C++ and Fortran.
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