
Bringing Low-Level Languages to the JVM:
Efficient Execution of LLVM IR on Truffle

Manuel Rigger
Johannes Kepler University, Austria

manuel.rigger@jku.at

Matthias Grimmer
Johannes Kepler University, Austria

matthias.grimmer@jku.at

Christian Wimmer
Oracle Labs

christian.wimmer@oracle.com

Thomas Würthinger
Oracle Labs

thomas.wuerthinger@oracle.com

Hanspeter Mössenböck
Johannes Kepler University, Austria
hanspeter.moessenboeck@jku.at

Abstract
Although the Java platform has been used as a multi-
language platform, most of the low-level languages (such as
C, Fortran, and C++) cannot be executed efficiently on the
JVM. We propose Sulong, a system that can execute LLVM-
based languages on the JVM. By targeting LLVM IR, Sulong
is able to execute C, Fortran, and other languages that can
be compiled to LLVM IR. Sulong combines LLVM’s static
optimizations with dynamic compilation to reach a peak
performance that is near to the performance achievable with
static compilers. For C benchmarks, Sulong’s peak runtime
performance is on average 1.39× slower (0.79× to 2.45×)
compared to the performance of executables compiled by
Clang O3. For Fortran benchmarks, Sulong is 2.63× slower
(1.43× to 4.96×) than the performance of executables com-
piled by GCC O3. This low overhead makes Sulong an alter-
native to Java’s native function interfaces. More importantly,
it also allows other JVM language implementations to use
Sulong for implementing their native interfaces.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors - Run-time environments, Code
generation, Interpreters, Compilers, Optimization

Keywords LLVM, JVM, Sulong, dynamic compilation

1. Introduction
The Java Virtual Machine (JVM) has been recently used as
a platform for not only Java and Scala, but also for dynamic

[Copyright notice will appear here once ’preprint’ option is removed.]

languages including Ruby, Python, and JavaScript (Rose
2009). Having the JVM as a common platform enables
cross-language interoperability so that Java code can call
functions or methods written in other languages. Language
implementation frameworks such as Truffle (Würthinger
et al. 2013) feature a mechanism for cross-language inter-
operability, which allows writing efficient multi-language
applications (Grimmer et al. 2015b). However, except from
a C implementation (Grimmer et al. 2014, 2015a), there
are no efficient Truffle implementations of lower-level lan-
guages, e.g., Fortran, C++, and others. To call functions
written in such languages, developers have to resort to the
Java Native Interface (JNI, Liang 1999) or other native func-
tion interfaces. These native function interfaces add run-
time overhead since data structures have to be converted or
(un)marshalled when transferring data between Java and the
target language. Also, language boundaries are compilation
boundaries, so a compiler cannot, for example, apply func-
tion inlining across languages.1

In this paper we present Sulong, a system that enriches
the JVM with a variety of new languages by executing
LLVM IR on the JVM. Sulong includes a new LLVM IR in-
terpreter, which allows it to execute all languages that have
an LLVM IR front end, including C/C++, Fortran, Ada, and
Haskell. Developers can use the interpreter as a Java library
to execute these languages on the JVM. We implemented
the LLVM IR interpreter in Java on top of the Truffle frame-
work (Würthinger et al. 2013), so that Sulong does not only
interface with Java but also provides seamless interoperabil-
ity with other Truffle language implementations (Grimmer
et al. 2015b) such as R (Stadler et al. 2016), Ruby (Seaton
2015), and JavaScript (Würthinger et al. 2013). This in-

1 Stepanian et al. (Stepanian et al. 2005) show that inlining native C code
into Java is important and improves performance significantly. However,
they convert the native code to the same intermediate language as the JIT
compiler uses while we want to directly run low-level code on the JVM.

Efficient execution of LLVM Languages on the JVM 1 2016/9/23

Clang

C/C++ Fortran ...

GCC+
DragonEgg

Other LLVM
frontend

LLVM IR

Truffle

 GraalVM

LLVM IR Interpreter

Graal

compile to

optimizes

runs on

opt

LLVM

JVM

Figure 1. System overview.

teroperability mechanism allows optimizations across lan-
guage boundaries such as cross-language function inlin-
ing. Furthermore, by having Truffle as a common base,
other language implementations can use Sulong to imple-
ment their Native Function Interfaces (NFIs). For example,
JRuby+Truffle (a Truffle implementation of Ruby, Seaton
2015) already uses Sulong to implement C extension sup-
port and FastR (a Truffle implementation of R, Stadler et al.
2016) experiments implementing support for native exten-
sions with it.

Efficiency is very important to make Sulong an alterna-
tive to NFIs for both Java developers and Truffle language
implementers. To achieve the necessary performance, Su-
long combines LLVM’s static optimizations at compile-time
with a dynamic compiler at run-time. We use the Graal dy-
namic compiler (Duboscq et al. 2013; Stadler et al. 2014) to
compile frequently executed LLVM IR functions to native
code. This allows Sulong to reach peak performance that
is near to the performance of code produced by industrial-
strength compilers such as Clang.

In summary, this paper contributes the following:

• We describe how we bring a variety of languages to the
JVM by using LLVM front ends and implementing a self-
optimizing LLVM IR interpreter.

• We present a novel compilation approach to dynamically
compile LLVM IR.

• We describe how we use static optimizations in combina-
tion with dynamic compilation to generate efficient ma-
chine code and demonstrate its peak performance on a
range of C and Fortran benchmarks.

2. System Overview
Sulong is a modularized system that uses parts of LLVM and
the JVM (see Figure 1). In this section we describe LLVM
and Truffle + Graal, which are the basis of Sulong.

void processRequests () {
int i = 0;
do {

processPacket ();
i++;

} while (i < 10000);
}

Figure 2. A small C program containing a loop.

2.1 LLVM
LLVM (Lattner and Adve 2004) is a modular static compi-
lation framework that consists of a standardized IR (called
LLVM IR or bitcode) and a set of libraries. LLVM front
ends translate a source program to an LLVM IR program.
LLVM’s official front-end is Clang which can compile C,
C++, Objective C, and Objective C++. To enable GCC to
compile its supported languages including Ada, Fortran, and
Go to LLVM IR, one can use the DragonEgg plugin.2 After
compilation, a user can decide to further process the LLVM
IR file, e.g., by using the LLVM static optimization tool
opt to optimize the program. To get an executable from the
LLVM IR file one can use the LLVM linker and assembler
to link the LLVM IR files and to compile them to machine
code. Sulong consists of a Truffle interpreter that we use to
execute this IR on the JVM (see Section 3).

Figure 2 shows a C program, and Figure 3 the correspond-
ing LLVM IR program in textual form. In LLVM IR, as in
most IRs, a function comprises basic blocks that consist of
sequential instructions and end with a terminator instruction
that transfers control to the next basic block. For example,
br label %1 is an unconditional branch to the basic block
labeled %1, br i1 %3, label %1, label %4 is a condi-
tional branch (depending on the boolean value %3) to the ba-
sic blocks labelled %1 or %4, and ret void is a return from
the function. These branches transfer control between basic
blocks, similar as in non-structured programming languages
that use goto. The biggest challenge for Sulong’s LLVM IR
interpreter is to efficiently interpret and dynamically compile
the dispatch between basic blocks.

LLVM IR is in Static Single Assignment form (SSA,
Cytron et al. 1991), i.e., each variable is only assigned once.
In LLVM IR, these variables are called virtual registers and
are prefixed with %. To merge assignments to the same vari-
able after branches, LLVM IR uses phi functions. For exam-
ple, in %i.0 = phi i32 [0, %0], [%2, %1], the
value assigned to %i.0 is 0 when the predecessor block is
%0 and %2 if the predecessor block is %1. Sulong’s LLVM
IR interpreter needs to implement these virtual registers of
LLVM IR as well as the native memory access that low-level
languages use.

2 http://dragonegg.llvm.org/

Efficient execution of LLVM Languages on the JVM 2 2016/9/23

define void @processRequests () #0 {
; (basic block 0)

br label %1

; <label >:1 (basic block 1)
%i.0 = phi i32 [0, %0], [%2 , %1]
call void @processPacket ()
%2 = add nsw i32 %i.0, 1
%3 = icmp slt i32 %2, 10000
br i1 %3 , label %1, label %4

; <label >:4 (basic block 2)
ret void

}

Figure 3. LLVM IR of the C program in Figure 2.

2.2 Truffle
Truffle (Würthinger et al. 2013) is a language implementa-
tion framework to build high-performance Abstract Syntax
Tree (AST) interpreters on the JVM. Each node in a Truffle
AST has an execute method in which it executes its children
and returns its own result. Truffle AST interpreters are self-
optimizing (Würthinger et al. 2012) in the sense that AST
nodes can speculatively rewrite themselves with specialized
variants at run time, e.g., based on profile information ob-
tained during execution such as type information. For exam-
ple, our LLVM IR interpreter can optimize indirect function
calls by rewriting the indirect call node to a specialized node
that speculates on a constant call target and can thus build
polymorphic inline caches (Hölzle et al. 1991). In turn, this
optimization enables speculative function inlining of indirect
calls.

If these speculative assumptions turn out to be wrong,
the specialized tree can be reverted to a more generic ver-
sion that provides functionality for all possible cases. Truf-
fle guest languages use self-optimization via tree rewriting
as a general mechanism for dynamically optimizing code at
run-time. For example, if an indirect function call is highly
polymorphic, Truffle languages rewrite the polymorphic in-
line cache to a node that performs the lookup and calls the
function.

2.3 Graal
When the execution count of a Truffle AST reaches a pre-
defined threshold, Truffle uses the dynamic Graal com-
piler (Duboscq et al. 2013; Stadler et al. 2014) to compile the
AST to machine code. The compiler assumes that the AST
is stable and inlines node execution methods of a hot AST
into a single method (known as partial evaluation, Futamura
1999) and performs aggressive optimizations over the whole
tree. Graal inserts deoptimization points (Hölzle et al. 1992)
in the machine code where the speculative assumptions are
checked. If they turn out to be wrong, control is transferred
back from compiled code to the interpreted AST, where spe-
cialized nodes can be reverted to a more generic version.

Blockbci=0 Blockbci=1 Blockbci=2

Basic Block Dispatch Node

1 2 -11 Successor basic
block bcis

Figure 4. Basic block dispatch node for Figure 3

2.4 Sulong
Sulong uses LLVM front ends to compile source languages
such as C/C++ or Fortran to LLVM IR and interprets it on
the JVM. To simplify and optimize an LLVM IR program
prior to interpretation, Sulong uses LLVM’s static optimiz-
ers. Sulong then executes the LLVM IR on the JVM using
a new Truffle interpreter. This Truffle language implemen-
tation brings all LLVM languages to the JVM, and makes
them accessible to other Truffle language implementations.

Sulong’s interpreter optimizes the AST based on the pro-
file feedback that it observes at run time. Eventually, Truffle
uses Graal as a dynamic compiler to compile the program to
machine code, from which execution continues with native
speeds. This architecture allows Sulong to profit from both
static optimizations by LLVM, and dynamic optimizations
by Truffle and Graal.

3. Execution of Unstructured Control Flow
The LLVM IR interpreter is different from previous lan-
guage implementations on top of Truffle since it has to deal
with unstructured control flow that cannot easily be handled
in an AST interpreter. Support for unstructured control flow
is the key for enabling the execution of LLVM IR, both in
the interpreter and in the dynamically compiled code.

3.1 Interpreter
To support unstructured control flow in the interpreter we
follow a mixed AST execution and bytecode interpretation
approach. Basic blocks only contain sequential instructions,
hence, we build ASTs for them. We do not build ASTs to im-
plement transferring control between the basic blocks, since
unstructured control flow cannot be directly modeled using
ASTs. We could convert the unstructured LLVM IR pro-
grams to structured programs (Erosa and Hendren 1994),
at the expense of making the implementation more com-
plicated and removing the direct correspondence between
LLVM IR instructions and Truffle nodes. Instead, we use
a basic block dispatch node to transfer control between the
basic blocks (and also add support for its compilation, see
Section 3.2). Each function has such a basic block dispatch
node. In the loop of the basic block dispatch node (see Fig-

Efficient execution of LLVM Languages on the JVM 3 2016/9/23

int bci = 0;
while (bci != -1)

bci = blocks[bci]. execute ();

Figure 5. Sulong’s basic block dispatch node.

ure 5), we execute a basic block in each iteration, starting
from a bitcode index of zero (bci = 0). Each node that rep-
resents a basic block contains an int[] array with the bcis
of its successor blocks, which allows the compiler to see all
possible successors of a block, i.e., the successor bcis are
compile-time constants. The compiler needs this information
to compile the basic block dispatch node (see Section 3.2).
When executing a basic block, the basic block computes an
index into this successor array, which it uses to return the
next bci. Execution of basic blocks continues until bci = -1
which signals a return statement.

For the program in Figure 3, the basic block dispatch
node transfers execution between three basic blocks that
have consecutive indices from 0 to 2. Figure 4 shows the ba-
sic block dispatch node for this program and illustrates the
control flow between the basic blocks with red arrows. Exe-
cution starts with the first basic block blockbci=0. Blockbci=0

has only one possible successor (blockbci=1), therefore its
successor array contains only one element, namely bci =
1. The basic block dispatch node executes blockbci=0, and
reads the next bci = 1 from its successor array. Blockbci=1

has two possible successors (blockbci=1, the loop body; and
blockbci=2, the loop exit), therefore the successor array con-
tains two elements, namely bci = 1 and bci = 2. Again, the
basic block dispatch node executes blockbci=1, and returns
either bci = 1 or bci = 2 from its successor array. The suc-
cessor of blockbci=2 is bci = -1, which signals a return from
the function.

3.2 Compilation
When compiling an AST, the Graal compiler has to recur-
sively inline the execution methods of all AST nodes. While
this is trivial for a regular AST, Graal has to treat the ba-
sic block dispatch node differently. For the basic block dis-
patch node, the compiler unrolls the loop (while (bci !=

-1), see Figure 5) until all paths through the program are
expanded. With respect to the program in Figure 3, the com-
piler starts with a bci = 0 and determines all successors of
blockbci=0. The successor of blockbci=0 is blockbci=1. The
compiler can peel the first iteration, and thus moves the exe-
cution of blockbci=0 out of the loop. Figure 6 illustrates this
first step of the loop expansion in pseudo code; note that the
first loop iteration (the execution of blockbci=0) is peeled.
Next, the compiler determines the successors of blockbci=1,
which are blockbci=1 (i.e., the loop body) and blockbci=2

(i.e., the loop exit). The compiler detects when a path has
already been expanded and merges it with the existing path,
which guarantees that the loop expansion terminates. In our

blocks [0]. execute (); // bci = 1
bci = blocks [1]. execute (); // to be expanded

Figure 6. Step 1: Unrolling the loop of the basic block
dispatch node.

blocks [0]. execute (); // bci = 1
merge1:

bci = blocks [1]. execute (); // bci = 1 or 2
if (bci == 1)

goto merge1;
else

bci = blocks [2]. execute (); // to be expanded

Figure 7. Step 2: Unrolling the loop of the basic block
dispatch node.

blocks [0]. execute (); // bci = 1
merge1:

bci = blocks [1]. execute (); // bci = 1 or 2
if (bci == 1)

goto merge1;
else

blocks [2]. execute (); // bci = -1
return;

Figure 8. Final state: Unrolled loop of the basic block dis-
patch node.

example, the compiler sees that it has already expanded
blockbci=1, and inserts a backjump (blockbci=1 has itself as
a successor, so the compiler detected a loop). The second
successor of blockbci=1 is blockbci=2, which the compiler
expands. Figure 7 shows how the successors of blockbci=1

are expanded; note that the compiler inserts a jump (goto
merge1) if it detects a path that has already been expanded
(blockbci=1 has itself as a successor). Finally, the compiler
expands the successors of blockbci=2, of which there are
none (indicated by bci = -1). The bci = -1 terminates the loop
and the compiler has finished loop unrolling. Figure 8 shows
how the successors of blockbci=2 are expanded; note that the
compiler inserts code to return from the function (return)
if it detects a path that lets the basic block dispatch loop ter-
minate. The Graal compiler then further optimizes the graph
obtained by this partial evaluation.

4. Native Calls and Memory Management
One concern for Sulong is seamless and efficient interop-
erability with native shared libraries such as the C standard
library. Reusing existing code in low-level languages such as
C/C++ is commonly done by linking user programs against a
shared native library that is present as a machine code binary
but not available as source code (e.g. the C standard library).
Sulong uses the Graal Native Function Interface (Graal NFI,
Grimmer et al. 2013) to call native functions of such a li-
brary. When Graal compiles the AST to machine code, the

Efficient execution of LLVM Languages on the JVM 4 2016/9/23

compiled Java code directly (i.e., without overhead) calls the
native function.

To be interoperable with native functions, the Graal NFI
expects its caller to either pass primitive values (by value) or
unmanaged objects such as structs or arrays (by reference).
Sulong aligns LLVM IR objects (structs, arrays, and vec-
tors) using the same layout as in executables produced by
static compilers. It reads this layout information from the
bitcode file. When Sulong calls a native function, this na-
tive function can directly operate on allocations provided by
Sulong, since they match the platform’s Application Binary
Interface. Thus, Sulong does not need to marshal or convert
objects when calling shared library functions, and can call
native functions with zero overhead when compared to na-
tive to native calls in executables. Following the object lay-
out of static compilers also allows programmers to not only
rely on standard C, but even to run programs that rely on un-
defined aspects of the memory layout when accessing native
memory. This is useful in practice, since many programmers
rely on what today’s compilers do and not what ISO C spec-
ifies (Memarian et al. 2016). Sulong allocates, deallocates,
and accesses unmanaged memory using the JDK internal
sun.misc.Unsafe API.

To execute LLVM IR, Sulong has to support two types of
unmanaged memory:

Stack: LLVM IR has an alloca instruction to allocate stack
memory. To implement stack memory, Sulong allocates a
block of memory at the start of the program and assigns
its address to a stack pointer. The implementation of the
alloca instruction then increments this stack pointer to
allocate memory on the stack.

Heap: LLVM IR can allocate heap memory using external
calls to a library function such as malloc from the C
standard library. Heap memory allocation is transparent
for Sulong and is handled like any other external call to a
shared library.

5. Static and Dynamic Optimizations
By default, LLVM front ends such as Clang compile local
variables in C/C++ to LLVM IR instructions that allocate the
variables on the stack. Once a local variable is needed, it is
loaded from memory and assigned to a virtual register. Thus,
unoptimized LLVM IR programs have many stack alloca-
tions and memory accesses that could be avoided by keep-
ing variables in virtual registers as long as their addresses are
not needed and the variables have a primitive type. Storing
local variables in memory is especially a problem for Su-
long: The Graal compiler does not optimize allocations and
accesses to unmanaged memory since Java programs mostly
use managed memory. To overcome this shortfall, Sulong
uses static LLVM optimizations to reduce the number of al-
locations and accesses to unmanaged memory. LLVM offers
the mem2reg optimization which attempts to lift such stack

allocations to virtual registers or constants. Sulong applies
this optimization to reduce native memory accesses which
enables the Graal compiler to produce more efficient ma-
chine code. Sulong’s LLVM IR interpreter efficiently repre-
sents virtual registers (see Section 2.1) as Java objects that
Graal can optimize well. In compiled code, virtual registers
map to machine registers, or are allocated on the stack.

Besides mem2reg, LLVM provides other optimizations
that reduce memory accesses such as dead store elimination,
promote “by reference” arguments to scalars, and handle
loop invariant code motion.

In addition to the static optimizations by LLVM Sulong
performs several dynamic optimizations that cannot be per-
formed by classic static compilers. On the Truffle level Su-
long performs the following optimizations:

Runtime Inlining: Truffle performs profiling-based inlin-
ing during run-time. While we could use LLVM to per-
form static inlining we defer inlining to the run time since
Truffle can exploit profiling feedback such as function
call counts that can lead to better inlining decisions.

Dynamic Dead Code Elimination: We profile the prob-
ability of basic block successors in our basic block dis-
patch node. Graal will not compile a basic block that
has never been executed and instead inserts a deopti-
mization point. This effectively results in a dynamic
dead-instruction elimination (Butts and Sohi 2002), since
Graal only considers those nodes for compilation that
have been executed by the Sulong interpreter. Addition-
ally, the successor probability profiling helps Graal dur-
ing optimization and enables re-ordering of basic blocks
based on the frequency of their execution.

Value profiling: We identify run-time-invariant memory
values (Calder et al. 1997) by observing if a loaded mem-
ory value does not change, and replace such a load node
by a node that checks if the value is still the same and
returns the cached constant. When Graal compiles the
node, it can propagate the profiled constant through con-
stant folding and other optimizations. This optimization
is especially beneficial for global variables that are set at
the beginning of a program (e.g., configuration values)
and do not change afterwards.

Polymorphic inline caches: We construct polymorphic in-
line caches (Hölzle et al. 1991) for function pointer calls.
The first time we indirectly call a function the call site
caches the target function up to a certain cache size.
Subsequent calls then first check if the current function
pointer is one of the cached target functions, and if so,
perform a direct call to the function. Guarded direct call-
ing enables Truffle to inline function pointer calls which
eliminates the call overhead and enables optimizations
on a larger range of code. If the number of cached func-
tions exceeds a predefined threshold, we perform a nor-

Efficient execution of LLVM Languages on the JVM 5 2016/9/23

Polyhedron

0

1

2

3

4

5
ac

do
du

c

ga
s_

dy
n2

in
du

ct
2

lin
pk

m
db

x

nf

pr
ot

ei
n

te
st

_f
pu

2

tff
t2

R
un

tim
e

Figure 10. Polyhedron benchmark suite; peak performance
(lower is better, relative to GCC O3)

mal indirect call since the inlining benefits are not likely
to amortize the additional checks.

6. Evaluation
To evaluate Sulong, we choose C and Fortran as two LLVM
languages. We do not evaluate C++ since we do not yet sup-
port LLVM IR exception handling. We use LLVM’s official
front end Clang to compile C to LLVM IR. Since Clang can-
not compile Fortran, we use GCC with the DragonEgg plu-
gin to compile Fortran to LLVM IR.

6.1 Benchmarks
To evaluate Sulong, we use all single-threaded C bench-
marks from the Computer Language Benchmark game
(shootouts)3. The shootouts are small benchmarks (66-453
LOC4) designed to compare the performance of different
languages. They are useful as a base for the comparison
of language implementations, since language implementers
commonly use them as an optimization target (Barrett et al.
2016; Marr et al. 2016). We also include the whetstone5,
deltablue6, and richards7 benchmarks (239 to 839 LOC)
since they are similarly popular small benchmarks for C.

Sulong is still a prototype and in an early stage. It can-
not yet execute all SPEC CPU benchmarks. However, we
want to also present performance numbers on real world
applications. Sulong can already execute an application for
compression using bzip2 (5k LOC) and gzip (5K LOC),
and an application that converts an audio file using oggenc
(48K LOC). These benchmarks are part of the Large scale
compilation-unit C programs 8.

The same is true when executing Fortan on top of Sulong.
Sulong can run 10 benchmarks from the Polyhedron Bench-

3 http://benchmarksgame.alioth.debian.org/
4 We used cloc to get the lines of code (LOC) without blank lines and
comments.
5 http://www.netlib.org/benchmark/whetstone.c
6 https://github.com/xxgreg/deltablue/blob/master/

deltablue.c
7 http://www.cl.cam.ac.uk/~mr10/Bench.html
8 http://people.csail.mit.edu/smcc/projects/

single-file-programs/

mark Suite9, which in total consists of 17 mixed-size (161
LOC - 27K LOC) benchmarks to evaluate Fortran compiler
implementations.

The benchmarks from SPEC CPU and the Polyhedron
Benchmark Suite that are not part of our evaluation can-
not be executed by Sulong. Sulong either fails parsing their
LLVM IR, crashes because of implementation bugs, or re-
ports an unimplemented feature. We are convinced that the
implementation of missing features and resolving the known
issues is possible with reasonable effort in the future.

6.2 Experimental Setup
To account for the adaptive compilation techniques of Truf-
fle and Graal, we set up a harness that warms up the
benchmarks. After the warm-up iterations, every benchmark
reaches a steady state such that subsequent iterations are
identically and independently distributed. We execute each
C benchmark 100 times and use the last 50 iterations to
compute the runtime. Since the Fortran benchmarks warm
up faster and run longer, we execute them 20 times and use
the last 10 iterations to compute the runtime.

We measure the peak performance of C and Fortran code
on top of Sulong and then compare it with the performance
of executables generated by the static compilers Clang (for
C), and GCC (for Fortran). We focus this evaluation on
peak performance of long-running applications where the
startup performance plays a minor role. Hence, we neglect
the startup time and present performance numbers after an
initial warm-up.

We executed the benchmarks on a quad-core Intel Core
i7-6700HQ CPU at 2.60GHz on Ubuntu version 14.04
(4.3.0-040300rc3-generic) with 16 GB of memory. We use
Sulong revision ad56c6f, which is publicly available at
https://github.com/graalvm/sulong, that uses LLVM
3.3 (we currently cannot use a newer version due to parser
limitations), and the Graal version that will be contained in
the GraalVM 0.17 release. When compiling Fortran files to
LLVM IR, Sulong uses GCC 4.6, the version that is expected
to work best with the DragonEgg plugin. When compiling
C or Fortran benchmarks for Sulong we use the following
static optimization parameters to opt: -mem2reg -globalopt
-simplifycfg -constprop -instcombine -dse -loop-simplify -
reassociate -licm -gvn. We consider a systematic evaluation
of combinations of static and dynamic optimizations on Su-
long as future work.

We use Clang O3 (-O3 LLVM optimizations) for C, and
GCC O3 (-O3 GCC optimizations) for Fortran to get a static
compilation upper performance boundary. For comparabil-
ity, Clang O3 and GCC O3 use the same LLVM and GCC
versions as Sulong. We visualize the peak performance run-
time of the benchmarks using box plots. The y-axis shows
Sulong’s run-time (lower is better) relative to Clang O3’s
and GCC O3’s runtime which is normalized to 1.

9 http://www.polyhedron.com

Efficient execution of LLVM Languages on the JVM 6 2016/9/23

Shootouts Large compilation−unit Others
●

●●●

●

●●●●●●●●●●●

●●●●

●

●●●

●●

●●●●●●●●●● ●●●●●

●●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

bi
na

ry
tr

ee
s

fa
nn

ku
ch

re
du

x

fa
st

a

fa
st

ar
ed

ux

kn
uc

le
ot

id
e

m
an

de
lb

ro
t

m
et

eo
r

nb
od

y

pi
di

gi
ts

re
ge

xd
na

re
vc

om
p

sp
ec

tr
al

no
rm

bz
ip

2

gz
ip

og
ge

nc

de
lta

bl
ue

ric
ha

rd
s

w
he

ts
to

ne

R
un

tim
e

Figure 9. C benchmarks; peak performance (lower is better, relative to Clang O3).

6.3 Result
On the C benchmarks (see Figure 9), Sulong’s peak perfor-
mance ranges from being 0.79× faster than Clang (nbody),
and being 2.45× slower (binarytrees). On average (geomet-
ric mean (Fleming and Wallace 1986)), Sulong is 1.39×
slower than Clang. On nbody, Sulong is faster since it can
use the SSE sqrt instruction instead of a call to the stan-
dard library, and since it can unroll a loop whose num-
ber of loop iterations depends on an input parameter to
the function. On many benchmarks, Sulong achieves simi-
lar performance as Clang O3 (fannkuchredux, fasta, fastare-
dux, knucleotide, pidigits, regexdna, and whetstone). For
most of these benchmarks, Sulong produces similarly effi-
cient code as Clang. However, pidigits and regexdna spend
most work in calls to (and in) third-party libraries. Having
no overhead on these benchmarks demonstrates that Sulong
can efficiently interface with native code. On the remaining
C benchmarks (binarytrees, bzip2, deltablue, gzip, meteor,
oggenc, revcomp, richards, and spectralnorm), Sulongs per-
formance is between 1.5× and 2.45× slower than Clang O3.

On the Fortran benchmarks (see Figure 10), Sulong’s
peak performance is between 1.43× (nf) and 4.96× (doduc)
slower than the performance of GCC O3 executables. On
average, Sulong is 2.63× slower compared to GCC O3. So
far, we mainly optimized Sulong for executing C programs,
and have not yet looked into optimizing Fortran programs,
which explains the larger gap between Sulong and GCC.

Besides missing various micro optimizations, there are
three main reasons for the overheads on the C and Fortran
benchmarks:

Needless interpreter-level object allocations: Graal im-
plements a partial escape analysis with scalar replace-
ment to optimize or remove object allocations where pos-
sible (Stadler et al. 2014). It is critical for performance,
that all Java allocations that the LLVM IR interpreter uses
in its runtime (i.e., interpreter-level allocations as op-
posed to user-level allocations) are optimized or removed
in compiled code. Unfortunately, we still have situations
where this is not the case, and where we either have to
adapt data structures in the interpreter or fix problems in
Graal’s escape analysis.

Truffle’s calling convention: Truffle passes function argu-
ments in an Object array and returns the function return
value as an Object, so parameters and return values have
to be boxed and unboxed. Function inlining usually re-
moves this overhead. However, in benchmarks that stress
recursive calls (which can only be inlined up to a certain
level) such as binarytrees and richards, the overhead is
still significant.

Missing vectorization: Graal cannot produce vectorized
code for Sulong, since it does not provide sufficient anal-
yses for accesses to unmanaged memory.

7. Limitations
Sulong can currently execute most small and middle-sized
single-threaded C and Fortran programs. We did not concen-
trate on other languages so far and thus did not implement,
for example, LLVM IR exception handling, which is needed
to execute C++ programs that use exceptions. Although we
did not find any essential problems when executing LLVM
IR on the JVM, our current implementations has several lim-
itations:

Unsupported library functions: To achieve better perfor-
mance and faster startup times, we still use the native
(i.e., machine code) standard libraries instead of their bit-
code versions. When Sulong is complete and fast enough,
we will execute the LLVM IR of the standard libraries
with Sulong for which we will only have to substitute
system calls. Currently, Sulong does not support creating
new processes with fork, since a call to fork would cre-
ate a copy of the JVM. Similarly, we currently also do not
support setjmp/longjmp, signal handling, and POSIX
pthreads for multithreading.

Callbacks from native functions: In terms of native inter-
operability, our foreign function interface does not sup-
port native callbacks yet (Grimmer et al. 2013). For ex-
ample, we cannot call a native function to which we pass
a Truffle AST (e.g., qsort) that could be called from the
native side. To prevent this case for the standard libraries,
we substitute these functions with Java or bitcode equiv-

Efficient execution of LLVM Languages on the JVM 7 2016/9/23

alents (see above). For third-party libraries we compile
such functions to a shared library which we then link.

Manipulation of function return addresses: In Sulong,
the memory layout matches that of executables produced
by static compilers. One exception is the function re-
turn address that executables store in the same stack as
data passed to other functions. The Sulong interpreter
implicitly uses the Java execution stack when execut-
ing functions. This execution stack is different from our
data stack that uses unmanaged allocated memory. Thus,
we cannot provide support for reading and manipulating
function return addresses. However, this also restricts re-
turn oriented programming (a security exploit technique,
Shacham 2007) since buffer overflows cannot overwrite
the return address.

80 bit floats: Most primitive data types in LLVM IR di-
rectly map to Java data types. An exception is LLVM IR’s
80 bit float type that Clang uses for C’s long double data
type on the AMD64 architecture. We do not completely
support this data type so far due to the implementation
effort required to correctly and efficiently implement it
using Java primitives.

Inline assembler: Sulong only partially supports inline
assembler by constructing a Truffle AST from it and
representing the machine registers as Java objects. Still,
Sulong cannot execute generated code (such as produced
by JITs), for which Sulong would need to interpret the
generated machine instructions.

8. Related Work
8.1 Java’s Foreign Function Interfaces
Java’s standard NFI is JNI (Liang 1999). JNI is a platform in-
dependent interface that not only allows calling native func-
tions, but also enables programmers to interact with Java ob-
jects and the JVM. However, JNI requires the declaration
of native Java methods and the implementation of native
functions that match a generated header file, which makes
JNI complicated to use, especially when a programmer only
wants to call native functions. Due to the abstraction over-
heads, JNI is also slow (Kurzyniec and Sunderam 2001).
Previous work showed that the overheads can greatly be re-
duced by inlining native function calls and by using the same
intermediate language for Java and the target low-level lan-
guage (Stepanian et al. 2005).

An alternative to JNI is Java Native Access10 (JNA)
which is built on top of JNI and provides access to shared
native libraries that it dynamically links. Dynamic linking
frees the programmer from the burden of writing boilerplate
code, but makes calls slower. Efforts to reduce this overhead
by generating call stubs using LLVM as a JIT compiler (but
still using JNI) can improve performance by 7.84% (Tsai

10 https://github.com/java-native-access/jna

et al. 2013). Besides JNA, also the Java Native Runtime
(JNR) is built on top of JNI and provides a user-oriented
API to call native functions11. Based on the experiences with
JNR, a JDK Enhancement Proposal (JEP 191) was drafted
that tackles JNI’s drawbacks and aims at providing better
usability and optimizing calls to native functions (Nutter
and Rose 2014). Project Panama, an OpenJDK subproject,
works on improving interoperability between the JVM and
native functions based on this JEP with the eventual goal to
include the changes in the JDK12.

In our previous work, we introduced the Graal NFI (Grim-
mer et al. 2013) to call native functions that are dynamically
linked. The Graal NFI is fast, since it compiles a call stub
to the native function before invoking it the first time, and
inlines the call stub when the surrounding Java code is com-
piled. However, in contrast to JNA and JNR the programmer
is responsible for data alignment and handling of unsafe
memory, which makes it error-prone and difficult to use (it
was designed for native language implementations on top
of Truffle). Also, it is only available in the Graal compiler.
Jeannie (Hirzel and Grimm 2007) is a language design that
allows nesting Java and C code in the same file, which is
then compiled down to JNI. Through static checks on syntax
and semantics of both languages, it is easy to use and also
eliminates writing boilerplate code.

Sulong is an alternative to traditional native function in-
terfaces since it can execute low-level languages directly on
the JVM. Sulong does not require writing boilerplate code,
and programmers can use Sulong as a Java library to ex-
ecute native functions. Additionally, Sulong is fast and sup-
ports execution of all LLVM languages. However, Sulong re-
quires that the source code of the native function to be called
is available. Also, it requires the Graal compiler in order to
reach peak performance that is near to the performance of
statically compiled code, and to call native functions.

8.2 PyPy
PyPy (Rigo and Pedroni 2006) and its virtual machine con-
struction approach is an alternative to Truffle/Graal’s meta-
compilation approach (Marr and Ducasse 2015). Both ap-
proaches strive to provide a reusable base for dynamic lan-
guage implementations and also provide language interop-
erability mechanisms (Barrett et al. 2013, 2015; Grimmer
et al. 2015b). In both cases, a language implementer can use
high-level languages with automatic memory management
for implementing a language. While PyPy uses RPython (a
semantic subset of Python, Ancona et al. 2007) for the im-
plementation of its interpreters, Truffle uses Java. PyPy lan-
guage implementations can be any kind of interpreters, while
Truffle implementations are implemented as self-optimizing
AST interpreters. With Sulong, we showed how a hybrid
bytecode/AST interpreter can be implemented in Truffle.

11 https://github.com/jnr/jnr-ffi
12 http://openjdk.java.net/projects/panama/

Efficient execution of LLVM Languages on the JVM 8 2016/9/23

For an efficient implementation, PyPy uses a translation
process to transform the RPython interpreter to low-level
code for a target environment (Rigo and Pedroni 2006). This
translation process first analyzes the interpreter, annotates it
with types, and then consecutively transforms it to lower-
level operations. For optimal performance, the translation
target is a C interpreter that contains a tracing JIT com-
piler (Bolz et al. 2009). The tracing JIT is not applied to
the user program, but to the interpreter running the user pro-
gram. Similarly, Truffle compiles ASTs (and not traces) that
represent the user program to machine code by using Graal
as a dynamic compiler. With Sulong’s approach, Graal also
supports the compilation of bytecode interpreters and hybrid
AST/bytecode interpreters.

8.3 Hybrid Compilation Approaches
Dynamo (Bala et al. 2000) is a dynamic optimization sys-
tem that re-optimizes an already compiled native instruc-
tion stream to exploit dynamic optimizations. Like Sulong,
Dynamo profits from static optimizations at compile time
and profiling information at run time. In contrast to Sulong,
Dynamo supports any kind of native instruction stream and
not only those languages supported by LLVM. However,
due to the low-level information on the machine code level,
Dynamo’s approach is limited in the optimizations that it
can apply. Finally, Dynamo re-compiles traces while Sulong
uses Truffle and Graal to compile function ASTs to machine
code.

Previous work also includes a fat binary approach (Nuz-
man et al. 2013), where a program is distributed as an exe-
cutable that comprises both the native code and the IR of that
program. The program starts execution with the native code,
which incurs only low start-up and warm-up costs. A run-
time manager samples the execution count of the functions
and when exceeding a certain threshold, it adds instrumen-
tation to it. Finally, a repurposed Java compiler compiles the
IR of that function to optimized machine code, for which it
also uses the profiling feedback of the instrumented func-
tion. While Sulong has higher start-up and warm-up costs, it
does not require a modified toolchain that is needed to pro-
duce fat binaries. Sulong can execute unmodified LLVM IR
that is produced by language front ends for many languages.

8.4 Other Truffle Implementations
We previously worked on Truffle/C (Grimmer et al. 2014)
and ManagedC (Grimmer et al. 2015a) which are Truffle in-
terpreters for C. Similarly to Sulong, Truffle/C uses unman-
aged memory for its allocations. ManagedC uses Java allo-
cations instead of unmanaged memory. The C interpreters
provide the same dynamic optimizations that Sulong does.
In contrast to the C interpreters, Sulong also uses static op-
timizations by LLVM to optimize the program before exe-
cuting it with its LLVM IR interpreter. Unlike the C inter-
preters, Sulong is not restricted to C but can execute a range
of different languages by targeting LLVM IR. Also, the C

interpreters do not have to efficiently support unstructured
control flow since it is only used in exceptional situations,
e.g., in exception handling using goto. To efficiently execute
LLVM IR (which contains no high-level loop constructs), we
use a hybrid bytecode/AST interpreter approach.

9. Conclusion and Future Work
In this paper we presented Sulong, a system to execute
low-level languages such as C and Fortran on the JVM.
By providing a Truffle LLVM IR interpreter, Sulong can
execute all languages that can be translated to LLVM IR. By
combining static optimizations with dynamic compilation
Sulong can achieve peak performance that is near to the
performance of code that is produced by industrial-strength
compilers such as GCC and Clang. We demonstrated that
Sulong currently runs C code with a peak performance that
is in average 1.39× slower than code compiled by Clang O3
and Fortran code 2.63× slower compared to code compiled
by GCC O3.

Other Truffle implementations can profit by using Sulong
to implement their native function interfaces. JRuby+Truffle
(a Truffle implementation of Ruby) already uses Sulong for
its C extension support, and FastR (a Truffle implementation
of R) provides an option to use Sulong instead of JNI for
calling native routines. Due to Sulong’s low overhead and
Truffle’s language interoperability mechanism that supports
inlining across language boundaries, we expect that we can
improve the performance of these languages when calling
native code. In future work, we want to demonstrate this on
case studies, and also provide a version of Sulong that only
uses managed Java memory to guarantee memory safety for
the programs it executes (Rigger et al. 2016).

Acknowledgments
We thank the Virtual Machine Research Group at Oracle
Labs and the members of the Institute for System Software
at the Johannes Kepler University for their support and con-
tributions. We especially thank Roland Schatz for his assis-
tance on performance improvements, Chris Seaton for the
implementation of JRuby’s C extensions using Sulong, and
Mick Jordan for his work on implementing calls to native
routines using Sulong. We also thank Edd Barrett, Benoit
Daloze, Stefan Marr, and Chris Seaton for their comments
which greatly improved the paper. The authors from Jo-
hannes Kepler University are funded in part by a research
grant from Oracle. Oracle and Java are registered trademarks
of Oracle and/or its affiliates. Other names may be trade-
marks of their respective owners.

References
D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. Rpython:

a step towards reconciling dynamically and statically typed oo
languages. In Proceedings of DLS 2007, pages 53–64, 2007.

Efficient execution of LLVM Languages on the JVM 9 2016/9/23

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent
dynamic optimization system. In Proceedings of PLDI ’00,
pages 1–12, 2000.

E. Barrett, C. F. Bolz, and L. Tratt. Unipycation: A case study in
cross-language tracing. In Proceedings of VMIL 2013, pages
31–40, 2013.

E. Barrett, C. F. Bolz, and L. Tratt. Approaches to interpreter
composition. Computer Languages, Systems & Structures, 44:
199–217, 2015.

E. Barrett, C. F. Bolz, R. Killick, V. Knight, S. Mount, and L. Tratt.
Virtual machine warmup blows hot and cold. ICOOOLPS, 2016,
2016.

C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-
level: Pypy’s tracing jit compiler. In Proceedings of ICOOOLPS
2009, pages 18–25, 2009.

J. A. Butts and G. Sohi. Dynamic dead-instruction detection and
elimination. ACM SIGOPS OSR, 36(5):199–210, 2002.

B. Calder, P. Feller, and A. Eustace. Value profiling. In Microar-
chitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM In-
ternational Symposium on, pages 259–269, 1997.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form and
the control dependence graph. TOPLAS, 13(4):451–490, 1991.

G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon, and
H. Mössenböck. An intermediate representation for speculative
optimizations in a dynamic compiler. In Proceedings VMIL ’13,
pages 1–10, 2013.

A. M. Erosa and L. J. Hendren. Taming control flow: A structured
approach to eliminating goto statements. In Proceedings of
Computer Languages, pages 229–240, 1994.

P. J. Fleming and J. J. Wallace. How not to lie with statistics: The
correct way to summarize benchmark results. Commun. ACM,
29(3):218–221, Mar. 1986.

Y. Futamura. Partial evaluation of computation process–an ap-
proach to a compiler-compiler. Higher-Order and Symbolic
Computation, 12(4):381–391, 1999.

M. Grimmer, M. Rigger, L. Stadler, R. Schatz, and H. Mössenböck.
An efficient native function interface for java. In Proceedings of
PPPJ ’13, pages 35–44, 2013.

M. Grimmer, M. Rigger, R. Schatz, L. Stadler, and H. Mössenböck.
Trufflec: Dynamic execution of c on a java virtual machine. In
Proceedings of PPPJ ’14, pages 17–26, 2014.

M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, and
H. Mössenböck. Memory-safe execution of c on a java vm. In
Proceedings of PLAS’15, PLAS’15, pages 16–27, 2015a.

M. Grimmer, C. Seaton, R. Schatz, T. Würthinger, and
H. Mössenböck. High-performance cross-language interoper-
ability in a multi-language runtime. In Proceedings of DLS 2015,
pages 78–90, 2015b.

M. Hirzel and R. Grimm. Jeannie: Granting java native interface
developers their wishes. In Proceedings of OOPSLA ’07, pages
19–38, 2007.

U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches.
In ECOOP’91, pages 21–38, 1991.

U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized
code with dynamic deoptimization. In ACM Sigplan Notices,
volume 27, pages 32–43, 1992.

D. Kurzyniec and V. Sunderam. Efficient cooperation between java
and native codes–jni performance benchmark. In PDPTA’01,
2001.

C. Lattner and V. Adve. Llvm: a compilation framework for
lifelong program analysis transformation. In CGO 2004, pages
75–86, March 2004.

S. Liang. The Java Native Interface: Programmer’s Guide and
Specification. 1999.

S. Marr and S. Ducasse. Tracing vs. partial evaluation: Comparing
meta-compilation approaches for self-optimizing interpreters.
ACM SIGPLAN Notices, 50(10):821–839, 2015.

S. Marr, B. Daloze, and H. Mössenböck. Cross-language compiler
benchmarking. In DLS 2016 (to appear), 2016.

K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall,
R. N. Watson, and P. Sewell. Into the depths of c: elaborating
the de facto standards. In PLDI 2016, pages 1–15, 2016.

C. O. Nutter and J. Rose. Jep 191: Foreign function interface, 2014.
URL openjdk.java.net/jeps/191.

D. Nuzman, R. Eres, S. Dyshel, M. Zalmanovici, and J. Castanos.
Jit technology with c/c++: feedback-directed dynamic recompi-
lation for statically compiled languages. TACO, 10(4):59, 2013.

M. Rigger, M. Grimmer, and H. Mössenböck. Sulong - execution
of llvm-based languages on the jvm. In ICOOOLPS’16, 2016.

A. Rigo and S. Pedroni. Pypy’s approach to virtual machine
construction. In SPLASH 2006, pages 944–953, 2006.

J. R. Rose. Bytecodes meet combinators: Invokedynamic on the
jvm. In Proceedings of VMIL ’09, pages 2:1–2:11, 2009.

C. Seaton. Specialising Dynamic Techniques for Implementing
The Ruby Programming Language. PhD thesis, University of
Manchester, 2015.

H. Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of
CCS 2007, pages 552–561, 2007.

L. Stadler, T. Würthinger, and H. Mössenböck. Partial escape
analysis and scalar replacement for java. In Proceedings of CGO
’14, pages 165–174, 2014.

L. Stadler, A. Welc, C. Humer, and M. Jordan. Optimizing r
language execution via aggressive speculation. In DLS 2016 (to
appear), 2016.

L. Stepanian, A. D. Brown, A. Kielstra, G. Koblents, and K. Stood-
ley. Inlining java native calls at runtime. In Proceedings of VEE
’05, pages 121–131, 2005.

Y.-H. Tsai, I.-W. Wu, I.-C. Liu, and J. J.-J. Shann. Improving
performance of jna by using llvm jit compiler. In ICIS 2013,
pages 483–488, 2013.

T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and
C. Wimmer. Self-optimizing ast interpreters. In Proceedings of
DLS ’12, pages 73–82, 2012.

T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One vm
to rule them all. In Proceedings of Onward! 2013, pages 187–
204, 2013.

Efficient execution of LLVM Languages on the JVM 10 2016/9/23

