

Formal Compiler Verification with ACL2

BAKKALAUREATSARBEIT
Angewandte Systemtheorie

zur Erlangung des akademischen Grades

Bakkalaureus/Bakkalaurea der technischen Wissenschaften

in der Studienrichtung

INFORMATIK

Eingereicht von:
Thomas Würthinger, 0256972

Angefertigt am:
Institute for Formal Models and Verification

Betreuung:
Univ.-Prof. Dr. Armin Biere
Dr. Carsten Sinz

Linz, Juli 2006

1

Formal Compiler Verification with ACL2
Thomas Würthinger

Abstract— This paper gives a short introduction to ACL2, a
Lisp-like language used to make automatic proofs. ACL2 is used
to prove the correctness of a compiler at source level. However
it is shown that source level verification is not enough to be
sure to have a correct compiler. Even if a compiler is correct at
source level and passes the bootstrap test, it may be incorrect
and produce wrong or even harmful output for a specific source
input.

Index Terms— Program compilers, Software verification and
validation, LISP, Functional programming, Theorem proving

I. INTRODUCTION

COMPILERS are written very often without formally
proving their correctness. For compilers of programming

languages, which are used in environments where security has
a high priority, this is however very important. It is useless to
prove that a certain program is correct at source level, without
being able to prove that the compiler is correct.

Doing a full proof of a compiler by hand requires a
lot of effort, so it would be useful to have some kind of
automatic support. This is the main goal of ACL2. Writing
a target machine simulation and a compiler in ACL2, gives
the opportunity to prove the correctness with the support of
automatic reasoning.

II. PROGRAMMING IN ACL2
The following chapter gives a short introduction to the

programming language ACL2, which is based on Common
Lisp. So why use a Lisp-like language? First of all, the syntax
of Lisp is very simple. Compared with modern programming
languages like C++ and Java, it is very easy to write a
compiler for Lisp. The second reason is that Lisp functions
normally don’t have many side effects. The proving engine of
ACL2 requires that a function does not have any side effects.
Whenever calling the same function with the same arguments
twice, the results have to be equal. All these restrictions are
necessary to be able to create an automatic theorem prover.

The identification code ”ACL2” stands for A Computational
Logic for Applicative Common Lisp. So the 2 does not mean
that it’s the second version, but something like the square
of ACL. It was mainly developed by Matt Kaufmann and
J Strother Moore at the University of Texas at Austin.

A. Small example program
The following program computes the factorial of an integer

n using recursion.

(defun f a c (n)
(i f (equal n 0)

1
(∗ n (f a c (1− n)))

)
)

ACL2 uses a special syntax for function calls which is quite
unfamiliar to C++ or Java programmers. After left parenthesis
the name of the function is written, followed by the arguments
separated by single space characters. At the end a closing right
parenthesis is required.

Note that this function has no side effects. There exist no
global variables and calling this function with a certain value
will always give the same result.

B. List datastructures

One very special thing of Lisp is how data is stored. There
are only two types of data:

• Atoms: This is the smallest piece of data in Lisp. It can
be a number, a string or the special constant NIL.

• Conses: Consist of two parts (the first one is referred
to as car, the second one as cdr, which has historical
reasons). Each of them can either be an atom or point to
another cons. Lists are conses where the next pointer is
in the cdr and the value is in the car.

Figure 1 shows how a list is represented using cons.

Fig. 1. Representation of a list in ACL2.

To create this list, the following ACL2 code can be used:

(cons ’A
(cons

(cons ’B
(cons

’C NIL
)

)
(cons

’D
(cons

’E NIL
)

)
)

)

2

Note the quote letter (’), which means that the expression
after this quote is not evaluated, but taken ”as is”. For example
’(+ 1 1) would not give 2 but the expression itself as
the result. This is used later on in the chapter about self-
reproducing programs. Very often used Lisp commands are
car and cdr which access the first and the second part of
a cons. To access for example the C in the datastructure of
figure 1, you would have to write the following expression:

(car
(cdr

(car
(cdr

’ (A (B C) D E)
)

)
)

)

This expression will evaluate to C. Here also another pos-
sibility to write a datastructure is used.

C. Defining theorems

Until now, everything told about the ACL2 language also
applies to the Lisp programming language. Now the additional
possibilities of ACL2 are shown. First of all notice that if you
would try to define the factorial function as printed in the first
listing, ACL2 would tell you that the declaration failed. This
is because all ACL2 functions have to terminate on all inputs.
Therefore whenever an ACL2 function is defined, a proof that
the function terminates is attempted. If it fails, the function
declaration is discarded. If the factorial function is called with
-1, the function would not return staying in an infinite loop.
One solution to this problem could be:

(defun f a c (n)
(i f (<= n 0)

1
(∗ n (f a c (1− n)))

)
)

However this still does not work, because function argu-
ments in ACL2 don’t need to match a specific type. And if
fac would be called with a literal instead of a number, again
an infinite loop would be the result. It is very important that
every ACL2 function terminates on every input, even if the
value of the arguments doesn’t make much sense. Calling fac
with ’A as an argument also has to give a result. The following
definition of fac uses the ACL2 operation zp which returns
only true if its argument is 0 or if it is not a natural number.
Now ACL2 accepts the declaration of the function, because it
terminates on all inputs.

(defun f a c (n)
(i f (zp n)

1
(∗ n

(f a c (1− n))
)

)
)

Once an ACL2 function is defined the defthm keyword
can be used to let ACL2 try to prove additional facts about
the function.

(defthm f a c−a l w a y s−p o s i t i v e
(> (f a c a) 0)

)

(defthm f a c−m on o t on i c− i n c r e a s in g
(< (f a c a) (f a c (+ 1 a)))

)

The first theorem is successfully proven by ACL2, while
the second of course fails. ACL2 provides an automatic
proving engine, however for complex proofs manual help for
the engine is needed to guide it on the right paths through
the proofs. The official homepage of ACL2 can be found
at http://www.cs.utexas.edu/users/moore/acl2, which provides
everything required to install ACL2 as well as detailed refer-
ence and documentation.

III. COMPILER VERIFICATION

To be able to do formal compiler verification with ACL2,
at least four things are needed: A source language, an inter-
preter of the source language, a target language, a compiler
transforming source language programs to target language
programs and a target machine simulation evaluating target
language programs. This chapter introduces all of these com-
ponents.

We want to be sure that the compiler transforming source
language programs to target language programs is correct.
Later in the chapter about compiler correctness it is defined
in detail what we want to proof.

A. Source Language

First of all a source language is defined. To be able to
evaluate programs written in the source language a subset of
ACL2 is chosen. This makes it easy to execute source lan-
guage programs using ACL2 or any Common Lisp interpreter.
Writing a compiler for a Lisp-like language is also very easy.

The following code listing is the grammar of the target
language in EBNF form. Lots of the control structures of Lisp
(like let or progn for example) are not present in the target
language to keep the compiler as simple as possible.

However the source language is not a simple subset of
ACL2, it also introduces a new concept: There is no equiva-
lence to the concept of programs in Lisp. A program simply
consists of any number of function definitions, and then a
main function, which may also have arguments. The result
of a program is the result of its main function. Any function
called must be defined in the program.

Here is the EBNF of our source language:

p : : = ((d ∗) (x ∗) e)
d : : = (defun f (x ∗) e)
e : : = c | x | (i f e e e) |

(f e ∗) | (op e ∗)
c : : = n i l | t | number | s t r i n g
op : : = car | cdr | cons | equal |

+ | − | ∗ | / | . . .

3

Central things of the source language are built-in opera-
tions. All operators are valid Lisp functions, this makes the
interpretation of the source language and the compiler quite
easy.
If-statements are very similar to functions, they look

syntactically very similar. Like in Lisp, the only difference
between if and a normal function concerns the evaluation
of the arguments. When reaching an if-statement, the first
operand is evaluated and depending on the result, only the
second or the third argument is evaluated. On the other hand,
before a normal function call every argument is evaluated.
For if-statements such a behaviour would make recursion
impossible, because it would always lead to endless loops and
of course Lisp programs heavily depend on recursion.

As a sample source language program we consider again
an implementation of the factorial function, this time in our
source language. Note that this definition would not be correct
normal Lisp code, because of the missing concept of programs
in Lisp. However the function definition fac on its own could
also be given to a Lisp interpreter.

(
(

(defun f a c (n)
(i f (equal n 0)

1
(∗

n
(f a c (1− n))

)
)

)
)
(n)
(f a c n)

)

In this sample the program just has one single argument and
returns the nth factorial number depending on this argument.
In the next section the structure of the target language is dis-
cussed and the target language representation of this program
is given.

B. Target Language

The target language is a stack-machine language. This
means that all operands of a function must have been pushed
onto the stack before calling it. Also the operand of the if-
instruction must be on the stack. As in Lisp only the value
NIL is treated as false, any other value is considered to stand
for true.

The grammar of the target language shows that it is even
simpler than the source language.

m : : = (d1 . . . dn (i n s ∗))
d : : = (defcode (i n s ∗))
i n s : : = (PUSHC c) | (PUSHV i) |

(POP n) | (IF t h e n e l s e) |
(CALL f) | (OPR op)

The following target language code is the target language
representation of the factorial program presented in the previ-
ous section.

((DEFCODE FAC
((PUSHV 0)

(PUSHC 0)
(OPR EQUAL)
(IF ((PUSHC 1))

((PUSHV 0)
(PUSHV 1)
(OPR 1−)
(CALL FAC)
(OPR ∗)))

(POP 1)))
((PUSHV 0)

(CALL FAC)
(POP 1)))

)

C. Execution using a Stack

In this subsection, the state of the stack when executing
the example program is explained. To keep it simple, the
following example is chosen: A single call to fac with 5
as the argument is executed by the target machine. So first of
all, it is very important to know how arguments are passed on
stack machines. Before calling the function, every argument
has to be pushed onto the stack in the correct order. In Java
byte code or in machine code generated by C++-compilers,
arguments are passed in the same way. In figure 2 the initial
configuration of the stack is shown.

Fig. 2. Stack execution - Start.

The first instruction is "PUSHV 0", this means that the
bottom-most element of the stack is copied and another time
pushed onto the stack. Those on the first view useless copy
operations are required, because every operation only works
on the top-most elements. There is no possibility to access
a certain stack element by its number, except using the
PUSHV-instruction. Additionally every operation ”consumes”
its arguments, after calling the operation the result all argu-
ments must no longer be on top of the stack, instead of them
the result has to be there.

The next instruction "PUSHC 0" simply pushes the con-
stant number 0 onto the stack. After this, for the first time, an
operation is called. EQUAL has two arguments and pushes T,
if they are the same, and otherwise NIL onto the stack. So the
two topmost elements of the stack are popped, compared, and
the result is pushed onto the stack. On the left side of figure
3, the current state of the stack is shown. The IF-operation
of the target language is basically treated like a function with
a single argument and no return value. So simply the topmost
stack element is popped, and its value determines the next step

4

in control flow. The resulting stack is shown on the right side
of figure 3.

Fig. 3. Stack execution - IF-statement.

Now the value of the argument is duplicated twice, so the
stack now contains the number 5 three times. After calling the
operator 1- the topmost element changes from 5 to 4. This
is because 1- is a unary operator, which means it has only
one argument. The resulting stack is shown on the left side of
figure 4. This result of the unary operator is now the argument
for the recursive call to fac. Concerning the stack, a function
call is treated like an operator. The function has to ensure that
after calling it, the arguments are popped and the result is the
only value on the stack. So after the recursive call, instead of
4, the number 24, which is the correct result for the factorial
of 4, is on the top of the stack. This is shown on the right
side of figure 4.

Fig. 4. Stack execution - Recursive call.

After the multiplication of 24 and 5, only the argument and
the result 120 are on the stack. Now the special POP-operator
is used to remove the arguments. Note that the semantic of
this POP-instruction is quite unusual. Instead of popping the
topmost n elements, it removes the n elements below the
topmost element. This behaviour for the POP-instruction was
chosen, because the result has to remain on the top of the stack.
In compiled C++ or Java code, this is not needed, because the
result is not passed to the caller using the stack.

D. Compiler

This chapter gives a short overview of the compiler written
in the target language. It’s important to have a compiler written
in the target language to be able to do the bootstrap test. First
of all a call graph is shown in figure 5.

The main function of the compiler is called compile-
program. It takes three arguments: The function definitions,
the arguments of the source language program and the body of
the main function. It calls the function compile-defs with

Fig. 5. Compiler - Function call graph.

the function definitions and compile-form with the code of
the main function. Interesting is the appended POP-instruction,
which is required to ensure that after executing the program
the result is on top of the stack and not the arguments.

(defun compile−program
(d e f s v a r s main)
(append

(compi le−defs d e f s)
(l i s t 1 (append

(compile−form main v a r s 0)
(l i s t 1 (l i s t 2 ’POP (l e n v a r s))))

)
)

)

The compile-defs function is just a helper function to
call compile-def for each definition and return them as a
list. As the compiler is written in the target language, using
any kind of iteration is impossible. Recursive helper functions
like this one are needed.

(defun compi le−defs (d e f s)
(i f (consp d e f s)

(append (compi le−def (car d e f s))
(compi le−defs (cdr d e f s)))
n i l

)
)

The compile-def function calls compile-form for its
body and then it adds the defcode-keyword at the beginning.
Additionally a POP-instruction is appended to make sure that
the arguments are popped and the result is on top of the stack.

(defun compi le−def (d e f)
(l i s t 1

(cons ’ defcode
(l i s t 2 (cadr d e f)

(append
(compile−form

(cadddr d e f)
(caddr d e f)
0

)
(l i s t 1 (l i s t 2

’POP (l e n (caddr d e f)))
)

5

)
)

)
)

)

Compile-forms is a helper function very similar like
compile-defs. It calls compile-form for each element
of forms which is a list of source language expressions.
Additionally a variable top is increased with each recursive
call.

(defun compile− forms (forms env t o p)
(i f (consp forms)

(append
(compile−form (car forms) env t o p)
(compile− forms (cdr forms)

env (1 + t o p)))
n i l

)
)

The next function is the longest one. Its task is to convert
a single source language expression to its equivalent target
language expression. The source language does not support
any special control structures like COND which would be very
useful in this case, so a lot of nested if instructions are
required.

(defun compile−form (form env t o p)

(i f (equal form ’ n i l) (l i s t 1 ’ (PUSHC NIL))

(i f (equal form ’ t) (l i s t 1 ’ (PUSHC T))

(i f (symbolp form) (l i s t 1
(l i s t 2 ’PUSHV (+ t o p

(1− (l e n (member form env))))
)

)

(i f (atom form) (l i s t 1 (l i s t 2 ’PUSHC form))

(i f (equal (car form) ’QUOTE)
(l i s t 1 (l i s t 2 ’PUSHC (cadr form)))

(i f (equal (car form) ’ IF)
(append (compile−form (cadr form) env t o p)
(l i s t 1 (cons ’ IF
(l i s t 2 (compile−form (caddr form) env t o p)
(compile−form (caddr form) env t o p)))))

(i f (o p e r a t o r p (car form))
(append (compile− forms (cdr form) env t o p)

(l i s t 1 (l i s t 2 ’OPR (car form))))
(append (compile− forms (cdr form) env t o p)

(l i s t 1 (l i s t 2 ’CALL (car form)))))
)))))

)
)

The last function operatorp is used to test whether a
certain name is an operator. In compile-form this is used
to distinguish operator expressions from function calls.

(defun o p e r a t o r p (name)
(member name ’ (car cdr cadr caddr

cadar caddar cadddr 1− 1+ l e n symbolp
consp atom cons equal append member
a s s o c + − ∗ l i s t 1 l i s t 2)

)
)

The following definition is needed to make the whole
compiler a valid source language program. (...) stands for
all the functions presented in this chapter.

((. . .)
(d e f s v a r s main)
(compile−program d e f s v a r s main))

Now it is a valid source language program and if it is once
compiled to target language code it is capable of recompiling
its own source code.

The following listing shows a very simple source language
function called inc, which simply returns its argument in-
creased by 1.

’ (
(defun i n c (a)

(+ a 1))
)

’ (a)
’ (i n c a)

When using the trace$ command in ACL2, calls to the
functions given as arguments are logged and written to the
output stream. This behaviour is very similar to the function
trace in normal Lisp.

When trace$ is applied to all functions of the compiler,
the output is as shown below. It gives a more detailed
understanding of its functionality than the simple call graph.
The numbers at the beginning of the lines represent the call
depth. A greater sign means that the function was entered,
a smaller sign means it was exited. After the function name
the actual arguments or respectively the actual return value is
printed.

1> (COMPILE−PROGRAM ((DEFUN INC (A) (+ A 1)))
(A)
(INC A))>

2> (COMPILE−DEFS ((DEFUN INC (A) (+ A 1)))) >
3> (COMPILE−DEF (DEFUN INC (A) (+ A 1))) >

4> (COMPILE−FORM (+ A 1) (A) 0) >
5> (OPERATORP +)>
<5 (OPERATORP (+ − ∗ LIST1 LIST2))>
5> (COMPILE−FORMS (A 1) (A) 0) >

6> (COMPILE−FORM A (A) 0) >
<6 (COMPILE−FORM ((PUSHV 0))) >
6> (COMPILE−FORMS (1) (A) 1) >

7> (COMPILE−FORM 1 (A) 1) >
<7 (COMPILE−FORM ((PUSHC 1))) >
7> (COMPILE−FORMS NIL (A) 2) >
<7 (COMPILE−FORMS NIL)>

<6 (COMPILE−FORMS ((PUSHC 1))) >
<5 (COMPILE−FORMS ((PUSHV 0) (PUSHC 1))) >

<4 (COMPILE−FORM ((PUSHV 0) (PUSHC 1)
(OPR +))) >

<3 (COMPILE−DEF ((DEFCODE INC
((PUSHV 0) (PUSHC 1)

(OPR +) (POP 1))))) >
3> (COMPILE−DEFS NIL)>
<3 (COMPILE−DEFS NIL)>

<2 (COMPILE−DEFS ((DEFCODE INC
((PUSHV 0) (PUSHC 1)

(OPR +) (POP 1))))) >
2> (COMPILE−FORM (INC A) (A) 0) >

3> (OPERATORP INC)>

6

<3 (OPERATORP NIL)>
3> (COMPILE−FORMS (A) (A) 0) >

4> (COMPILE−FORM A (A) 0) >
<4 (COMPILE−FORM ((PUSHV 0))) >
4> (COMPILE−FORMS NIL (A) 1) >
<4 (COMPILE−FORMS NIL)>

<3 (COMPILE−FORMS ((PUSHV 0))) >
<2 (COMPILE−FORM ((PUSHV 0) (CALL INC))) >

<1 (COMPILE−PROGRAM ((DEFCODE INC
((PUSHV 0) (PUSHC 1)

(OPR +) (POP 1)))
((PUSHV 0) (CALL INC)
(POP 1)))) >

The function operatorp is called two times. With ’+ as
the argument it returns the entire list of operators. Note that
in Lisp and also in our source language anything which is
not NIL is taken as true. This makes the code shorter. The
second time it is called with ’FAC as the argument it returns
NIL. This tells the compile-form function that it should insert
a function call and not an OPR-instruction.

So the output of the compiler for the very simple program
inc is as follows:

((DEFCODE INC
((PUSHV 0)

(PUSHC 1)
(OPR +)
(POP 1)

)
)
((PUSHV 0)

(CALL INC)
(POP 1))

)

The compiler of the source language does not need many
lines of code, mainly because the language is kept very simple
and only a few control structures are possible. However any
kind of checking the validity of the source program is missing.
For the formal proof of compiler correctness this is necessary
and therefore a function called wellformed-program is created
to test source language code for compiler errors.

E. Stack Machine Simulation
The stack machine simulation is also written in ACL2. This

is very useful because the compiler correctness proof can be
supported by the ACL2 proving engine. It is not written in the
source language, but in normal ACL2. In the original source
code hints for the ACL2 prover are included which are not
printed here for the sake of simplicity. The structure is very
similar to the compiler, the call graph is shown in figure 6.

The main function execute first calls the download
function with the defcode-definitions and after this it calls
msteps with the starting instruction as the argument.

(defun e x e c u t e (prog s t a c k n)
(l e t ((code (download (b u t l s t prog))))

(ms teps (car (l a s t prog)) code s t a c k n)
)

)

The following function does some preprocessing for the
defcode-definitions. To be able to look up a name, an
associative list with the names as keys is built and returned.

Fig. 6. Machine - Function call graph.

(defun download (d c l s)
(i f (consp d c l s)

(cons (cons
(cadar d c l s)
(caddar d c l s))

(download (cdr d c l s)))
n i l)

)

The msteps function loops over the list of instructions
given in the seq argument and calls mstep for each of them.
Note that it also checks whether n is zero or the stack is invalid
and returns ’ERROR in this case.

(defun msteps (seq code s t a c k n)
(cond

((or (zp n) (not (t r u e− l i s t p s t a c k))) ’ERROR)
((endp seq) s t a c k)
(t (ms teps (cdr seq) code

(mstep (car seq) code s t a c k n) n)))
)

)

The next function interprets a single target language state-
ment and returns the new stack. New stack elements are
inserted at the top of the stack list, because this makes pushing
and popping simpler. So if for example a PUSHC-instruction
with 5 as its argument is encountered, the stack changes as
in figure 7. The variable stack points to the top-most stack
element and not to the bottom-most.

An IF-instruction is simply interpreted by checking with
a Lisp if the value of the top-most element and continuing
with the correct part with the first stack element popped.
This popping is simply done by calling msteps with (cdr
stack) instead of stack.

(defun mstep (form code s t a c k n)
(cond

((or (zp n) (not (t r u e− l i s t p s t a c k))) ’ERROR)
((equal (car form) ’PUSHC)

(cons (cadr form) s t a c k))
((equal (car form) ’PUSHV)

(cons (nth (cadr form) s t a c k) s t a c k))
((equal (car form) ’CALL)

(ms teps (cdr (a s s o c (cadr form) code))
code s t a c k (1− n)))

7

Fig. 7. Stack changes when executing PUSHC 5.

((equal (car form) ’OPR)
(opr (cadr form) code s t a c k))

((equal (car form) ’ IF)
(i f (car s t a c k)
(ms teps (cadr form) code (cdr s t a c k) n)

(ms teps (caddr form) code (cdr s t a c k) n)))
((equal (car form) ’POP) (cons (car s t a c k)

(nthcdr (cadr form) (cdr s t a c k))))
)

)

The last function of the stack machine simulation is called
opr and contains a long cond statement to distinguish all the
different operators. One example for an unary operator and
two examples for a binary operator are printed in the listing
below. The new stack is returned.

(defun opr (op code s t a c k)
(cond

((equal op ’ 1 +) (cons (M1+ (car s t a c k))
(cdr s t a c k)))

((equal op ’ +) (cons (M+ (cadr s t a c k) (car s t a c k))
(cddr s t a c k)))

((equal op ’−) (cons (M− (cadr s t a c k)
(car s t a c k)) (cddr s t a c k)))

. . .

)
)

To show the behaviour of the stack machine program on a
particular program, again the trace$ instruction of ACL2 is
used on a very simple example. All traces caused by calls to
the function msteps are not listed to make it easier to focus
on the essential things.

1> (EXECUTE ((DEFCODE INC ((PUSHC 1) (OPR +)))
((CALL INC)))

(4)
10000)>

2> (DOWNLOAD ((DEFCODE INC ((PUSHC 1) (OPR +))))) >
3> (DOWNLOAD NIL)>
<3 (DOWNLOAD NIL)>

<2 (DOWNLOAD ((INC (PUSHC 1) (OPR +)))) >
3> (MSTEP (CALL INC)

((INC (PUSHC 1) (OPR +)))
(4)
10000)>

5> (MSTEP (PUSHC 1)
((INC (PUSHC 1) (OPR +)))
(4)
9999)>

<5 (MSTEP (1 4)) >
6> (MSTEP (OPR +)

((INC (PUSHC 1) (OPR +)))
(1 4)
9999)>

7> (OPR + ((INC (PUSHC 1) (OPR +)))
(1 4)) >

<7 (OPR (5)) >
<6 (MSTEP (5)) >

<3 (MSTEP (5)) >
<1 (EXECUTE (5)) >

The last argument of the execute function determines the
maximum call depth. As the source language does not contain
any loops or goto statements, an endless recursion is the only
possible way to write a never-ending program:

(e x e c u t e
’ ((DEFCODE REC ((CALL REC)))

((CALL REC)))
’ ()

2
)

The trace produced by the previous program, produces the
following output. With every call to rec, the counter which
is the last argument of mstep or msteps is decreased by
1. Because it has an initial value of 2 in this example, the
third recursive call is made with a value of 0 and returns with
an error. Again some traces caused by calls to the function
msteps are not listed. Only the inner-most call to msteps
is shown, because here the last argument is 0, so this call
returns ’ERROR.

1> (EXECUTE ((DEFCODE REC ((CALL REC)))
((CALL REC)))

NIL 2)>
2> (DOWNLOAD ((DEFCODE REC ((CALL REC))))) >

3> (DOWNLOAD NIL)>
<3 (DOWNLOAD NIL)>

<2 (DOWNLOAD ((REC (CALL REC)))) >
3> (MSTEP (CALL REC)

((REC (CALL REC)))
NIL 2)>

5> (MSTEP (CALL REC)
((REC (CALL REC)))
NIL 1)>

6> (MSTEPS ((CALL REC))
((REC (CALL REC)))
NIL 0)>

<6 (MSTEPS ERROR)>
<5 (MSTEP ERROR)>

<3 (MSTEP ERROR)>
<1 (EXECUTE ERROR)>

IV. COMPILER CORRECTNESS

This chapter will tell something about the formal proof of
the compiler written in ACL2. After a short introduction which
answers the question what compiler verification means in this
context, an overview of the structure of the proof in ACL2 is
given.

8

A. Informal description

First of all, when talking about compiler correctness, it must
be defined what this really means. It’s not as clear as it may
seem at first sight, and in fact the following view of compiler
correctness is a bit surprising:

• If
– the source program is wellformed
– and the execution of the compiled program gives a

result
• Then

– the result of the compiled program is equal to the
execution of the source program via the interpreter

So the surprising thing here is, that only if the compiled
program really gives a result, it has to be equal to the result
of the execution of the source program. If it does not, we don’t
care about it and nevertheless say the compiler is correct.

B. Formal proof in ACL2

To be able to use the ACL2 proving engine, of course the
definition of compiler correctness needs to be reformulated
in ACL2. The following code listing shows the main part
of the proof, the hints given to the prover are not printed to
make things simpler. A function wellformed-program is
required to check whether the compiler input is valid or not.
This is not the only theorem, it’s only a small part of the proof.
In fact the proof is more complex than the compiler itself.

(defthm c o m p i l e r− c o r r e c t n e s s
(i m p l i e s

(and
(wel l formed−program d c l s v a r s main)
(d e f i n e

(e x e c u t e
(compile−program d c l s v a r s main)
(append (r e v i n p u t s) s t a c k)
n

)
)
(t r u e− l i s t p i n p u t s)
(equal (l e n v a r s) (l e n i n p u t s))

)
(equal

(e x e c u t e
(compile−program d c l s v a r s main)

(append (r e v i n p u t s) s t a c k)
n

)
(cons

(car
(e v a l u a t e d c l s v a r s main

i n p u t s n)
)

s t a c k
)

)
) : h i n t s . . .

)

The topmost function of this formal proof is implies
which is an ACL2-built-in function. The helper functions
wellformed-program and define are used to test the
two conditions for correctness. Additionally it is assured that
the number of actual arguments given to the program matches
the number of parameters.

C. Parts of the Proof

The code listing above only shows the final theorem added
to the logic world of ACL2 to finish the formal proof. A
huge amount of theorems which only handle a very small
part of the compiler are needed. All those pieces together
make up the whole proof. They are added step by step. More
than 100 defthm-statements are required and also a lot of
ACL2 functions which only exist to help to formulate some
theorems. Some of the theorems need other theorems as hints
for the automatic proving engine. After the special keyword
:hints, additional helpful information for proving is given.
The proof consists of the following important parts:

• Variables bound and addressing: Every variable must
be addressed at the correct position.

• Syntactical correctness: This is the easiest part of the
proof, the output of the compiler has to be always
syntactically correct.

• Conditionals: The correct behaviour when compiling if
statements is checked.

• Function calls: Theorems which ensure that in a well-
formed source language program every function called
is defined. Also some properties about the stack and the
correctness of the POP-instruction are checked.

• Operator calls: For operator calls similar things to
function calls are checked. Additionally also the number
of arguments for a binary or a unary operator must be
exactly one or two respectively.

• Forms: After proving all those very specific things for
certain instructions, the correctness of whole forms is
checked.

• Compiler correctness: Finally the last theorem as listed
above can be added to the logic world and the proof is
complete.

D. Some Example Theorems

In this section some easy to understand theorems which are
part of the full proof are listed and explained.

First a theorem which checks the correctness of the stack
machine simulator when executing IF-statements is shown.
machine-on-if-nil checks that if the argument of the
stack is NIL, the second part here called m3 is executed.
The second theorem machine-on-if-t consists of an
implication and ensures that for every other value the first
part called m2 is executed. The third theorem brings both cases
together.

(defthm machine−on− i f−nil
(equal (ms teps (cons (l i s t ’ IF m2 m3) m)

code (cons n i l s t a c k) n)
(ms teps (append m3 m) code s t a c k n)))

(defthm machine−on−if−t
(i m p l i e s c

(equal (ms teps (cons (l i s t ’ IF m2 m3) m)
code (cons c s t a c k) n)

(ms teps (append m2 m) code s t a c k n))))

(defthm code− fo r− i f−works−cor rec t ly
(i m p l i e s

(d e f i n e d (ms teps
(append m1

9

(cons (l i s t ’ i f m2 m3) m)) code s t a c k n))
(equal (ms teps (cons (l i s t ’ i f m2 m3) m)

code (ms teps m1 code s t a c k n) n)
(i f (car (ms teps m1 code s t a c k n))

(ms teps (append m2 m) code
(cdr (ms teps m1 code s t a c k n)) n)

(ms teps (append m3 m) code
(cdr (ms teps m1 code s t a c k n)) n)))

)
)

Another interesting and also very simple theorem is
necessary to ensure that every operator is called with
the correct number of arguments. There are two theo-
rems: unary-has-one-argument checks this property
for unary operators, binary-has-two-arguments does
the same thing for binary operators.

(defthm unary−has−one−argument
(i m p l i e s

(and (member op
’ (CAR CDR CADR CADDR CADAR

CADDAR CADDDR 1− 1+ LEN
SYMBOLP CONSP ATOM LIST1))

(wel l formed− form
(cons op a r g s)
genv cenv))

(and
(consp a r g s)
(n u l l (cdr a r g s))

)
)

)

(defthm binary−has− two−arguments
(i m p l i e s

(and
(member op ’ (CONS EQUAL APPEND MEMBER

ASSOC + − ∗ LIST2))
(wel l formed− form

(cons op a r g s) genv cenv
)

)
(and

(consp a r g s)
(consp (cdr a r g s))

(n u l l (cddr a r g s))
)

)
)

In a wellformed program, every function which is called
somewhere has to be defined. This is checked by the following
theorem: For each function call, the name of the function must
be a member of the associative list containing all function
definitions.

(defthm f u n c t i o n− i s−d e f i n e d
(i m p l i e s

(and
(f u n c t i o n− c a l l p form)

(wel l formed− form form genv env))
(a s s o c (car form) genv)

)
)

These were only a few examples of the complete proof.
Once you have the automatic proof, it is easy to detect any
kind of errors inserted by changes of the source code of
the compiler. After building up the incorrect compiler which

is correct at source level, its correctness can be checked
immediately with the help of all the existing theorems used
to check the original compiler. The next chapter gives a short
introduction to the bootstrap test, the incorrect compiler even
passes this test.

E. Compiler bootstrap test

Whenever a compiler is written in its own source language,
the compiler bootstrap test can be applied. This means first
the compiler source is compiled using some other compiler.
Then the resulting program is used to recompile its own source
code. If the resulting program is used again to recompile its
own source code, the result must be exactly the same target
language program. This is quite a strong argument for the
compiler to be correct.

For visualizing the confusing bootstrapping operation, Mc-
Keeman T-diagrams are used. In these diagrams objects, which
look quite similar to the uppercase letter T, are used as shown
in figure 8. An important thing to understand is that every T
represents exactly one compiler, and three languages are also
written into the T: The source language, the target language
and the language in which the compiler is written itself.

Fig. 8. A single T.

The form of a T was chosen, because they can be stacked
on each other as shown in figure 9. As every T represents one
compiler, we have three compilers in this diagram. Let’s say
there is a machine which can execute any program written in
A. We have one compiler c1 written in X compiling from X
to A. To be able to execute its code it is however necessary to
write some other compiler c2 for the same task written in A,
because only this language can be executed. After this c2 can
be used to compile the source of c1 to A. The result of this is
c3 which is the compiled form of c1. Whenever Ts are stacked
as in figure 9 it means that the compiler in the middle is used
to compile the compiler of the left side to its representation
in another language shown on the right side.

Fig. 9. Three stacked Ts.

10

After this short introduction to T diagrams, the compiler
bootstrap test is visualized in figure 10.

Fig. 10. The bootstrap test.

So first of all some other compiler m0 is used to compile
our compiler written in the source language for the first time
to the target language. Note that this compiler m0 does not
necessarily have to be written in the target language, but in
any language which can be directly executed. The result is the
target language program m1.

Now the compiled version m1 of the compiler CSL can be
executed. It is applied to its own source code, which results
in another target language program m2. This is just another
target language representation and works, if the compiler is
correct, exactly the same way as m1. To test this, m2 is used
to compile again the original source code CSL, which results
in m3. Now the condition of the bootstrap test can be tested:
The target language program m2 and m3 have to be exactly
the same. Their binary representations have to be equal.

V. THE INCORRECT EXAMPLE

This chapter will show why any kind of source level
verification and also the bootstrap test is not sufficient to be
sure to have a correct compiler. The problematic part here is
the compiler m0, which transform our compiler for the first
time to target language. Is it possible that if this compiler is
written in a very special way, that the bootstrap test does not
fail and the resulting target language program is nevertheless
incorrect? The answer is unfortunately yes. In this paper it is
actually shown how such a compiler can be constructed.

A. Self-Reproducing Programs

Before being able to program the incorrect compiler, a way
how to write self-reproducing programs in ACL2 must be
found. This might seem to be off-topic, but self-reproduction
is an important thing in the bootstrap compiler test. We will
need a program which reproduces exactly its own code.

For C++ programmers it might seem quite strange, that this
is not very easy. In C++ it’s possible to access the location in
memory where the machine byte codes of a function is stored,
but not in ACL2. So some other ways for a function to return
its own code must be found.

The following code listing shows a very small ACL2
function called selfrep which uses a trick to reproduce
itself. Three important things are needed:

• A value which does not occur anywhere else in the code.
In the case of selfrep this is 2000.

• An expression which evaluates to the special value. In
this case (+ 1999 1) is chosen, but anything else which
evaluates to 2000 could be used.

• A function which is able to replace a given value by
another in nested lists. In ACL2 the function subst can
be used.

(defun s e l f r e p ()
(l e t ((b

’ (defun s e l f r e p ()
(l e t ((b ’ 2 0 0 0))
(s u b s t b (+ 1 9 9 9 1) b)))

))
(s u b s t b (+ 1 9 9 9 1) b))

)

It’s quite difficult to see at first sight that this function
exactly reproduces itself. When this function is executed,
first b is assigned some special value. However drawing the
structure of the function like in figure 11 makes things clearer.

Fig. 11. Self-reproducing program.

The incorrect compiler should be written in our source
language where the let statement is not available. This is
however not a big problem, because nothing prevents us from
substituting the special value two times. Now we will construct
another self-reproducing program.

(defun s e l f r e p ()
(s u b s t

’2000
(+ 1 9 9 9 1)
’2000

)
)

This of course is not the final program, because it would re-
sult in returning the value 2000. But now the two occurrences
of 2000 are both replaced by the whole program, resulting in:

(defun s e l f r e p ()
(s u b s t

’ (defun s e l f r e p ()
(s u b s t

’2000

11

(+ 1 9 9 9 1)
’2000

)
)

(+ 1 9 9 9 1)
’ (defun s e l f r e p ()

(s u b s t
’2000
(+ 1 9 9 9 1)
’2000

)
)

)
)

Finally we have to implement a source language version
of the subst function, which is quite trivial. An example is
given in the following code listing:

(defun s u b s t (new o l d t r e e)
(i f (equal o l d t r e e) new

(i f (atom t r e e) t r e e
(cons

(s u b s t new o l d (car t r e e))
(s u b s t new o l d (cdr t r e e))

)
)

)
)

A new tree structure is constructed. When something equal
to old is found, new is returned. If a cons is found the
function is called recursively for each cell, so nested lists or
any other nested datastructure are correctly processed.

B. Incorrect Compiler

This section shows how to construct an evil compiler m∗

which acts like a Trojan horse. Even if our original correct
compiler CSL is proved to be correct, the resulting compiler
m1 and also the compilers m2 and m3 are incorrect when
m∗ is used for the first compilation of CSL. Furthermore the
bootstrap test is passed.

Figure 12 shows the T diagram when m∗ is used instead of
m0. Instead of really compiling CSL the incorrect compiler
simply reproduces itself. So of course the bootstrap test does
not make any problems, because m∗ will always be m∗ no
matter how often it recompiles the original source code.

We constructed the incorrect compiler example starting from
the correct compiler implementation written in the source
language, the resulting compiler is called Cinc. To be able to
execute our incorrect compiler, it must be transferred to target
language code. Any correct working compiler minit can be
used to do this job.

If m∗ is applied to any other source language program, it
works exactly the same way as the original compiler. However
for some special programs it could produce a completely
different output and maybe cause a catastrophe.

So it has to fulfil the following three criteria:

• Applied to the original source code CSL reproduces itself.
• Applied to a particular program, generates a big catastro-

phe by producing incorrect code.
• Otherwise it works like the original compiler.

Fig. 12. Incorrect example.

The most difficult part here is the self-reproduction, but
with the trick explained in the previous chapter, this is also
no problem. We start constructing the incorrect compiler with
copying the correct source of CSL. Now we change it, that
applied to a certain special source program it generates the
catastrophe. This is very easy and is just a simple additional
if-statement.

Another if-statement is inserted which compares the input
to the original source code CSL and in this case it has to
reproduce itself.

(
(

. . .
(defun compile−program (d e f s v a r s main)

(i f (equal d e f s (co mp i l e r− s ou rc e))
s e l f− r e p

(i f (equal d e f s (l o g i n− s o u r c e))
’CATASTROPHE

(normal−compile−program
def s , var , main)

)
)

)
)
(d e f s v a r s main)
(compile−program d e f s v a r main)

)

As shown in the chapter about self-reproducing programs,
inserting a function self-rep is quite straight forward, however
the code gets quite complicated because it has to be copied
two times. The following definition will be added:

(defun s e l f r e p ()
(s u b s t

’2000
(+ 1 9 9 9 1)
’2000

)
)

And then the two occurrences of 2000 will be replaced with
the whole source code. After compiling this incorrect compiler
to target language code using a correct compiler, the incorrect
example is finished.

12

VI. CONCLUSION

Computer-aided reasoning is a powerful approach to support
programmers with an automatic proving engine. ACL2 can
be used in combination with a Lisp interpreter to fulfil this
task. The compiler and also the simulation machine for the
source language have to be written in ACL2 and in addition
all the theorems required for proving the compiler are them-
selves ACL2 source code. It is possible to formally proof the
correctness of a non-trivial compiler with the help of the ACL2
reasoning engine as shown in [2].

However it is quite a difficult task to write the full proof
even of a rather simple compiler. The proving engine can
only support the user and is not capable of doing everything
by itself after the main theorem has been typed in. However
it prevents the user from adding wrong theorems and builds
up step by step a big logic world. Every theorem adds some
additional facts.

As shown in [2], any amount of source level verification
and even the bootstrap test is not enough to really prove that
a compiler is correct. The compiler which compiles the correct
compiler for the first time can act like a Trojan horse. This
is however not a completely helpless situation, because with
target level verification compiler correctness can be assured.
This kind of verification can be done with ACL2 too. Instead
of proving the correctness of the source code of the compiler,
the correctness of the compiled code is proved.

Using computer-aided reasoning makes a fully formal proof
of a compiler possible, however it is still quite difficult and
the proof is very often more complex than the compiler itself.

.

13

LIST OF FIGURES

1 Representation of a list in ACL2. 1
2 Stack execution - Start. 3
3 Stack execution - IF-statement. 4
4 Stack execution - Recursive call. 4
5 Compiler - Function call graph. 4
6 Machine - Function call graph. 6
7 Stack changes when executing PUSHC 5. 7
8 A single T. 9
9 Three stacked Ts. 9
10 The bootstrap test. 10
11 Self-reproducing program. 10
12 Incorrect example. 11

REFERENCES

[1] M. Kaufmann, P. Manolios, J. Strother Moore, Computer-Adided Rea-
soning: An Approach. Kluwer Academic Publishers, 2000.

[2] M. Kaufmann, P. Manolios, J. Strother Moore, Computer-Adided Rea-
soning: Case Studies. Kluwer Academic Publishers, 2000.

[3] ACL2 official homepage.
http://www.cs.utexas.edu/users/moore/acl2/.

[4] R. Sedgewick, Algorithmen. Pearson Studium, 2002.
P. Terry, Compilers and Compiler Generators.
http://webster.cs.ucr.edu/AsmTools/
RollYourOwn/CompilerBook/.

[5] D. A. Watt, D. F. Brown, Programming Language Processors in Java.
Prentice Hall, 2000.

	Titelblatt
	CompilerVerification

