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Many monitoring tools that help developers in analyzing the run-time behavior of their applications share a
common shortcoming: they require their users to have a fair amount of experience in monitoring applications
to understand the used terminology and the available analysis features. Consequently, novice users who lack
this knowledge often struggle to use these tools efficiently.

In this paper, we introduce the guided exploration (GE) method that aims to make interactive monitoring
tools easier to use and learn. In general, tools that implement GE should provide four support operations on
each analysis step: they should automatically (1) detect and (2) highlight the most important information on
the screen, (3) explain why it is important, and (4) suggest which next steps are appropriate. This way, tools
guide users through their analysis processes, helping them to explore the root cause of a problem. At the same
time, users learn the capabilities of the tool and how to use them efficiently.

We show how GE can be implemented in new monitoring tools as well as how it can be integrated into
existing ones. To demonstrate GE’s feasibility and usefulness, we present how we extended the memory
monitoring tool AntTracks to provided guided exploration support during memory leak analysis and memory
churn analysis. We use these guidances in two user scenarios to inspect and improve the memory behavior of
the monitored applications.

We hope that our contribution will help usability researchers and developers in making monitoring tools
more novice-friendly by improving their usability and learnability.
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1 INTRODUCTION
The complexity of modern software makes monitoring tools essential, as their analysis features
support users in inspecting, understanding, and fixing run-time problems. Unfortunately, most
monitoring tools are designed for experts with extensive knowledge in their respective domain.
Consequently, novices who lack this expertise are often unable to use these tools to their full
potential [57, 79]. For example, Weninger et al. [91] observed during a user study on memory
monitoring tools that especially novice users who were unfamiliar with typical memory monitoring
activities and tool features struggled to extract the insights needed to fix a given problem. They were
often overwhelmed by the complexity and number of available features and said that they wished
to have more guidance throughout the analysis process. Based on these observations, the authors
recommend that memory monitoring tool developers should provide guidance and explanations to
support exploratory learning of analysis capabilities [91].

Having too many and too complex features is a common problem across interactive expert tools,
which makes them hard to use for novice users, as illustrated in Figure 1. For example, in the
memory analysis tool MAT [80], to inspect a suspicious heap object group in more detail, users
are confronted with a long list of analysis features (Figure 1a). In AntTracks [85, 99], users can
define how to group heap objects for inspection based on a number of different properties and
criteria (Figure 1b). Without guidance or hints, novice users may feel overwhelmed and may not be
able to decide which actions to take in a certain situation.

(a) MAT’s type histogram provides a context menu
that offers nine analysis features, six of which have
(many) further sub-decisions.

(b) AntTracks’s classification view offers around 35
grouping criteria for heap objects that can be freely
combined by the user.

Fig. 1. Examples of complex decisions in memory monitoring tools.

In this paper, we present guided exploration (GE), a method that aims to increase the learnability
and usability of monitoring tools, and GE’s application in memory monitoring. In general, to
implement GE, tool developers should first identify their tool’s typical analysis processes. For
example, in a memory monitoring tool, this may be the typical steps performed during memory
leak analysis. GE aims to support users in performing and understanding these steps, especially
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supporting those users without extensive knowledge in the tool’s domain. To do so, tools that
follow the method of GE should provide the following four support operations on every analysis
step: they should automatically (1) detect and (2) highlight the most important information on the
screen, (3) explain background knowledge and why the highlighted information is important, and
(4) suggest which next steps are appropriate based on the findings.

To demonstrate how GE can be introduced in existing tools, we present how we extended the
interactive memory monitoring tool AntTracks to support GE on its two main analyses: memory
leak analysis and memory churn analysis.

Our main contributions in this work are:

(1) an overview of our general guided exploration method that can be implemented in new
monitoring tools as well as integrated into existing ones, see Section 3.

(2) guided exploration for memory leak analysis, integrated into AntTracks, see Section 4.
(3) guided exploration for memory churn analysis, integrated into AntTracks, see Section 5.
(4) a discussion of preliminary user feedback regarding AntTracks’s GE (Section 6), an outlook

on the possible application of GE in a domain other than memory monitoring (Section 7),
and a discussion of GE’s current limitations and possible future improvements (Section 8).

2 BACKGROUND AND RELATEDWORK
In this section, we first discuss background and related work in the field of Human-Computer Inter-
action, more specifically related work on the usability and ease of use of analysis and monitoring
tools. We then show different kinds of user guidance and how our approach fits into these classi-
fications. Since this work focuses on novice user guidance in memory monitoring tools, we also
introduce general memory monitoring concepts and typical memory problems that developers have
to face. As we have implemented guided exploration in the memory monitoring tool AntTracks,
AntTracks and its core features are also explained.

2.1 Usability, Ease of Use and Learnability
Ample studies have been performed on how to improve the user experience in software tools. For
example, Johnson et al. [33] performed a study on the (under-)use of static analysis tools. Nineteen
of their 20 study participants reported that they felt that many static analysis tools do not present
[...] enough information for them to assess what the problem is, why it is a problem and what they
should be doing differently, i.e., they missed explanations on how to interpret the presented data.
Christakis and Bird [10] report that many of their findings match those of Johnson et al. In a
study conducted by Riemenschneider and Hardgrave [70], ease of use (including learnability) was
shown to be the major determinant for tool usage, i.e., ease of use is paramount for tools to attract
and hold users. Holding users is important, since a continuous use of monitoring tools, especially
application performance management (APM) tools, can have a positive impact on the quality of
software [77]. Despite this, Tarek et al. [2] conclude their work on the effectiveness of APM tools
as [...] the reporting capability of APM tools must be improved to reduce the effort that is required to
analyze detected performance regressions. The logical consequence that follows from these results
is that developers have to improve their tools’ usability to reach a broad range of users. While
some approaches try to achieve this using user-specific data aggregation [64, 82], our GE approach
focuses on increased learnability by guiding the user through analysis processes.

2.2 User Guidance
The idea of user guidance is not new. Folmer and Bosch [18] classify two general guidance patterns
that are typically used to increase tool usability [1, 38, 54]: (1) wizards and (2) context-sensitive help.
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Most wizards are implemented as a rigid, linear series of dialog views [12]. These views ask
a number of questions and then use this information to automate certain tasks [81]. Modern
approaches involve the generation of user-specific wizards [102].
Various approaches exist for context-sensitive help [78], such as coaches [50], guides [12] or

advisors [50]. Coaches are often implemented as context-sensitive hints or tips and typically provide
the user “how to” information to overcome minor hurdles. Guides can be thought of as “intelligent
coaches”, as they only display hints or tips whenever and wherever it is most likely useful, reacting
to the user’s behavior. Coaches, guides, and more recent approaches such as micro-learning and
gamification [22, 23, 28] are often used during onboarding [67], i.e., while introducing a person to
a new tool to improve the person’s success using it [76]. Our approach differs from coaches and
guides as GE does not only explain possible next steps or display certain hints, but it provides full
guidance throughout a given task, including automatic decision making based on the underlying
data. Thus, it better fits the description of an advisor system. Advisors are context-sensitive help
systems that provide hints, tips, reasoning support, and explanations of complicated concepts. They
help novice users to make decisions, to understand why certain steps should be performed, and to
determine why certain decisions were suggested.

Rabiser et al. [62] provide a framework to compare monitoring approaches based on 21 different
characteristics, including typical characteristics relating to guidance such as target group, needed
skills, input guidance, and output guidance. They then compared 32 existing monitoring approaches
and tools based on this framework. Even though they report that some monitoring tools partly
provide certain unstructured guidance, they conclude that many approaches do not provide much
end-user tool support [...] and generally only very few provide fully-fledged tools with visualizations
and guidance for users. The target user group seems to be mainly (experienced) engineers [62].
To the best of our knowledge we are the first to describes a general guidance method in the

context of interactive monitoring tools, especially in the domain of memory monitoring.

2.3 Memory Analysis
To reduce the risk for memory-related problems, modern programming languages such as Java
use garbage collection (GC) to automatically reclaim unused memory. During a garbage collection,
objects that are no longer (indirectly) reachable from GC roots (i.e., static fields and local variables)
are automatically reclaimed, freeing up their reserved memory. This relieves programmers from
the error-prone task of manual memory management. Nevertheless, garbage collection comes with
its own set of possible memory problems that can slow down applications if developers handle
object allocations and object storage carelessly. In the worst case, problems such as memory leaks
can even crash the application.
Memory leaks occur when objects that are no longer needed remain reachable from GC roots

due to programming errors [48]. For example, a developer may forget to remove objects from
long-living data structures once they are not needed anymore. These objects cannot be reclaimed
by the GC and will therefore accumulate over time [86, 88].
Another common memory anomaly that is often overlooked by novice users is high memory

churn. High memory churn, also called excessive dynamic allocations [60, 75] or high allocation
density [13], occurs when objects are (unnecessarily) allocated in high frequencies, just to be
reclaimed shortly after their creation. For example, high memory churn is often the result of
heavily-executed loops that contain allocations of short-living objects. This leads to increased work
for allocating these objects on the heap and to an increased number of garbage collections to collect
them, both of which negatively impact an application’s performance.
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2.4 Introduction to AntTracks
This section presents the basics of AntTracks, a trace-based memory monitoring tool consisting
of the AntTracks VM [39–41] (a modified Java Hotspot VM) and the AntTracks Analyzer [5, 86–
90, 93, 94, 99]. We use AntTracks as an example throughout the paper to showcase how existing
monitoring tools can be extended and refactored to support GE. We chose this tool since its source
code is publicly available [85] and the authors already had prior experience with its code base.

2.4.1 Trace Recording by the AntTracks VM. The AntTracks VM records events such as object
allocations and object movements during garbage collection by writing them into trace files [39, 40],
introducing a run-time overhead of about 5%. To reduce the trace size, the VM does not record any
redundant data and applies compression [41].

2.4.2 Reconstruction in the AntTracks Analyzer. The AntTracks Analyzer processes the events
stored in a trace file, reconstructing the heap state at every garbage collection point [5]. A heap
state is a set of heap objects that were live in the monitored application at a certain point in time.
Properties such as the the address, the type, the allocation site, and the allocating thread can be
reconstructed for each heap object, as well as GC root information and information about the
references between the heap objects.

The tool’s core mechanism is object classification in combination with multi-level grouping [93,
99]. A classifier groups heap objects according to a certain criterion such as type, allocation site,
or allocating thread. Grouping the heap objects according to the classification results of multiple
classifiers results in a hierarchical memory tree. A common classifier combination is to group all
heap objects by their types and then by their allocation sites, as exemplarily shown in Figure 2.
Yellow rectangles represent tree nodes and blue circles represent the objects that were classified
into the respective tree branch. For example, the objects 0 to 3 are of type Object[], of which the
objects 0, 1 and 3 have been allocated in the method Stack:init() and object 2 has been allocated
in the method MyService:foo().

root

Object[] LinkedList

Stack:init() MyService:foo() X:meth()

1. Classify by type

2. Classify by
allocation site

… Tree node … Object

0 1 3

i

2 4

40 1 32

0 1 32 4

Fig. 2. A memory tree that first groups all objects by their types and then by their allocation sites.

Memory traces are used as a data basis for a variety of analyses within AntTracks. Two of
these analysis, as well as their new guided exploration features, will be explained in more detail in
Section 4 (memory leak analysis) and Section 5 (memory churn analysis).

3 GUIDED EXPLORATION
Without training, especially novice users may struggle to understand analysis features, terminology,
metrics or visualizations in state-of-the-art interactive monitoring tools due to their steep initial
learning curve. Being a novice monitoring tool user does not imply general inexperience. For
example, even experienced software developers may have never used a memory monitoring tool
before they encounter their first application crash due to a memory leak, which makes them a novice
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in the domain of memory analysis. By incorporating learning-by-doing [71], our guided exploration
method intends to simplify the onboarding process for this kind of users. As the method’s name
suggests, tools implementing guided exploration should guide novice users through their analysis
processes, helping them to explore the collected data until the root cause of a problem is found.

Even though the focus of this work is to present how GE can be applied in memory monitoring
tools, this section presents the general idea of GE. As we discuss in Section 7, we think that GE
may be a suitable guidance pattern for monitoring tools of other domains too, and thus we plan to
further explore possible applications of GE in other domains in future work.

Section 3.1 discusses which steps are necessary before GE can be integrated into a tool. Section 3.2
explains GE’s four user support operations (depicted in Figure 4) in detail: Detection, Highlighting,
Explanation, and Suggestion. These four user support operations can be gradually introduced in
existing monitoring tools view by view, step by step.

3.1 Mapping of Analysis Process Steps to Views
Before introducing guided exploration in a monitoring tool, the tool developers have to define
its typical analysis processes (such as memory leak analysis in a memory monitoring tool) and
the steps performed within these processes. To do so, we suggest to create a (simple) process or
task model. Various task model notations exist, for example ConcurTaskTrees [58], Task Flow [37],
useML [51], or visualizations similar to UML statechart diagrams [46]. They all strive to capture
the most important elements describing how a task (i.e., an activity that should be performed in
order to reach a certain goal) is carried out by a particular user in a given context or in a given
scenario [21, 45]. In the case of guided exploration, these task models should be designed from
the perspective of novice users. This means that, even though analysis tasks (e.g., memory leak
analysis) can often be performed in different ways across a number of multiple steps, the model
should contain the typical flow of steps that should be performed to achieve the task’s goal. Tool
developers and domain experts should be able to derive such a model, describing the “default” steps
novice users should learn to perform, i.e., those steps that should be supported with GE in the
future. Each step can then be mapped to one of the tool’s views to determine those views that have
to be modified in order to support GE.

Overview

Load 
trace file

Overview

Inspect memory
evolution

TrendViz view

Visualize growth per
object type in window

Time window with
continous memory growth?

Yes

Heap graph view

Indentify relevant
GC roots

selected 
strongest
growing 
type(s)  loaded

selected
window

IDE

Inspect and fix
source code

finished
analysis

Fig. 3. Simplified task model of the typical steps performed during memory leak analysis, mapped to their
corresponding AntTracks views.

For example, in Section 4 we show how GE has been implemented in AntTracks to guide users
on the search for memory leaks. A typical memory leak analysis process, as shown in Figure 3,
is (1) to search for a time window with continuous memory growth, (2) to find those objects that
accumulate over time within this time window, and (3) to identify the GC roots that keep these
accumulating objects alive. In AntTracks, each of these analysis steps is performed on a separate
view, for each of which the four guided exploration support operations depicted in Figure 4 and
explained in Section 3.2 have been implemented.
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3.2 Guided Exploration Support Operations
This section discusses the four GE support operations a tool should perform on each analysis step:
(1) First, the tool should automatically detect potential problems, i.e., suspicious patterns. (2) To help
users in understanding from where the automatically gained insight was derived, the respective
user interface (UI) region should be visually highlighted. (3) Since the user may require background
knowledge to comprehend certain terminology and the highlighted information, explanations
should discuss why the highlighted information is interesting. (4) Finally, based on the problem
and the detected information, subsequent analysis steps should be suggested.
Since tools can greatly differ in their look-and-feel, we did not come up with a general rule

on how to visualize notifications that a suspicious pattern has been found. It is thus up to the
tool developer to appropriately inform the user about new guidance information. For example,
in AntTracks, if guidance information is available a guidance button in the form of a light bulb is
shown next to the respective UI element. Clicking such a light bulb then highlights the respective
UI element and provides explanations and suggestions. This way of visualization was developed
based on preliminary user feedback, as we will discuss in Section 6. Also, tool developers should
keep guidance support optional, as experienced users may prefer to perform inspections without
guidance elements visible.

Moni

Monitoring
Data

(2)
Highlight

(3)
Explain

(4)
Suggest

repeat

respective 
UI element

rationale next analysis step

Monitoring Tool
(1)

Detect
suspicious 

pattern

Application

Fig. 4. The four guidance operations of GE: (1) Detection, (2) Highlighting, (3) Explanation, and (4) Suggestion.

Detection describes the task of automatically detecting potential problems, i.e., suspicious
metrics or patterns.

Every view in an interactive monitoring tool is developed with the intention of supporting the
user in achieving a certain goal. To this end, different kinds of visualizations are used to present
data to the user. In non-guiding tools, it is up to the user to interpret these visualizations and to
derive insights and findings from them. For example, a tool may present time-series charts for users
to detect abnormal program behavior patterns. Others present tables, expecting the user to search
for suspicious entries, e.g., metrics exceeding certain thresholds.

Most of these tasks require domain expertise that novice users generally do not have. For example,
novice memory monitoring tool users may not search for data structures with a large retained size,
i.e., the number of objects that are kept alive by a data structure [87], if this definition is unknown
to the user. Thus, the first support operation of GE is to automatically detect suspicious patterns
that may hint at problems in the monitored application. We think that intelligent tools should
be able to perform this task, at least to a certain degree. After all, non-guiding tools expect their
users to be able to detect suspicious patterns on their own, based on the displayed information.
Since both the tool and the user have access to the same information, the tool should be capable of
performing the same detection task, even if only detecting more obvious patterns using heuristics.
Even though the problem patterns that need to be detected may differ from domain to domain,

we found certain similarities across different monitoring tools regarding the data they operate
on and how this data is presented to users. Many monitoring tools inspect the evolution of a
system, i.e., the evolution of certain metrics over time. These metric changes are often visualized
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using charts, primarily time-series charts. Users are then expected to detect suspicious patterns
within this evolution. Automated time series analysis [19] (using features such as regression
analysis [53], seasonal and trend analysis [84], prediction [73], forecasting [4], or clustering and
anomaly detection [43]) is a major research field in the domain of knowledge discovery and data
mining. For example, time series analysis is used in memory monitoring to automatically detect
suspicious time windows during which a monitored application behaves abnormally with regard
to memory utilization [89].

Another typical way of depicting information is through the use of (hierarchical) tables, where
features such as filtering or sorting should help the user to detect entries that (do not) meet certain
criteria or those that exceed given thresholds. Such tasks may also be supported by automatic
detection algorithms. For example, in the domain of memory monitoring, some memory inefficien-
cies and anti-patterns can automatically be detected based on memory metrics that exceed certain
limits [8, 9]. Intelligent user interfaces [24, 30, 34, 49] often also apply artificial intelligence and
machine learning for pattern detection, for example, by performing clustering or outlier detection.
Also, research in the field of recommender systems [16, 65] may provide interesting ideas and
algorithms that could be incorporated into the automated detection of patterns in monitoring tools.

Highlighting the relevant region on the user interface helps users to understand where the
automatically gained insight can be found if the view was inspected manually.

The goal of GE is not to remove visualizations from monitoring tools, but to help users to
understand and interpret these visualizations better. Thus, once a potential problem is detected, the
UI region / element relevant for its detection should be highlighted. Different types and arrangements
of UI elements may use different kinds of highlighting. The kind of highlighting should be chosen
based on known UI design principles such as the principles of highlighting [44] or color coding [100].
Further, the developers should make sure that the style of highlighting is consistent throughout all
views that support guided exploration [6]. For example, Figure 5 shows how AntTracks highlights
rows in its tree tables by displaying them with a different background color.

Fig. 5. AntTracks now automatically detects and highlights suspicious parts, for example data structures that
keep many other objects alive (i.e., those data structures that have a high retained size).

Explanations should help users in understanding why the highlighted information is important.
They should clarify used terminology and concepts that are needed to understand the problem.

Let’s continue with the example from Figure 5. First, AntTracks automatically detects objects
with a high retained size [87], i.e., objects that keep a large number of other objects alive, and then
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highlights these objects on the view (in this case six HashMap objects allocated at the same allocation
site). Without knowing what a high retained size means or how to interpret it, the user will not
be able to make sense of the highlighted information. Thus, the user can choose to display an
explanation that should clarify needed background knowledge, terminology, as well as the rationale
why the given pattern is considered suspicious.

Figure 6 exemplarily shows how AntTracks handles this in its guidance pop-ups. First, the
explanation describes what retained size means (background knowledge + terminology), fol-
lowed by an explanation of the currently highlighted area, i.e., “Over 22% of this heap is kept
alive by 6 data structures of type HashMap that have been allocated in the constructor of class
SetMultimap” (rationale).

Suggestions on which steps could or should be taken next to make it easier for the user to
understand what operations are possible and why they might be useful.

Interactive monitoring tools often provide a vast amount of analysis features that can be applied
in different situations. Intended for expert users, this flexibility may intimidate and overwhelm
novice users. Despite the multitude of available features, as discussed in Section 3.1, most analysis
processes have a default flow of tasks. Suggestions should guide the user through this process. We
also recommend to not only display these suggestions as plain text, but to provide shortcuts to
automatically perform the suggested actions. For example, Figure 6 shows how AntTracks presents
suggested operations as buttons that automatically perform the next step.

Fig. 6. This explanation and suggestion pop-up is shown upon user request in AntTracks when data structures
with large ownership are detected. It explains terminology, e.g., retained size, and explains which insights
might be gained following the provided suggestions.

4 GUIDED EXPLORATION OF MEMORY LEAKS
In this section, we present how we integrated guided exploration into AntTracks to facilitate the
analysis of memory leaks. In Section 4.1, we describe a typical memory leak analysis process and
how this process is mapped to AntTracks’s views. In Section 4.2, we describe how AntTracks’s
views have been extended to support the four guided exploration operations Detection, Highlighting,
Explanation, and Suggestion. To showcase how these new guidances support users in comprehending
and investigating memory leaks, we use AntTracks’s new guided exploration and its suggestions
to investigate and fix an application that contains a memory leak.
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4.1 Mapping of Memory Leak Analysis Process Steps to Views
There are various ways to detect and analyze memory leaks. For example, AntTracks can detect
memory leaks by searching for growing data structures and inspecting those with the strongest
growth in more detail [86, 88]. Thus, we extended AntTracks’s data structure growth analysis by
implementing guided exploration for it.

Yet, not every memory monitoring tool can access data structure information in the monitored
application. Thus, we will focus on a more general memory leak analysis process that is not specific
to AntTracks, which is visualized as a simplified task model in Figure 7. It consists of the following
three steps:
(1) Detect a time window with continuous memory growth, i.e., a continues time frame in which

object accumulate over time.
(2) Find out which kinds of objects accumulate over time in this window.
(3) Find those GC roots that keep these strongly accumulating objects alive.

In AntTracks, each step is performed on a different view:
(1) The Overview view plots the application’s memory evolution and GC activity in time-series

charts. A growing number of heap objects over time may hint at a possible memory leak.
(2) The AntTracks TrendViz view [94] shows how the heap evolves over time, i.e., which objects

(grouped by, e.g., their types) accumulate the most.
(3) The Heap graph view interactively visualizes a heap state in a graph-based visualization.

It can be used to inspect keep-alive relations to drill-down to the root cause of a possible
memory leak.

Overview

Load 
trace file

Overview

Inspect memory
evolution

TrendViz view

Visualize growth per
object type in window

Time window with
continous memory growth?

Yes

Heap graph view

Indentify relevant
GC roots

selected 
strongest
growing 
type(s)  loaded

selected
window

IDE

Inspect and fix
source code

finished
analysis

Fig. 7. Simplified task model of the typical steps performed during memory leak analysis, mapped to their
corresponding AntTracks views.

The first two views have already existed in AntTracks and have been extended to provided
guided exploration as part of this work. The heap graph view has been newly developed from
scratch, including its GE support.

The analysis steps shown in Figure 7 are not restricted to AntTracks but can also be performed
in a similar way in other memory monitoring tools such as VisualVM [56] or MAT [80]. Thus, the
GE support operations that have been integrated into AntTracks could be integrated into these
tools in a similar fashion as well.

4.2 Guided Exploration Support Operations for Memory Leak Analysis
AntTracks now provides GE on the three views identified in Section 4.1. In this section, for each
view we explain its general functionality and its new GE support operations Detection, Highlighting,
Explanation and Suggestion.
To showcase how GE in AntTracks now supports users in comprehending and investigating

memory leaks, we present how the newly introduced guidance features have been used to inspect
Dynatrace easyTravel [14]. Dynatrace focuses on application performance monitoring (APM) and
distributes easyTravel as their state-of-the-art memory leak demo application. It is a multi-tier
application for a travel agency, using a Java backend and an automatic load generator simulating
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accesses to the service. All automatically detected and highlighted problem patterns are shown in
Figure 8 and will be explained in detail in the following.

(a) The overview view highlights an automatically detected memory leak time window.

(b) AntTracks TrendViz shows how objects of various types accumulate over time.

(c) The graph view highlights the path from a selected group of objects (i.e., Date) to its most important
garbage collection root (i.e., the static field locationCache), i.e., the path on which most Date objects are
potentially kept alive.

Fig. 8. Memory leak analysis in AntTracks.
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4.2.1 Overview View.
The overview (Figure 9) view gives the user a general impression on the application’s memory
behavior. For example, a time-series chart plots the monitored application’s memory footprint over
time. Users can select a single point in time to inspect the heap state at that point, or they can
select a time window, i.e., two points in time, to inspect the heap evolution over this window.
We observed at different occasions, e.g., during studies or when AntTracks was used during

hands-on tool presentations, that especially novice users are in need of guidance and support. Some
users lacked the background knowledge to recognize abnormal behavior as such, or they struggled
to select a suitable point in time or a suitable time window for certain analysis features. GE on
AntTracks’s overview view should help the users by automating these steps.

Detection. Weninger et al. [89] showed how to automatically detect suspicious time windows
in memory monitoring. We apply their heuristic-based algorithm that mimics human behavior
to search for a memory leak window, i.e., a window with a continuous growth (except for minor
drops) of reachable memory.

Highlighting. If a suspicious time window that may be the result of a possible memory leak is
found, is is highlighted with a yellow rectangular overlay, as shown in Figure 8a.

Explanation. AntTracks explains to the user why the detected time windowmay be connected to a
memory leak: AntTracks has detected a time window over which the reachable memory is continuously
growing. This is an indicator for a possible memory leak. If a memory leak exists, typically objects of a
few common types accumulate over time.

Fig. 9. The Overview provides initial information to asses the overall memory and garbage collection behavior
of the monitored application.
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Suggestion. We suggest the user to apply the AntTracks TrendViz [94] feature to explore how the
heap’s contents changed over time in order to detect if certain types of objects accumulate over
time.

Figure 8a shows the memory evolution of easyTravel over time, including an automatically
detected and highlighted memory leak time window. AntTracks explains that the window exhibits
strong memory growth (about 400%) up until the end of the application, an indication for a memory
leak. It is worth mentioning that the initial memory spike during application startup is not part of
this window. Objects allocated during this spike are freed shortly after and thus have no relevance
for the memory leak, a fact that is obvious for experts (and the time window algorithm) but novice
users may not be aware of. Following the suggestion, we applied the AntTracks TrendViz feature on
the time window.

4.2.2 AntTracks TrendViz View.

The AntTracks TrendViz view [94] (Figure 10) classifies the live heap objects at every garbage
collection based on a list of selected classifiers, as explained in Section 2.4. The evolution of the

Fig. 10. The TrendViz view provides information on the heap evolution over time, i.e., which kinds of objects
accumulated the most, including a drill-down feature to inspect suspicious object groups in more detail.
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resulting memory trees is then visualized using time-series charts. Without guidance, users would
have to select this list of classifiers on their own. Since GE aims to especially help novice users,
we free them from this task by grouping the heap objects automatically by their types and their
allocation sites. When opening the view, the evolution of the first level of the memory trees, i.e.,
the evolution of the objects grouped by type, is visualized, as shown on the top of Figure 10 and in
Figure 8b. This is where GE comes into play.

Detection. We automatically detect the type of which the most objects accumulated over time. In
easyTravel, the objects that accumulated the most are objects of type Date, as shown in Figure 8b.
Objects of this type are most probably involved in a possible memory leak. If multiple types
exhibit similar strong growth (such as Location), all of them are suggested to the user for further
inspection.

Highlighting. The chart series and the table entry of the suspicious type will be highlighted
(yellow overlay) as shown in Figure 8b.

Explanation. AntTracks’s explanatory text for the strongest growing type(s) reads “Over the
selected time window, the number of <type> objects increased by <absolute growth>. This corresponds
to <relative growth>% of the total heap growth and could be an indication of a memory leak.”

Suggestion. The view provides two suggestions: Either to stay on the view to drill-down to
inspect where the suspicious objects have been allocated, or to go to the heap graph view to visually
inspect the GC roots that keep the suspicious objects alive. Following the first suggestion opens a
second time-series chart below the current one, which shows the evolution of the second level of
the memory trees. For example, selecting the Date objects for drill-down opens a second chart that
shows where the Date objects have been allocated over time, as shown on the bottom of Figure 10.
The same detection, highlighting and explanation steps as described above are then performed for
the allocation sites, and users are suggested to visualize the objects of the strongest growing type
that have been allocated at the allocation-heaviest allocation site in the heap graph view.

Figure 8b shows the memory evolution of easyTravel, grouped by type, on the AntTracks
TrendViz view. Using the Type classifier as first grouping criterion was automatically performed
by GE as we followed the suggestion on the overview. On the TrendViz view, AntTracks’s GE
automatically detected that the objects that accumulated the most in easyTravel in the selected time
window are those of type Date (highlighted in yellow) and Location. AntTracks’s GE explains that
the Date objects are the major suspects for a possible memory leak since about 30% of the overall
heap growth can be accounted to them. We then followed the suggestion to use the heap graph
view to inspect the paths to the GC roots and thus find out which objects and GC roots (indirectly)
keep the Date objects alive.

4.2.3 Heap Graph View.

Objects are kept alive because they are directly or indirectly reachable from GC roots. The heap
graph view (Figure 11) is a newly introduced analysis view in AntTracks that is used to visually
explore the references between heap objects and GC roots. This view was developed with GE
support from the start to help users in detecting and understanding suspicious paths from objects
to their GC roots, called bottom-up analysis. In the following, we will briefly explain the view’s
interaction features before we present its guided exploration operations.

A heap may contain millions of objects, each of them referencing other objects. Thus, visualizing
every object as a separate node and every reference as a separate edge is not feasible. Instead, our
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Fig. 11. The Heap graph view provides inspection features to analyze keep-alive relations between objects,
paramount information to find the culprits of a possible memory leak.

(a) When opening the graph view,
a single node is shown.

(b) Applying the Points to operation
on a node ...

(c) ... will show its referenced ob-
jects, again grouped by type.

Fig. 12. Neighborhood analysis in the graph view.
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Fig. 13. The heap graph view groups objects by their types and extracts objects into separate nodes if they
would be part of multiple nodes.

approach groups objects of the same type. When opening the heap graph view for objects of a
specific type (e.g., inspecting all String objects), only a single node will be shown (for example
87.734 strings aggregated into a single node in Figure 12a). Users can explore the neighbors of a
node by applying the Points To and Pointed From operations. These operations show the objects
referenced by the node’s objects or the objects referencing the node’s objects respectively (again
grouped into nodes based on their types). For example, applying the Points To operation (Figure 12b)
on the String node will show all char[] objects referenced by the strings, as shown in Figure 12c.
Applying these neighborhood operations multiple times could lead to a situation in which one

object is contained in two different nodes, which is illustrated on the left of Figure 13. The two
top-most nodes represent objects of type A and type B, respectively. Assume that these objects point
to objects of type C, namely the objects of type A point to the objects 1, 2 and 3, and the objects
of type B point to the objects 1, 4 and 5. Since object 1 would be present in two different nodes,
we extract it into a separate node, as shown on the right of Figure 13. Thus, after each operation
that added nodes to the graph, we apply this technique on the whole graph to ensure that no heap
object is contained in more than one graph node.
The view also supports operations that do not only involve the direct neighbors, but also

operations to inspect paths. One of these operations is the Paths to GC Roots operation, which
shows every path to GC roots starting from a selected node. Such a path represents a chain of
objects that keep each other alive, starting at the object pointed by the GC root. While certain
kinds of GC path inspection are also possible in other memory tools, nearly all these tools do not
visualize these paths by graphical means but only in tree views. This has certain drawbacks. First,
unwinding long paths in a tree view can be tedious. Second, it easily becomes confusing if multiple
paths are shown. Third, tree views cannot display circular reference patters. And lastly, most tools
only support the inspection of GC root paths for a single object, not for object groups.

Since it can be rather complex to apply this view’s features correctly and to interpret the resulting
graph, AntTracks’s guided exploration supports the user in multiple phases:

Detection #1. When the graph view is initially opened, a single node is shown, representing the
heap objects for which we want to explore the paths to the GC roots.

Highlighting #1. This node is animated to draw attention to the fact that nodes are clickable.

Explanation #1. Since the user may have never investigated a memory problem before, AntTracks
explains that the highlighted objects are kept alive because they are (indirectly) reachable from
some GC roots that have yet to be explored.

Suggestion #1. To find out which GC roots keep the objects alive, we suggest to perform the Paths
to Most Interesting GC Roots operation, an operation similar to the Path to GC Roots operations
explained earlier. To create the paths to all roots, the Pointed From operation is automatically
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applied multiple times, each time on the graph nodes that have been created in the previous step,
until every path reaches a GC root. The Paths to Most Interesting GC Roots, instead of applying the
Pointed From operation to every newly created node, applies this operation only to those nodes
that reach at least 5% of the objects of the clicked node. For example, in Figure 8c, the first Pointed
From operation is applied to the Date node, which creates nodes for Location, PolicySubject,
TypedValue and so on. While the Path to GC Roots algorithm would continue with all these nodes,
the Paths to Most Interesting GC Roots algorithm only continues with the Location node. This is
repeated until the graph cannot be expanded anymore, which results in the state shown in Figure 8c.

Detection #2. Once the most important paths to the GC roots are shown, we automatically detect
the path that reaches the most objects of the selected node, i.e., the path on which most objects
may be kept alive.

Highlighting #2. The detected path is highlighted in red, and the thickness of the edges is adjusted
according to the number of reachable objects, as shown in Figure 8c.

Explanation #2. In the example from Figure 8c, we explain that 135, 026 Date objects are reachable
from the leftmost path, while only 1, 061 are reachable from the second-leftmost path. Consequently,
we point out to the user that it is much more important to inspect the leftmost path than any
other path. Once the most suspicious path is highlighted and its importance is explained, it is up
to the user to try to “cut” the path somewhere. This cut must happen on the source code level by
setting references that keep objects alive to null, or by removing objects from their containing
data structures.

Suggestion #2. We currently suggest the user to start the source code inspection at the GC root
and to traverse the references according to the types shown in the heap graph view. In future work,
we will improve this suggestion step, for example by taking into account data structure boundaries
or by including static source code analysis.

To inspect the root cause of easyTravel’s memory leak, we followed the suggestion to apply the
Paths to Most Interesting GC Roots operation to find those GC roots that keep most of the Date
objects alive. The result of this operation, including GE’s highlighting, can be seen in Figure 8c.
AntTracks’s guided exploration explains that many Date objects are alive because they are reachable
from objects along the path highlighted in red. The current GE implementation in AntTracks
verbalizes the problem in the following way: 135, 026 Dates are kept alive by 135, 026 Locations.
These Locations are kept alive by 1, 071 ArrayLists. These ArrayLists are kept alive by a single
ConcurrentHashMap. This ConcurrentHashMap is kept alive by a single AtomicReference. Finally,
this AtomicRefernce is kept alive because it is stored in a static field called locationCache in the
class JourneyService. To reduce the number of Date objects, you have to cut this path somewhere.
You can achieve this by setting references to null, or by removing objects from their containing data
structures. Also check why the Date objects are added in the first place. Are they contained in the
mentioned data structures on purpose?

With this information, the user should be able to locate the reported objects in the source code. In
this example, we looked up the variable name locationCache and checked the variable’s usage. As
the name suggests, the map serves as a cache, but its implementation was broken. There is a single
line in the source code where new ArrayList<Location> objects are added if no matching key
is already found in the cache. However, the class used as key in the ConcurrentHashMap neither
implemented hashCode nor equals. Thus, every request (even for an already existing key) resulted
in a cache miss and ultimately led to the problem that too many Location objects and Date objects
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were created and kept alive. Implementing the two missing methods immediately resolved the
problem.

5 GUIDED EXPLORATION OF MEMORY CHURN
To provide support for memory churn analysis, AntTracks encompasses a short-living objects
view [90] that enables users to inspect those objects that are allocated in large quantities and die
shortly afterwards. GE should help users to detect time windows that exhibit suspicious memory
churn behavior as well as to guide them in finding those source code locations that should be
inspected to reduce the churn.

5.1 Mapping of Memory Churn Analysis Process Steps to Views
The overall goal of memory churn analysis is to reduce the number of allocations happening in
memory churn hotspots. Figure 14 shows a simplified model of such a memory churn analysis
process. The first step is to detect a time window that covers a memory churn hotspot, i.e., a time
window with strongly fluctuating memory utilization. The user then has to find out which types of
objects are responsible for the churn and where these objects have been allocated. These locations
can then be inspected in the source code to fix the problem. In AntTracks, these tasks are performed
on two different views:
(1) The Details view plots a detailed evolution of the memory footprint, where certain patterns

indicate churn.
(2) The Short-living objects view drills down into suspicious object groups to extract their types

and allocation sites.
Both mentioned views already existed in AntTracks and have been extended with GE support as

part of this work.

Overview

Load 
trace file

Details view

Inspect memory
evolution

Short-living objects view

Indentify object types with
strongest contribution 

to memory churn

Time window with strongly
fluctuating memory utilization?

Yes

Short-living objects view

Indentify allocation
sites with strongest
contribution to churn

selected 
strongest
churning 
type(s)  loaded

selected
window

IDE

Inspect and fix
source code

finished
analysis

Fig. 14. Simplified task model of the typical steps performed during memory churn analysis, mapped to their
corresponding AntTracks views.

5.2 Guided Exploration Support Operations for Memory Churn Analysis
In this section, we show how GE is now supported in the two views identified in Section 5.1. We
explain the views’ general features and their newly supported GE support operations Detection,
Highlighting, Explanation, and Suggestion.

To showcase how GE in AntTracks now supports users in analyzing and fixing memory churn,
we present how the newly introduced guidance features have been used to inspect a benchmark of
the Renaissance benchmark suite [61]. This suite is composed of modern, real-world, concurrent,
and object-oriented workloads. Since this benchmark suite is rather new, it has not yet been the
subject of a detailed memory study [42]. Thus, it is perfectly suited to test whether AntTracks’s
GE is able to guide users to the root cause of memory problems in applications even unknown
to the inspector. We downloaded the benchmark suite in version 0.9, created a trace file of every
benchmark and loaded these trace files into AntTracks and inspected the memory churn time
windows that were automatically detected by GE. One benchmark that attracted our attention was
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finagle-http. According to the benchmark’s documentation, it sends many small Finagle HTTP
requests to a Finagle HTTP server and awaits response. All automatically detected and highlighted
problem patterns in this application are shown in Figure 15 and will be explained in detail in the
following.

5.2.1 Details View.
The details view (Figure 16) plots the memory consumption GC-wise, i.e., the view’s plots contain
one data point at the beginning of a garbage collection (high memory consumption) and one at the
end (low memory consumption). Thus, every garbage collection appears as a spike. When users
investigate this view without guidance, they have to know that their task is to detect a time window

(a) Automatically detected memory churn hotspot in the finagle-http benchmark.

(b) The guidance on the short-living objects reports that nearly all died objects did so without surviving a
single garbage collection.

(c) Inspecting the types of the frequently dying objects reveals four types (that are automatically detected)
that seem suspicious.

(d) Inspecting the allocation sites of these frequently dying objects leads to the source code locations that
have to be checked.

Fig. 15. Memory churn analysis in AntTracks.
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that contains high and frequent spikes. Yet, observing and interviewing memory monitoring
tool users revealed that especially novices are often not aware of other memory problems beside
memory leaks. They often lacked background knowledge to recognize high memory churn patterns
as suspicious and worthy of inspection, a reason why we try to ease memory churn detection and
analysis using guided exploration through the following support operations.

Detection. We apply the automatic memory churn time window detection algorithm byWeninger
et al. [89] to detect memory churn hotspots.

Highlighting. Detected memory churn hotspots are highlighted with a yellow overlay (see Fig-
ure 15a), similar to memory leak time windows, following the HCI principle consistency [6].

Explanation. We explain the term memory churn, since most novice users may not be familiar
with it: AntTracks detected a time window where your application throws away over <garbage> MB
per second, which is called high memory churn. This occurs when many short-living objects are being
allocated in a short time span, leading to frequent garbage collections. Please note that too many GCs
can slow down your application even if the GCs themselves are very quick.

Suggestion. Our suggestion to the user is to use the short-living objects view to find out which
objects cause the memory churn and where these objects have been allocated.

The mentioned memory churn hotspot detection algorithm is automatically run by AntTracks’s
GE every time a trace file is loaded. If such a hotspot is detected, as it was the case for the finagle-http
benchmark, AntTracks suggests the user to switch to the details view to visualize it. Figure 15a
shows the automatically detected memory churn hotspot in the finagle-http benchmark, for which
AntTracks explains that about 500 MB are allocated and freed every second within the highlighted

Fig. 16. The Details view provides more detailed information about the memory behavior, enabling the
detection of spike patterns that hint at memory churn.
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time window. Based on this, it suggests to explore the objects that make up this garbage in more
detail on the short-living objects view.

5.2.2 Short-living Objects View.
The short-living objects view (Figure 17) calculates the age of each object that died within a selected
time window. It uses this information to guide users to those objects that die shortly after their
allocation, which are the major reason for memory churn. We define the age of a heap object as the
number of garbage collections it survived. Even though more detailed death time algorithms exist,
AntTracks uses this simple age definition as it can be reconstructed during trace parsing without
additional overhead [90]. For example, the Merlin algorithm [25] used by Elephant Tracks [68, 69]
can calculate more exact object death times, yet it causes a several 100-fold increase in the analyzed
application’s run time [101].
The short-living objects view in AntTracks introduces a new classifier: the Age classifier. As

shown in Figure 15b, applied on a died object, the age classifier returns the string “<x> GCs survived”
as its classification. Like most views in AntTracks, the short-living objects view uses a tree table
view to display the objects that were freed by the garbage collector. By default, these died objects
are grouped first by age, then by type, and then by allocation site. They are sorted based on the
number of objects that have been collected by the GC in the selected time window.

To make it easier for novices to learn and interpret this view, GE automatically detects suspicious
objects and presents them to the user in multiple steps.

Detection #1. As the first classifier applied on the died objects is theAge classifier, we automatically
detect how many objects died without surviving a single garbage collection.

Highlighting #1. Figure 15b shows how we highlight objects in the tree table view by assigning a
special background color to the respective rows.

Fig. 17. The Short-living objects view helps the user to drill-down into object groups that contributed the most
to the memory churn.
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Explanation #1. A text explains that allocating large numbers of objects only to discard them
shortly afterwards greatly increases the GC frequency which impacts the performance, followed
by the info that x% of the objects that died in the selected time window did not even survive a single
garbage collection. The text also explains that especially objects that do not even survive a single
garbage collection are the main reason for memory churn and that they should be investigated.

Suggestion #1. As a next step, we suggest the user to expand the 0 GCs survived row to check the
types of the objects that died without surviving a single garbage collection.

Detection #2. GE detects those types that caused the most garbage within the selected time
window. We empirically tested this view on various applications and determined that those types
that account for at least 10% of the garbage should be highlighted. If no type accounts for at least
10% of the garbage, the type of which the most objects died is selected.

Highlighting #2. Figure 15c shows an example where four types are highlighted since each of
them makes up about 25% of the overall garbage.

Explanation #2. Following text informs the users about suspicious types: <x> types have been
detected as the major suspects for memory churn: <list of types>. They account for <y>% of all objects
that died without surviving a single garbage collection.

Suggestion #2. For each suspicious type, GE suggests to inspect its allocation sites by expanding
the type’s row.

Detection #3. Among all allocation sites, the one at which the most objects were allocated
is detected. According to our experience, most memory churn hotspots are caused by a single
allocation site.

Highlighting #3. Again, the respective tree row is highlighted, as shown in Figure 15d.

Explanation #3. AntTracks explains that an allocation site is the location in the code at which
an object has been created, and that allocation sites where many short-living objects are created
should be inspected in the source code. We further provide hints on what typical root causes
of memory churn might look like. For example, allocations inside heavily-executed loops are
dangerous. Another typical mistake is the careless adding and removing of boxed primitives to data
structures, e.g., ArrayList<Integer>. Every time a primitive is added to such a data structure it is
wrapped into a heap object, which can cause unnecessary memory overhead. One last example
is the careless use of streams. Typical mistakes are (1) to perform multiple map operations that
unnecessarily create many short-living intermediate objects, or (2) to use map when working with
primitives instead of using the respective memory-efficient mapping operation such as mapToInt, or
(3) to use filter operations too late in the chain of operations, leading to unnecessary operations
and allocations to be performed.

Suggestion #3. We suggest to review the source code with regard to whether the executed
allocations are really necessary. To reduce the number of allocations, existing objects could be
reused [29, 47], for example by implementing a caching strategy and/or by using design patterns
such as the prototype pattern or the flyweight pattern [20]. Future work encompasses to statically
inspect the suspicious allocation site to derive context information about the allocations and to
give more precise suggestions to the user.

When investigating the finagle-http benchmark, the first thing that is highlighted on this view is
that over 99.9% of the objects that died in the selected time window (10, 012, 077 out of 10, 019, 784)
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1 val response: Future[http.Response] = client(request)
2 for (i <- 0 until NUM_REQUESTS) {
3 Await.result(response.onSuccess { rep: http.Response =>
4 totalLength += rep.content.length
5 })
6 }

Listing 1. Problematic part of FinagleHttp.runIteration().

1 val response: Future[http.Response] = client(request)
2 val h = { rep: http.Response => totalLength += rep.content.length }
3 for (i <- 0 until NUM_REQUESTS) Await.result(response.onSuccess(h))

Listing 2. Fixed version of FinagleHttp.runIteration().

did not even survive a single garbage collection, as shown on Figure 15b. Following the suggestion
to inspect the types of the died objects (shown in Figure 15c) reveals that most of the died objects
are divided almost equally among four types. It may be worth to mention that finagle-http is a
Scala application, which typically produces longer type names than Java. For each of the four
types, GE suggests to expand the respective row and to inspect the allocation sites of the different
types. In this case, all objects of a given type that died in the selected time window were allocated
at a single allocation site. The allocation sites of the first three types are within library methods
which we cannot modify. Yet, the fourth type’s allocation site is located in the FinagleHttp class,
the benchmark’s main class (see Figure 15d). Since Scala type names and allocation sites can be
quite hard to read, we integrated rudimentary support into AntTracks’s GE to translate them. For
example, in the explanation text it translates FinagleHttp$$anonfun$runIteration$1$$... to
anonymous Scala function objects that have been allocated in method runIteration of the class
FinagleHttp.
Since such a rapid allocation and collection of anonymous function objects is unlikely to be

intentional, we looked up the method’s source code. Listing 1 shows the problematic part. In the
loop, a large number of anonymous function objects are created that wait for an HTTP request to
succeed before incrementing the counter totalLength. Listing 2 shows our fix for this problem.
Only a single response handler is created which is reused for every HTTP request. This fix reduced
the overall amount of allocated temporary objects by about 25% and sped up the application by
about 5%.

6 PRELIMINARY USER FEEDBACK
Even though a detailed user study is still missing (but planned as future work, see Section 8), we
wanted to gather preliminary user feedback to get a general idea of how AntTracks’s new GE
features may help novice users. To this end, we asked three PhD students and two master students
that work as assistants at our institute1 to use AntTracks and its new guidance features. All of them
have a background in computer science and software engineering, and the participants reported
experience in software development ranging from four to eight years. None of them had used
AntTracks before and all of them stated that they had no background in memory analysis (i.e.,
they classified themselves as novices with regard to memory analysis). In separate sessions, each
participant was given a memory leak and a memory churn analysis task, both of which were taken
from a user study on the usability of memory monitoring tools [91]. We asked the participant
to ‘think aloud’ [27, 31, 55], i.e., to describe what they are doing, to comment on any of their
1None of them is involved in the development of AntTracks or this research.
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concerns, and to say whatever comes to their mind while solving the given tasks. This way, we
were able to collect a number of interesting observations and think-aloud statements, which we used
in combination with feedback collected during a short final interview to initially assess AntTracks’s
GE system.

6.1 Study System
We selected the web application JPetStore 6 [52] as our study system. JPetStore has been widely
used in research projects [17, 32, 35, 36, 83]. It models a minimalistic web shop for pets and uses
a clearly structured class hierarchy. We chose JPetStore since its straightforward structure can
be expressed well in a simple UML class diagram [7]. This UML diagram was handed out at the
beginning of each session, which made it easy for the participants to comprehend the system’s
structure without being familiar with its source code. This helped to mitigate the risk of participants
not finishing the study tasks [92]. To prepare the system for the study, we modified the JPetStore
source code to contain two memory anomalies. We seeded the system with a memory leak by
keeping shop item objects alive after their web page has been requested and a memory churn
hotspot by using a Java stream inefficiently to process database responses.

We created AntTracks trace files before the user study for both the memory leak and the memory
churn problem. In particular, we simulated heavy load by sending numerous requests to the different
web pages of the application.

6.2 Tasks
The participants were given the trace files and had to complete the following five tasks. On each
view, they were allowed to use AntTracks’s GE features to receive guidance by the tool:

• Memory leak detection, i.e., they had to recognize and correctly classify a suspicious memory
growth time window as such.

• Trend analysis, i.e., the participants had to find out which kinds of objects accumulated the
most over this window.

• Graph-based GC root analysis, i.e., on the graph view, the participants had to find out which
GC roots cause the memory leak. They were then shown the source code to try to fix the
problem.

• Memory churn detection, i.e., after (hopefully) fixing the memory leak, the participants had to
recognize and correctly classify a memory churn hotspot (i.e., a frequent spike pattern in the
memory chart).

• Short-living objects analysis, i.e., they had to collect information (such as object types and
allocation sites) about the churning objects. They were then again asked to locate and fix the
memory problem in the source code based on their findings.

6.3 Feedback
All users were able to find the problematic source code locations relevant to the memory problems
and actively expressed that they liked the guidance system (“The light bulbs were great if you
got lost or did not know what to do”). They stated that the analysis flow and the hints during the
memory leak analysis (cf. Section 4) as well as the memory churn analysis (cf. Section 5) are well
chosen (“The number and order of steps seemed natural to me”). All users agreed that the amount of
text shown in the individual hints is reasonable and not overwhelming. Despite their length, the
explanations of common root causes for an observed problem and how to fix them (e.g., a list of
possible root causes for high memory churn) have been praised as being very helpful to novices
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(“Experienced or power users may not need them, but they were great help for me as a beginner”). One
user also positively highlighted the use of formatting in the information text.

Nevertheless, some participants also reported that, even though the guidance helped them to find
the problematic source code locations, they struggled to fix the problem (“I know that the problem is
due to a lot of Strings and Products being allocated here, but I cannot find out how to fix it; I think
it has something to do with this stream”). This suggests that future work should explore how we can
further support users after their final analysis step in the monitoring tool, for example by adding
guidance features to the IDE.

One improvement we already implemented based on this preliminary feedback concerns the way
how we present available hints. In our initial version, each view had a single light bulb in its top-left
corner that stored all the hints for this view. If new hints became available, e.g., after performing a
certain action, they would be added to that light bulb’s list of hints. The users expressed that they
would rather have a separate light bulb for every hint that is placed next to the UI element it refers
to. This makes it more clear when a new hint becomes available, as a new light bulb appears.
As a final question, we asked the users whether they think that they would have been able to

use AntTracks to find the root causes of the problems without guidance. All of them said that they
think they would have eventually succeeded using a trial-and-error approach. However, all of them
also stated that they are certain that it would have taken them far more time to complete the tasks.

7 GUIDED EXPLORATION IN ANOTHER DOMAIN: THREAD LOCK CONTENTION
MONITORING

While the main focus of this work was to show how GE can be integrated into an interactive
memory monitoring tool, we are confident that the general GE method presented in Section 3 can
also be useful for monitoring tools of other domains. While more work and research still has to be
performed in this direction, we initially asked authors2 of an interactive thread lock contention
monitoring tool [26, 72] on their opinion whether they think if GE could also be integrated into
their tool.

In their positive response, they outlined how they would proceed to integrate guided exploration.
They explained the typical analysis process for lock contention, all its involved steps and outlined
how these steps map to views in their tool. Even though GE has not yet been integrated into their
tool, we will outline their detailed response on how they could use GE to guide users on their
search for thread locking problems in their applications.

7.1 Mapping of Thread Lock Contention Analysis Process Steps to Views
According to the tool authors, users who use their tool for the first time are mostly interested in
(1) which shared resource (monitor) is blocking threads the most, (2) which method spends the
most time waiting for the resource and (3) which method holds the resource the most and thus
causes the most waiting time. This well-defined default analysis flow is also visualized in Figure 18.
The analysis steps for all these tasks happen on the same view of their tool, its drill-down view.

Overview

Load 
trace file

Drill-down view

Find most-blocking
resource (monitor)

Drill-down view

Identify method with
highest waiting time

Drill-down view

Indentify method that
causes waiting time

longest-
waiting
method
selected  loaded

resource
selected

IDE

Inspect and fix
source code

finished
analysis

Fig. 18. Simplified task model of the typical steps performed during thread lock contention analysis, mapped
to views in the monitoring tool.

2None of them is involved in the development of AntTracks or this research.
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Fig. 19. The drill-down view in this thread lock contention monitoring tool could also be extended with guided
exploration features (slightly modified figure taken with permission from [74] - Figure 4.4).

7.2 Guided Exploration Support Operations for Thread Lock Contention Analysis
The tool authors replied that they think that users could be guided well through the mentioned
analysis steps and their tool’s drill-down view (Figure 19) using on the four GE support operations
detection, highlighting, explanation and suggestion. They also mentioned that they think that a
“lightbulb-based” info mechanism to inform users about possible guidances, similar to the one used
in AntTracks, could be easily integrated. In the following, we report their ideas on how to integrate
GE’s guidance operations into their tool.

Detection #1. Once a trace file (containing information about lock contentions that happened
in the monitored application) has been loaded, the user can select criteria based on which the
drill-down view groups the data. By default, the data is automatically grouped to best support the
default task given in Figure 18. In this grouping, the first level of the tree splits all lock contentions
that happened based on the resources that caused them. Following our GE method, the authors
would improve their tool to automatically detect the resource that caused the most waiting time.

Highlighting #1. Since the majority of their UI is also structured in a table view (see Figure 19),
highlighting could work in a similar way to how it is performed in AntTracks, i.e., by using colored
overlays.
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Explanation #1. They would explain to the user that lock contention happens when a thread T2
wants to lock a resource R, but that resource is already locked by another thread T1. T2 thus has
to wait until R is released by T1, an undesired behavior in multi-threaded applications. Their tool
would continue to explain that it just detected the resource that caused the most waiting time, and
that the locks involving this resource should be inspected in more detail.

Suggestion #1. They would inform the user that they should expand the respective tree row to
inspect where the most threads are waiting for the shared resource.

Detection #2. The second tree level groups all lock contentions involving a given shared resource
by the methods in which threads had to wait for the resource. The tool could automatically detect
the method where threads hat to wait the most.

Highlighting #2. Again, the respective tree view row could be highlighted with an overlay.

Explanation #2. The tool authors would first introduce certain terminology such as contending
method or contending stack trace. Following, they would explain that the highlighted row shows
the method that had to wait the most for the most-blocking shared resource.

Suggestion #2. Since we just found the method that had to wait the most, the last vital information
is to find out where the lock was held the most during this waiting time. Thus, the tool would
suggest to step one level deeper into the tree to gather this information.

Detection #3. On the final tree level, the tool would automatically search for the method that
caused the most waiting time by holding the respective shared resource while another thread
wanted to obtain it.

Highlighting #3. Again, the respective tree view row could be highlighted with an overlay.

Explanation #3. After the final piece of information was collected, the explanation would sum-
marize which object caused the most waiting time, where threads were waiting the most for this
object, and where the object was mostly held while others were waiting.

Suggestion #3. To investigate the problem in the source code, the tool would suggest to look
up both mentioned methods. Most locks in Java are caused by requests to shared resources in
synchronized blocks in the form of synchronized(sharedResource) {...} or by operations
performed by classes of the java.util.concurrent package. It is the developer’s task to ensure
that these locked regions span as few operations as possible, and that locking is only performed
where needed.

Even though further evaluation is needed, this detailed description by the lock contention
monitoring tool authors fosters our belief that the GE method can also be useful to monitoring tool
developers of various monitoring domains.

8 CURRENT LIMITATIONS AND FUTUREWORK
In this section, we discuss current limitations of the general GE approach, GE in the memory
monitoring tool AntTracks, and how we plan to tackle these limitations in future work.

8.1 Guided Exploration in AntTracks
The main focus of this work was to explore how novice users could be better guided in interactive
memory monitoring tools such as AntTracks. While the reactions during a preliminary user
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feedback (see Section 6) were promisingly positive, our approach still has limitations that should
be investigated in the future.

User Study. Based on the preliminary feedback we collected, we strongly believe that GE in
AntTracks makes it easier to use and learn the tool, especially for novice users without expertise
in memory monitoring. We presented user scenarios to demonstrate the usefulness of GE and to
showcase how the guidance supports users when inspecting applications. Nevertheless, a more
thorough evaluation is still missing. We thus plan to conduct a user study to compare the perfor-
mance of participants who use AntTracks’s GE support with the performance of those who try to
resolve memory problems without guidance. It would also be interesting to check whether GE is
helpful to both novice users as well as advanced users, or if advanced users prefer to use the tool
without guidance.

Guided Exploration Integration in IDEs. Currently, there is a clear separation between the guided
analyses in AntTracks and unguided source code inspection in the IDE. For example, after users
were guided to a suspicious allocation site in AntTracks, they still have to fix the source code in
their IDE without further guidance. Developing an IDE plugin [3, 11] and using hybrid static and
dynamic analysis [15] would allow us to highlight suspicious code segments in the IDE, continuing
GE on the source code level.

Heap Graph Visualization. In Section 4, we presented AntTracks’s new heap graph view to inspect
a heap state in a visual way. This feature is still under development and evolves constantly. In
the future, we plan to report in more detail on this new visualization technique, how it compares
to other techniques for heap visualization [59, 66, 95–98], and how its guidance can be further
extended.

8.2 Guided Exploration in General
In general, our GE method presented in Section 3 is not restricted to the domain of memory
monitoring. Yet, while its core idea could also be useful to monitoring tools of other domains, future
work still has to be performed to evaluate the approach’s general applicability across domains.

Generalization. To mitigate the generalizability problem of our approach, we asked other mon-
itoring tool developers for their opinion regarding the feasibility of implementing GE in their
tool and if they think that their users would profit from it, as shown in Section 7. Despite their
positive feedback and a detailed explanation on how the would integrate GE into their tool, more
monitoring tools from different domains should be inspected for possible GE support in the future.
Furthermore, the GE process outlined in Section 3 currently serves more as an overview of the

four guidance operations (detection, highlighting, explanation and suggestion). Yet, we did not
discuss in detail how to implement them, for example based on certain characteristics themonitoring
tool exhibits. Rabiser et el. [62, 63] already explored various kinds of characteristics based on which
different monitoring tools could be classified and compared, even across different domains. We think
that it may be possible to link certain characteristics of a tool to suggested ways of how to implement
the different guidance operations, for example different ways of problem detection or highlighting.
Such relations between tool characteristics and possible guidance operation implementations could
be explored and discussed in more detail in the future.

Guided Exploration Tool Integration. In this work, we presented how GE has been integrated
into AntTracks, using clickable lightbulb icons near UI elements for which guidances exist. Yet,
we are certain that there are other possibilities on how to visualize guidances. To explore these
possibilities, for example, one could organize a workshop where the participants should inspect
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existing monitoring tools and discuss commonalities across them. Separated into groups, they could
work out GE prototypes, i.e., how they would integrate guidance into these tools, and comment on
each others ideas. These discussions could lead to a more detailed description and understanding
of the GE approach in the future, as well as to better ways on how to visually support it.

Rule-based Guidance Definition. AntTracks uses a consistent way to display explanations and
suggestions throughout its various views. Unfortunately, the code to detect suspicious information
as well as to highlight the respective UI region is currently hard-coded within every view.

In the future, instead of modifying the underlying source code, we would like to be able to define
rules for guided exploration externally using a domain specific language that allows definitions
such as “If pattern X is detected: highlight UI element Y, show explanation text Z, suggest steps A and
B”. On the one hand, this poses various challenges such as how to access and abstract the data used
by the view or how to specify (customized) UI element highlighting. On the other hand, it would
make it much easier to integrate guided exploration into other tools besides AntTracks.

9 CONCLUSIONS
In this work, we presented guided exploration, a method that can be integrated into interactive
monitoring tools in order to improve their learnability and usability. The goal of guided exploration
is to support novice users, i.e., users who may lack the experience to recognize and analyze program
behavior anomalies on their own. Guided exploration makes a tool easier to use by guiding users
through the analysis process and helping them to explore the collected data until the root cause of
a problem is found.
In general, guided exploration is an iteration of four support operations performed by a tool.

According to GE, a tool should automatically (1) detect the most interesting piece of information in
the current view, (2) highlight the UI elements where this information can be found, (3) explain the
required background knowledge and the rationale why the highlighted information is important,
and (4) suggest further analysis steps based on these findings.
In this work, we focused on guided exploration in interactive memory monitoring tools. We

integrated our guidance approach into the memory monitoring tool AntTracks, namely for the
processes of memory leak analysis and memory churn analysis. For both analyses, we explained
in detail how the four support operations of guided exploration have been implemented. To
demonstrate their applicability, we presented two user scenarios where two applications have been
analyzed by following the explanations and suggestions of AntTracks’s new guided exploration
system.
We hope that guided exploration can be of help to researchers and developers of interactive

(memory) monitoring tools to better structure their analysis processes, making themmore accessible
to novice users.
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