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ABSTRACT

The complexity of modern applications makes it hard to fix memory
leaks and other heap-related problems without tool support. Yet,
most state-of-the-art tools share problems that still need to be
tackled: (1) They group heap objects only based on their types,
ignoring other properties such as allocation sites or data structure
compositions. (2) Analyses strongly focus on a single point in time
and do not show heap evolution over time. (3) Results are displayed
in tables, even though more advanced visualization techniques may
ease and improve the analysis.

In this paper, we present a novel visualization approach that
addresses these shortcomings. Heap objects can be arbitrarily clas-
sified, enabling users to group objects based on their needs. Instead
of inspecting the size of those object groups at a single point in time,
our approach tracks the growth of each object group over time. This
growth is then visualized using time-series charts, making it easy
to identify suspicious object groups. A drill-down feature enables
users to investigate these object groups in more detail.

Our approach has been integrated into AntTracks, a trace-based
memory monitoring tool, to demonstrate its feasibility.
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1 INTRODUCTION

Modern programming languages such as Java use automatic garbage
collection. Heap objects that are no longer reachable from static
fields or thread-local variables (so-called GC roots) are automati-
cally reclaimed by a garbage collector (GC). Nevertheless, memory
problems can still occur even in garbage-collected languages. One
of the major types of memory problems are memory leaks [4], i.e.,
objects may remain reachable from GC roots even though they are
no longer needed. For example, if a developer forgets to remove
objects from their containing data structures, these objects cannot
be reclaimed by the GC and will accumulate over time.

State-of-the-art tools, such as VisualVM [14] or Eclipse Memory
Analyzer (MAT) [12], perform memory analysis based on a heap
snapshot, i.e., a heap dump. They group the live heap objects by
their types and display the number of objects and the number of
bytes per type in a table, i.e., in a type histogram. In addition to that,
they support comparing two heap snapshots, showing the increase
or decrease of live objects / live bytes per type in a table.

While this information may be sufficient to detect basic memory
problems, such analysis approaches have also various shortcom-
ings. First, fixing a memory leak might require more information
about the objects besides their types, for example, their allocation
sites or the data structures in which they are contained. Second,
comparing two snapshots does not reveal general trends in an ap-
plication’s memory behavior. An increase in instances of a certain
type between two given points in time does not necessarily indicate
a continuous memory growth. To detect trends, the heap has to be
compared at multiple points in time, a feature that is not supported
by the two tools mentioned. Finally, tools should make it as easy as
possible to extract the needed information. Great potential to make
data more accessible lies in the use of data visualization [5].

In the following, we present a work-in-progress approach on
how to visualize continuous memory consumption trends over
time. Users can group the heap objects by arbitrary criteria such as
their types or their allocation sites and visually inspect the heap
evolution per object group. Trends within certain object groups can
hint at memory leaks and other memory anomalies. We integrated
our approach into AntTracks, a trace-based memory monitoring
tool based on the Hotspot Java VM, initially developed by Lengauer
et al. [9] and extended by Weninger et al. [18-21].
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Our contribution encompasses:

e a technique to derive growth information of heap object
groups from memory traces.

o a highly configurable visualization approach for trend analy-
sis. It displays the growth of object groups over time (based
on various size metrics) using time-series charts.

e a drill-down feature to re-apply the same visualization ap-
proach on a specific subgroup of suspicious objects.

e a working implementation in AntTracks.

2 BACKGROUND

AntTracks consists of two parts: The AntTracks VM, a virtual ma-
chine based on the Java Hotspot VM [13], and the AntTracks An-
alyzer, a memory analysis tool. Since the concepts presented in
this paper have been integrated into AntTracks, it is essential to
understand how AntTracks works.

Trace Recording and Reconstruction. The AntTracks VM writes
information about memory events such as object allocations and
object movements executed by the GC into a trace file. It keeps
the event size to a minimum and avoids the recording of redun-
dant data [8, 9]. Later, the AntTracks Analyzer can incrementally
process such a trace file. It is able to display the overall memory
development over time and enables users to reconstruct and inspect
the heap state at every garbage collection point [2]. For every heap
object, a number of properties can be reconstructed, including its
address, its type, its allocation site, the heap objects it references,
and the heap objects it is referenced by.

Heap Object Classification. The AntTracks Analyzer uses ob-
Jject classifiers in combination with multi-level grouping [20, 21]
to enable user-driven heap analysis. An object classifier groups
heap objects into multiple object groups according to certain cri-
teria such as their types, their allocation sites, or their allocating
threads. For example, the Type classifier groups objects by their
types, e.g., java.util.LinkedList. In multi-level grouping, ob-
jects are grouped according to the classification results of multiple
classifiers. This results in a hierarchical classification tree. In gen-
eral, every node in such a tree represents an object group and the
amount of objects / bytes classified in the respective sub-tree.

For example, the classification tree in Figure 1 has been created by
applying the Type classifier, followed by the Allocation Site classifier.
Overall, the classification tree represents 120, 000 objects, 5, 000 of
them are of type Object[], and 1,000 of these arrays have been
allocated at Stack:init().

3 APPROACH

This section covers the basic concepts of our new visualization
approach. We show how to reconstruct object group growth infor-
mation from memory traces, together with a highly configurable
time-series-based visualization, and how this visualization can be
used to drill-down into specific object groups to gain further in-
sights on their growth behavior.

3.1 Gathering Object Group Information

When investigating an application with memory problems, cer-
tain parts of its execution trace will stand out. For example, if the
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Figure 1: A classification tree that first groups all objects by
their types and then by their allocation sites.
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memory consumption grew extraordinarily strong between two
points in time and does not shrink again afterwards, it indicates
that objects have been allocated within this timespan that cannot
be reclaimed by the garbage collector later, indicating some type of
memory leak. In our approach, users can select such a time window
for subsequent analysis.

After selecting the time window of interest, the user has to decide
according to which criteria the heap objects should be grouped
into object groups. The growth of each object group will later be
visualized to aid users in detecting object group growth trends.

Subsequently, the memory trace is incrementally parsed to re-
construct the heap objects within the selected time window. During
parsing, the live objects are classified at every garbage collection
point using the selected list of classifiers. The resulting classifica-
tion tree is then stored alongside a timestamp that identifies the
respective garbage collection. Every time a new entry is added to
this timeline of classification trees, a new time-series data set is
generated that is used to update the heap object group memory
growth visualization.

3.1.1 Improvements. Instead of classifying the live objects at every
garbage collection point within the selected time window, only a
subset of the garbage collections can be used for classification to
improve performance. The user can select to only classify at every
n-th garbage collection, or after at least x seconds have passed since
the last classification in the traced application. The benefit is that
the classification, which is the most performance-intensive task,
can be performed less often. In most cases, existing memory trends
will still be apparent.

Future work includes the automatic selection of interesting time
windows, thus freeing the user from this task.

3.2 Data Set Generation

To enable growth detection through visualization, the sequence of
classification trees first has to be converted into a visualizable data
set. The individual classification trees represent the application’s
heap state at different points in time. Thus, a time-series-based
visualization is the most natural choice. Since the time-series plot
is the most frequently used form of graphic design [15], it is well-
known and easy to understand. In general, time-series data takes
the following form: D = {(t1,y1), (t2,42), ... (tn, yn)} [17], ie., it
consists of data pairs where a given point in time ¢; has a certain
value y; assigned to it.

To achieve this format, the nodes on the first level of every
classification tree, i.e., the object groups formed by the first classifier,
are extracted. Next, a time series is created for every distinct node
key. For example, if the objects were first classified and grouped



using the Type classifier, every type would become a series in the
data set. Each series contains one entry (¢, y) per classification tree.
t is the timestamp assigned to the respective classification tree, and
y is the object group’s size, which can be extracted from its tree
node within the classification tree.

There are multiple size metrics [18] that users can choose from,
either in number of objects or number of bytes:

o Shallow size: The number of objects / bytes of an object group,
without taking into account any referenced objects.

o Deep size: The number of objects / bytes of an object group,
including all objects reachable from them.

e Retained size: The number of objects / bytes of an object
group, including all owned objects. In other words, it includes
all objects that could be freed by the garbage collector if the
given object group would be freed.

3.3 Visualization

Depending on the used classifier, the data set can end up containing
a large number of series. For example, if the objects have been
classified by their types, a series is created for every type, which
can easily be several thousands. Yet, most of these series are not of
interest when searching for possible memory problems. Thus, our
approach supports various techniques to select those series that
are of most interest to the user.

To decide which series should be shown, the series are sorted
according to a given strategy, and only the top N series are selected.
The following sorting strategies are currently supported:

e Start and End sorting: The series are sorted by their values
at the start or the end of the time window, respectively. This
way, the memory evolution of those series, i.e., object groups,
that take up the most heap space at the start / end of the
time window can be inspected.

e Average sorting: The series are sorted by their average
y-value. This setting can be used to inspect the growth be-
havior of those object groups that took up the most heap
space throughout the selected time window.

o Absolute growth and Relative growth sorting: The series are
sorted by their absolute or relative increase between the start
and the end of the time window, respectively. This enables
users to inspect the growth behavior of the object groups
that grew the most over the selected time window.

The user can also select if an Other series should be shown that
combines all object groups that are not visualized as separate series.
By default, the Other series is shown and the Absolute growth sorting
with an N-value of 5 is selected. An example of the visualization is
shown in Section 4.

3.4 Drill-down

As explained in Section 3.2, the initial visualization extracts the first
level of the classification trees and visualizes their object groups’
growth behavior over time. If multiple classifiers have been applied
to build the classification trees, a suspicious object group (e.g., a
group with a strong growth within the selected time window) can be
selected for drill-down in the visualization. The drill-down feature
re-applies the same visualization technique to the children of the
selected object group and displays it in a new chart.
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Figure 2: Visualizing the retained size of data structure types
over time highlights ArrayList as suspect.
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Figure 3: Drill-down showing the development of the object
count of ArrayList’s data objects.

For example, assume that the Type classifier has been used as
the first classifier, followed by the Allocation Site classifier, cre-
ating classification trees similar to the one shown in Figure 1. If
the user detects suspicious growth for objects of type Object[],
this group can be selected for drill-down. A new data set will be
created, based on the various allocation sites at which objects of
type Object[] have been created, according to the steps explained
in Section 3.2. This allocation site data set will then be visualized
below the existing chart, using the steps described in Section 3.3.

The various settings, such as the sorting strategy, can be adjusted
individually per chart. To make browsing the charts more conve-
nient, interaction features such as zooming are synchronized over
all charts.

4 EXAMPLE

In this example, we show a typical way of how to use our visualiza-
tion approach by demonstrating how to identify and inspect data
structure types with growing ownership in AntTracks.

First, we select a time window over which the application’s
memory grew considerably. In this example, the basic idea is to (1)
first inspect the retained size growth, i.e., ownership growth, of data
structure types (such as HashMaps), (2) then selecting the type with
the highest growth for drill-down, (3) followed by a visualization of
the data object growth within this data structures to find out which
data objects accumulate the most.

Our example uses one filter and two classifiers to group the
heap objects for visualization. We are using the Data Structure filter,
which only includes data structure head objects (for example lists,
maps, etc.) during classification, ignoring other objects. These data
structure head objects are then classified by their types. Visualizing
the retained size growth, i.e., the ownership growth, of these types
results in a chart similar to the one in Figure 2, which shows that



objects of type ArrayList have the strongest retained size growth.
Thus, this type is selected for drill-down.

As a second classifier we are using the Data Object classifier
which enables us to analyze the data objects stored in a data struc-
ture. Due to paper length restrictions, we group those data objects
only by their types. Typically, they would also be grouped by their
allocation sites. In Figure 3, the drill-down on the ArrayList object
group was configured to show the growth of the number of data
objects in ArrayLists per data object type.

We are now able to easily pinpoint ArrayList data structures
that contain Item objects as the major suspects for a possible mem-
ory leak. This information could now be used to investigate the
memory problem on the source code level.

5 RELATED WORK AND FUTURE WORK

State-of-the-art tools include, among others, VisualVM [14] and
Eclipse Memory Analyzer (MAT) [12], which have been discussed
in Section 1.

In their work on the taxonomy and classification of memory
analysis approaches in Java, Sor and Srirama [23] highlight the
visualization approaches by De Pauw and Sevitsky [3, 10] and by
Reiss [11]. The former extracts reference patterns (repetitive ref-
erence sequences in a heap object graph) and visualizes them. In
addition to that, such reference patterns can also be extracted for
those objects that are created between two heap snapshots (e.g.,
potentially leaking objects), which can then be visually explored.
The latter work visualizes the object ownership in a tree-like vi-
sualization using shapes, coloring, hatching, hue and saturation.
Another approach that compares heap snapshots has been devel-
oped by Jump and McKinley [6, 7]. Their tool, Cork, compares the
heap object graph structure of two heap snapshots to detect the
growth of certain reference patterns between classes.

Future work includes a more thorough evaluation and presen-
tation of our new visualization approach based on real-world sce-
narios. In addition to that, the approach can still be extended by
numerous features. For example, the analysis time windows could
be chosen automatically by the tool. Besides the current visualiza-
tion using line charts, other visualization techniques could also
be evaluated based on the same underlying data, such as small
multiples [16] or as software cities [22]. Other typical visualization
techniques that can still be further explored involve the representa-
tion of aggregated heap objects as graphs [1].

6 CONCLUSION

In this work, we presented a new approach to visualize the growth of
heap object groups over time. Trends detected in this visualization
can hint at memory problems such as memory leaks involving
certain object groups. To construct the underlying data for the
visualization, the live heap objects are split into groups based on
user-selected criteria (e.g., by their types) at multiple points in
time. The evolution of each group over time is then visualized in
a time-series chart. The visualization is highly user-configurable
based on the user’s needs, allowing users to select features such as
series sorting, series selection or size metrics. A drill-down feature
enables users to select an object group of interest, e.g., a strongly
growing group, to classify the objects within this group by another

criterion, and to re-apply the same visualization technique to this
group.
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