
Detection of Suspicious Time Windows
in Memory Monitoring

Markus Weninger
Institute for System Software

CD Laboratory MEVSS
Johannes Kepler University

Linz, Austria
markus.weninger@jku.at

Elias Gander
CD Laboratory MEVSS

Johannes Kepler University
Linz, Austria

elias.gander@jku.at

Hanspeter Mössenböck
Institute for System Software
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

Abstract
Modern memory monitoring tools do not only offer analyses
at a single point in time, but also offer features to analyze the
memory evolution over time. These features provide more
detailed insights into an application’s behavior, yet they also
make the tools more complex and harder to use.

Analyses over time are typically performed on certain time
windows within which the application behaves abnormally.
Such suspicious time windows first have to be detected by
the users, which is a non-trivial task, especially for novice
users that have no experience in memory monitoring.
In this paper, we present algorithms to automatically de-

tect suspicious time windows that exhibit (1) continuous
memory growth, (2) high GC utilization, or (3) high memory
churn. For each of these problems we also discuss its root
causes and implications.
To show the feasibility of our detection techniques, we

integrated them into AntTracks, a memory monitoring tool
developed by us. Throughout the paper, we present their
usage on various problems and real-world applications.

CCS Concepts • Software and its engineering → Soft-
ware defect analysis; Software performance; •Mathemat-
ics of computing→ Time series analysis.

Keywords Memory Monitoring, Automatic Time Window
Detection, Memory Leak Analysis, Memory Churn Analysis

ACM Reference Format:
Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2019.
Detection of Suspicious Time Windows in Memory Monitoring. In
Proceedings of the 16th ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes (MPLR ’19), October

MPLR ’19, October 21–22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR ’19), October 21–22, 2019,
Athens, Greece, https://doi.org/10.1145/3357390.3361025.

21–22, 2019, Athens, Greece. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3357390.3361025

1 Introduction
Modern programming languages such as Java use automatic
garbage collection. Heap objects that are no longer reachable
from so-called GC roots (e.g., from static fields or thread-local
variables) are automatically reclaimed by a garbage collector
(GC). Nevertheless, memory problems can still occur even
in garbage-collected languages.
A memory leak [13] occurs if objects that are no longer

needed remain reachable from GC roots due to program-
ming errors. This leads to a continuously growing memory
consumption which can cause the application to run out of
memory, crashing it in the worst case [19].
Even though modern garbage collectors execute certain

garbage-collection-related operations concurrently to the
application [8, 12, 18], many garbage collection algorithms
require stop-the-world pauses, i.e., the application is halted
while the GC is running. Such GC phases can make up a
significant portion of the application’s run time.
A high memory churn rate stems from frequent unneces-

sary creation and collection of objects, also known as ex-
cessive dynamic allocations [40–42]. This leads to increased
work for allocating these objects on the heap and an in-
creased number of garbage collections, which can have a
negative impact on an application’s performance.
Such memory anomalies manifest themselves in various

ways. They lead to different patterns in metrics such as mem-
ory consumption, GC frequency, or GC time. Inspecting and
interpreting visualizations of thesemetrics, either in a tabular
form or as time-series charts, can be hard for users, especially
if they do not have a background in memory analysis.
The aim of this work is to ease the use of memory moni-

toring tools for novice users. To do so, we free users from
the task of searching for different types of suspicious time
windows by providing algorithms that automatically detect
them. Thus, our contributions are:

1. different algorithms and heuristics to automatically
detect suspicious time windows with
a. continuous memory growth (see Section 3.2).
b. high GC utilization (see Section 3.3).

https://doi.org/10.1145/3357390.3361025
https://doi.org/10.1145/3357390.3361025

MPLR ’19, October 21–22, 2019, Athens, Greece Markus Weninger, Elias Gander, and Hanspeter Mössenböck

c. high memory churn (see Section 3.4).
including discussions on the root causes and the im-
plications of the different types of memory anomalies.

2. a working implementation of our approach in the of-
fline memory monitoring tool AntTracks Analyzer.

2 Background
AntTracks consists of two parts: The AntTracks VM [23–25],
a virtual machine based on the Java Hotspot VM [47], and
the AntTracks Analyzer [2, 51–56], a trace-based memory
analysis tool. Since the techniques presented in this paper
have been integrated into AntTracks, this section discusses
memory traces and how AntTracks uses them.

2.1 Memory Snapshots versus Memory Traces
Many state-of-the-art tools use memory snapshots, i.e., heap
dumps, for memory analysis, whereas AntTracks uses mem-
ory traces.While heap dumpsmay be sufficient for heap state
analysis at a single point in time, it has been shown that they
are not well suited for memory analysis over time [51]. This
has various reasons. One of them is that heap dumps do
not preserve object identities, i.e., one cannot distinguish
whether two objects in two different heap dumps are the
same or not.
Trace-based approaches try to circumvent the shortcom-

ings of snapshots by continuously recording information
while an application runs. Beside typicalmemory traces [5, 15,
16, 34, 35, 58, 61] that encodememory- andGC-related events
such object allocations, object deaths, or object field accesses,
there also also other trace types such as execution traces that
rather focus on call hierarchy information [6, 17, 46].

2.2 Trace Recording by the AntTracks VM
The AntTracks VM records memory events such as object
allocations and object movements during GC by writing
them into trace files [24]. Trace recording introduces a low
run-time overhead of about 5%. Information about GC roots
and the references between objects can also be added to the
trace [23, 53]. To reduce the trace size, the AntTracks VM
does not record any redundant data and applies compres-
sion [25].

2.3 AntTracks Analyzer
2.3.1 Reconstruction
The AntTracks Analyzer is able to parse a trace file by in-
crementally processing its events, which enables it to recon-
struct the heap state for every garbage collection point [2].
A heap state is the set of heap objects that were live in the
monitored application at a certain point in time. For every
heap object, a number of properties can be reconstructed,
including its address, its type, its allocation site, the heap
objects it references, and the heap objects it is referenced by.

2.3.2 Analysis
The AntTracks Analyzer’s core mechanism is object clas-
sification and multi-level grouping [54, 56] in which heap
objects can be grouped according to certain criteria such as
type, allocation site, allocating thread, and so on.

Various techniques to analyze the memory evolution over
time have been presented in the past. For example, the ap-
proach described in [51, 52] detects the common problem of
data structure growth. Handled incorrectly, data structures
are often the root cause of memory leaks. In [55], we present
an analysis technique that visualizes how the heap compo-
sition (i.e., the heap classified by a given object classifier
combination) develops over time. All these approaches rely
on a previously selected time window. By detecting suitable
time windows automatically, such analysis techniques may
be easier to apply for novice users.

3 Approach
This section explains howwe support users to detect memory
anomalies in an application’s memory behavior. We present
three different time window types, discuss their root causes
and implications, and show heuristics and algorithms to
automatically detect them. For each time window type, we
also show an example on howAntTracks detects a suspicious
time window in a real-world application and discuss how
this window covers the problem’s root cause.

3.1 Desired Window Characteristics
An ideal time window would outline just that portion of
the program that should be investigated to find and remove
the root cause of the underlying problem. Thus, we define
characteristics that a detected time windows should exhibit.

Size Constraints First, detected time windows are desired
to be short since one or more analysis techniques will be
applied on the selected time window. The run time of most of
these techniques depends on the number of garbage collec-
tions covered by the window. Despite this, windows should
also cover a minimum number of garbage collections to pre-
vent them from being only short, less important outliers.

Relevance The detected time windows should cover allo-
cations and objects related to the underlying problem and
as little noise, i.e., allocation and objects not related to the
problem, as possible. If a window contained noise, e.g., allo-
cations that are not relevant to a memory leak, the noise will
also distort the results of analyses applied on the window.
This makes it harder to reveal the root cause of the problem.

For example, a memory leak might manifest itself only
after a certain point in time. Before that point, fluctuations
in the memory can happen due to various reasons such as
initialization procedures. These fluctuations are irrelevant
for memory leak analysis, i.e., noise, and should be excluded
from the detected time window.

Detection of Suspicious Time Windows in Memory Monitoring MPLR ’19, October 21–22, 2019, Athens, Greece

Maximum Intensity Problems such as high garbage col-
lection overhead generally do not persist throughout the
whole application, but rather occur as hotspots. A detection al-
gorithm should find the window that covers the most intense
hotspot, e.g., the window with the highest overall garbage
collection overhead.

Severity Since the aim of this work is to support novice
users by automatically detecting suspicious time windows,
every detection algorithm has to define thresholds to decide
whether a detected time window is indeed suspicious. Win-
dows that are not considered to be suspicious should not be
presented to the users. For example, a detected garbage col-
lection overhead hotspot may only be considered suspicious
if the garbage collection overhead over the window exceeds
a certain threshold, e.g., 10%.

3.2 Memory Leak Window
If a Java application contains a memory leak, certain objects
are unintentionally kept alive, causing them to accumulate
over time even though they are no longer needed. Conse-
quently, the occupied heap space grows until the application
runs out of memory, causing it to crash.
Unfortunately, such a growth trend may be difficult to

recognize in a long running application’s memory evolution,
especially for novice users. Section 3.2.1 discusses the reasons
for this in more detail. Thus, we present two algorithms to
automatically detect time windows with suspicious growth
trends, freeing the user from this task.

3.2.1 Trace Preprocessing
Detecting a memory-leak-induced growth trend based on
the occupied heap memory can be difficult. First, the growth
might be slow and only significant after the application has
run for a long time. Additionally, the occupied memory fluc-
tuates due to garbage collections, which makes it harder to
see a clear trend. Finally, growth trends can be masked by
floating garbage, that is, objects that are no longer reachable
but have not been garbage collected yet. Thus, our approach
detects growth trends based on the reachable memory, that is,
the part of the heap memory that is reachable from GC roots.
The reachable memory is unaffected by garbage collections
and free from floating garbage which makes it the ideal basis
to detect memory-leak-induced growth trends.

To calculate the reachable memory of a certain heap state,
we start at the GC roots. By following all references recur-
sively, we find all live objects on the heap. Summing up their
sizes results in the amount of reachable memory, i.e., the
memory in the heap that is alive.

This reachable memory calculation happens during trace
file parsing, i.e., when the trace file is read for the first time.
Calculating the reachable memory for every reconstructed
heap state can slow down this parsing process. If perfor-
mance is of concern to the user, AntTracks allows them to

enable sampled reachable memory calculation, i.e., to cal-
culate the reachable memory only for certain heap states.
When sampling is enabled, by default the reachable memory
is calculated only for every second reconstructed heap state,
i.e., at every other garbage collection, roughly cutting the
time spent on reachable memory calculation in half. In our
experience, this sampling frequency works well with the al-
gorithms presented in Section 3.2.2. Nevertheless, users can
adjust the sampling frequency to either reduce the parsing
time or to increase the precision of the resulting reachable
memory trend.

3.2.2 Automatic Time Window Detection
In the following, we present two algorithms to detect a time
window with a growth trend in reachable memory. Both
algorithms operate on a time series of reachable memory that
was collected according to the preprocessing steps defined
in Section 3.2.1.

Linear-regression-based Algorithm
This algorithm starts with an initial window that (1) includes
the end of the application and (2) covers the last 10% of all
garbage collection points. It performs a linear regression [30]
over all reachable memory data points covered by the win-
dow and stores the slope of the linear regression line together
with the current time window.

Next, the window is expanded to cover one more data
point. Again, the algorithm performs a linear regression and
stores the slope together with the time window. It continues
in this way until the last time window, ranging from the
application’s start to the application’s end, has been handled.
Among all the stored windows, the one with the greatest
regression line slope is chosen as the resulting time window.
Finally, we also require that its regression slope is positive.

Figure 1 illustrates this algorithm. The plot shows 5 of the
regression lines that would be calculated in the course of the
algorithm. The regression line E has the greatest slope. Thus,
the algorithm would return the window ranging from 1200
ms to 1500 ms. Note that due to limited space, we did not
plot all regression lines.

Heuristic-based Algorithm
While the linear-regression-based algorithm is straightfor-
ward and easy to implement, the windows it detects do not
always fulfill the criteria we defined in Section 3.1. This
problem will be discussed in more detail in Section 3.2.3.
Considering the shortcomings of the linear-regression-

based algorithm, we introduced a second time window de-
tection algorithm. This algorithm mimics the way a human
would search for a continuous memory growth: Find the
longest time window over which the memory grows more-
or-less continuously, allowing minor drops.
From the time series of reachable memory data points,

the algorithm extracts the longest time window in which
(1) the end of the application is included and (2) every data

MPLR ’19, October 21–22, 2019, Athens, Greece Markus Weninger, Elias Gander, and Hanspeter Mössenböck

Figure 1. The linear-regression-based algorithm chooses the
time windows with the steepest regression slope (E).

point within the window fulfills the growth condition. A data
point fulfills the growth condition if its reachable memory
is greater than that of the previous one. If this is not the
case, a data point may still fulfill the growth condition if its
reachable memory (1) is greater than the reachable memory
of the window’s first data point and (2) is at least 75% of the
maximum reachable memory of all previous data points in
the window. This heuristic requires a detected window to
have an overall positive growth in reachable memory, but
tolerates smaller drops.

The detection algorithm consists of the following steps. It
starts with a window spanning only the application’s first
reachable memory data point. Next, it takes the second data
point and tests whether it fulfills the growth condition with
respect to the first point. If this is the case, the window is
expanded up to this point. Otherwise, the current window
is discarded and the algorithm starts again with a window
spanning only the second data point. The algorithm contin-
ues in this way until the application’s last data point has been
handled. Finally, to make sure that the detected time window
is long enough to be meaningful, the algorithm checks if the
time window covers at least 10% of all garbage collections.

Figure 2 illustrates this algorithm. The initial time window
starts at 0 ms and is expanded up to the first drop. Here the
reachable memory drops by 50%. Thus, the current window
is discarded and a new time window starts after the drop.
From there on, the window can be expanded up to the end
of the application because the second encountered drop is
not strong enough.

Narrowing the Time Window In many applications, the
reachable memory growth is not equally strong over the
whole detected window. In such cases it is often possible
to find a shorter subwindow with a higher growth rate. As
stated in Section 3.1, a short time window is desired since
subsequent analyses take less time to complete. Additionally,

Figure 2. The heuristic-based algorithm detects the longest
window without strong drops in the reachable memory.

if the growth over the shorter subwindow is caused by the
memory leak, the problematic objects will stand out even
more during the analysis. Consequently, the causes of the
memory leak will be easier to recognize. Nevertheless, there
is a chance that the strong growth covered by the shorter
subwindow is actually unrelated to the memory leak, which
instead manifests itself only in the slow and steady growth
over the full time window. Thus, in AntTracks we decided
to present both of these windows to the users. We leave it to
their choice whether they want to perform a quick inspection
of the strongest growth subwindow first.
When calculating a subwindow, we determine its mini-

mum and maximum size. We define the minimum size as
10% of all reachable memory data points in the long window
and the maximum size as 50% of all reachable memory data
points in the long window. In any case, the minimum size
must be at least two data points.

The algorithm takes the first data point in the longwindow
as a starting point and builds all possible windows that (1)
start at this data point, (2) end at another data point and
(3) meet the size constraints. For all these windows, it then
calculates the reachable memory growth per second and
chooses the one with the quickest growth. This time window
is remembered and the process is repeated with the next data
point as starting point. This is repeated until all data points
in the long window have been used as starting point. As a
result, the algorithm remembered one window for each data
point. Among all these windows, it again chooses the one
with the quickest growth.

3.2.3 Examples
As already mentioned, the heuristic-based algorithm has
been developed to overcome the flaws of the linear-regression-
based algorithm which does not always fulfill the desired
characteristics defined in Section 3.1. Figure 3 illustrates this
problem. While both algorithms detect the same time win-
dow in the first two examples on the top half, in the third
example the linear-regression-based algorithm includes a
presumably irrelevant spike. The linear-regression-based al-
gorithm performs even worse in the three examples on the
bottom half of Figure 3. In these examples, it includes the

Detection of Suspicious Time Windows in Memory Monitoring MPLR ’19, October 21–22, 2019, Athens, Greece

Figure 3. Six exemplarymemory evolutions and the detected
time windows (red = linear regression, blue = heuristic).

Figure 4. EasyTravel’s memory evolution and the memory
leak time window (yellow) detected by the heuristic-based
algorithm.

whole application in the detected time window instead of
just the final period of suspicious growth. Depending on the
analysis technique that should be applied on the time win-
dow, the noise included in these time windows may make it
difficult to recognize the root cause of the suspicious growth.

3.2.4 Case Study: Dynatrace EasyTravel
To show how our approach can be used in AntTracks, we
apply it on the Dynatrace easyTravel application [11]. Dyna-
trace focuses on application performance monitoring (APM)
and distributes easyTravel as their state-of-the-art demo ap-
plication. It is a multi-tier application for a travel agency,
using a Java backend. An automatic load generator can sim-
ulate accesses to the service. When easyTravel is started,
different problem patterns can be enabled and disabled, one
of which is a hidden memory leak somewhere in the backend.
Figure 4 shows the memory evolution of the application

and the time window that has been detected automatically
using the heuristic-based memory leak time window detec-
tion algorithm. After an initial peak (which is not included
in the final time window), the memory mostly grows, except
for a drop at around 150, 000ms , which is small enough to
be tolerated by the algorithm.

This time window can be inspected with different analysis
techniques. For example, the time window could be checked
for growing data structures, as done in [51]. The less noise
the window contains, the easier it becomes for users to spot
those data structures that are involved in the memory leak.

3.3 High GC Overhead Analysis
The garbage collection overhead is the ratio between the time
spent on garbage collections and the application’s overall run
time. The duration of a garbage collection partly depends on
the number of surviving objects. The more objects survive,
the more moves have to be executed by the garbage collector.
This leads to increased garbage collection times.

To reduce an application’s garbage collection overhead,
users should inspect the time window that exhibits the high-
est GC overhead. In this time window, analysis techniques
to identify those objects that survive and thus slow down
the collections could be applied. Yet, according to our ex-
perience, most novice users disregard problematic garbage
collector behavior and only focus on the memory evolution
when inspecting an application. Thus, we support them by
detecting the time window with the highest GC overhead
automatically.

3.3.1 Time Window Detection
On the other hand, windows that cover a very large num-
ber of garbage collections might take too long to analyze.
They also do not provide more insight because a shorter
window will still reveal the reasons for the high garbage
collection overhead. Thus, algorithms should only looks for
windows that cover at least 5 garbage collections and do not
cover more than 50 garbage collections. The numbers used
as smallest and largest window size have proven to work
well in most scenarios.

We assume that we know the start time and the end time
of each garbage collection in the application. To find the
window with the highest garbage collection overhead that
meets the window size constraint, our algorithm performs
the following steps: First, it selects a start timestamp for the
time window. In the first iteration, the start timestamp is the
trace’s very first timestamp, i.e., the timestamp that marks
the start of the application. It then builds all windows that (1)
start at this timestamp, (2) meet the size constraint, and (3)
end at the end of a garbage collection. Figure 5 demonstrates
the first iteration of the algorithm where windows A to E are
built from the initial timestamp. For each of these windows,
the garbage collection overhead is calculated by dividing the
time spent in garbage collections over the window by the
duration of the window. Among all windows constructed
this way, the algorithm remembers the one with the highest
garbage collection overhead. In the example in Figure 5, this
would be window C.

In the following iterations, the start timestamp moves
forward such that every end of a garbage collection serves
as start timestamp once. For every start timestamp then
again all valid windows are built and the one with the high-
est garbage collection overhead is remembered. Figure 6
shows the remembered window for each start timestamp
(windows 1○ to 5○). Among these windows, the algorithm

MPLR ’19, October 21–22, 2019, Athens, Greece Markus Weninger, Elias Gander, and Hanspeter Mössenböck

Figure 5. Windows A-E are all the valid windows that start
at the first timestamp. Window C is the one with the highest
garbage collection overhead.

finally chooses the one with the highest overhead. This final
window has the highest overhead of all possible windows
that meet the size constraint. In the example in Figure 6, this
would be window 3○.

The final window is only accepted if it has a overhead
of at least 10%. This threshold prevents us from detecting a
window with a generally low garbage collection overhead.

3.3.2 Case Study: AntTracks
We applied AntTrack’s garbage collection overhead window
detection mechanism on AntTracks itself. As shown in Fig-
ure 7, it was able to detect the time window with the highest
garbage collection overhead that meets the window size con-
straints. The time window covers the most intense part of
a garbage collection overhead hotspot. By analyzing which
objects had to be moved by the GC most often during this
window, we were able to find and fix a bottleneck involving
long[] objects that were created in AntTracks when pointer
information was read from trace files.

3.4 High Memory Churn Analysis
As we have seen before, garbage collections are slower the
more objects survive. Analogously, they are fast when many
objects die. Yet, even these fast garbage collections have to
pause the application. These stop-the-world pauses require
all application threads to halt at so-called safepoints, i.e.,
at specific instructions that block the executing thread if
necessary, before the GC can start to work.
Even though modern garbage collectors such as Shenan-

doah [12] or the Z GC [48, 49] perform certain operations
concurrently to the running application, nearly all garbage
collectors still have to use stop-the-world pauses at some
points. When many garbage collections occur over a short
time span, these pauses can lead to a significant overhead.

Figure 6. Windows 1○- 5○ are the windows with the high-
est garbage collection overhead for each start timestamp.
Window 3○ is the one with the highest overhead overall.

A typical cause for frequent garbage collections are objects
that are allocated in great numbers and turn into garbage
shortly after their allocation.
In the next section, we present an algorithm that detects

suspicious time windows based on an application’s mem-
ory churn rate. The memory churn rate is the frequency at
which the application discards memory within a certain time
window. This hints at a wasteful use of objects, i.e., an un-
necessarily high amount of short-living object allocations.
Often, algorithms can be adjusted to use fewer temporary
objects, which leads to two improvements: (1) Less time is
spent for the allocation of objects, and (2) the number of
garbage collections is reduced. A common case for the ex-
cessive use of temporary objects in Java is the boxing of
primitives.

3.4.1 Time Window Detection
To detect the time window with the highest memory churn
rate we basically use the algorithm described in Section 3.3.1.
The only difference is that this time the algorithm searches
for the window with the highest memory churn rate instead

Figure 7. Automatically detected GC overhead window in
AntTracks, highlighted in yellow from around 26, 000ms to
40, 000ms.

Detection of Suspicious Time Windows in Memory Monitoring MPLR ’19, October 21–22, 2019, Athens, Greece

Figure 8. Automatically detected time window with high
memory churn in the finagle-http benchmark (global view
and zoomed-in view).

1 val response: Future[http.Response] = client(request)
2 for (i <- 0 until NUM_REQUESTS) {
3 Await.result(response.onSuccess { rep: http.Response =>
4 totalLength += rep.content.length })}

Listing 1. Problematic part of the method
FinagleHttp.runIteration.

of the highest garbage collection overhead. To do so, it calcu-
lates the churn rate of a window by dividing the total number
of bytes freed within the window by the window’s duration.
To calculate the number of freed bytes for a given garbage
collection, all we need to know is the size of the heap before
the collection and after the collection.

3.4.2 Example: Finagle-http
Renaissance [33] is a benchmark suite composed of modern,
real-world, concurrent, and object-oriented workloads that
exercise various concurrency primitives of the JVM. Since
this benchmark suite is rather new, it has not yet been the
subject of a memory study [26]. Thus, it is perfectly suited
to test whether AntTracks is able find memory problems in
real-world applications unknown to the inspector.

First, we downloaded the benchmark suite 1 in version 0.9
and created a trace file of every benchmark. Then, we loaded
these trace files into AntTracks and inspected the automati-
cally detected time windows. One benchmark that attracted
our attention was finagle-http. According to the bench-
mark’s documentation, it sends many small Finagle HTTP
requests to a Finagle HTTP server and awaits response. This
benchmark exhibits a high memory churn. Its memory evolu-
tion and the automatically detected memory churn window
can be seen in Figure 8.

1Renaissance benchmark suite: https://renaissance.dev/

1 val response: Future[http.Response] = client(request)
2 val h = { rep: http.Response => totalLength += rep.content.length }
3 for (i <- 0 until NUM_REQUESTS) Await.result(response.onSuccess(h))

Listing 2. Fixed version of the method
FinagleHttp.runIteration.

Inspecting this memory churn using AntTracks’s short-
lived objects analysis feature revealed that the type
FinagleHttp$$anonfun$runIteration$1$$... has a high
churn rate. The naming pattern reveals that these are Scala
objects, more specifically, anonymous functions, which are
allocated in the method runIteration of the benchmark’s
main class FinagleHttp. Since such a rapid allocation and
collection of anonymous functions is unlikely to be inten-
tional, we looked up the method’s source code. The problem-
atic part can be seen in Listing 1. In the loop, a lot of anony-
mous function objects are created, waiting for an HTTP
request to succeed to increment the counter totalLength.
Listing 2 shows our fix for this problem. Only a single re-
sponse handler is created which is reused for every HTTP
request. This fix reduces the overall amount of allocated
temporary objects by about 25%.

3.5 Window Detection Performance
The complexity of all algorithms is O(n), where n is the
number of garbage collections covered by the trace file. For
example, applied on the trace of the Dynatrace EasyTravel
application that has been shown in Section 3.2.4, which cov-
ers about 700 garbage collections, the different time window
detection algorithms take between 5ms and 30ms on av-
erage. Thus, our algorithms can scale up to process data
reconstructed from traces that cover thousands of garbage
collections.

4 Related Work
Memory Leak Detection To support memory leak detec-
tion, various approaches and tools have been developed over
the last years. Šor and Srirama [45] classify these approaches
into the following groups:

1. Online approaches that actively monitor and interact
with the running virtual machine, separated into ap-
proaches that
a. measure staleness [3, 14, 35, 36, 38, 59]. The longer

an object is not used, the staler it becomes. Stale-
ness analysis tries to reveal objects that do not get
collected by the GC but become stale, since they
are most likely to be leaking. The challenge these
approaches face is that tracking object accesses is
extremely expensive.

b. detect growth [4, 20, 21, 43, 44]. These approaches
group the live heap objects (usually either by their
types or allocation sites) and detect growth using
various metrics.

https://renaissance.dev/

MPLR ’19, October 21–22, 2019, Athens, Greece Markus Weninger, Elias Gander, and Hanspeter Mössenböck

2. Offline approaches that collect information about an ap-
plication for later analysis, separated into approaches
that
a. analyze heap dumps and other kinds of captured state [22,

27–29]. Compared to online approaches, offline ap-
proaches often perform more complicated analyses
based on the object reference graph, involving graph
reduction, graph mining and ownership analysis.

b. use visualization to aid leak detection [7, 31, 37].
c. employ static source code analysis [9, 60].

3. Hybrid approaches that combine online features as well
as offline features [10, 39, 58].

In this taxonomy, AntTracks would be classified as a hy-
brid approach. It collects detailed memory traces online using
its VM, while the processing of these traces happens offline.
Its offline analysis tool mostly focuses on the visualization
and automatic detection of heap growth.

MemoryChurnAnalysis For example, Peiris andHill [32]
presented EMAD, the Excessive Memory Allocation Detec-
tor. Compared to AntTracks, which detects memory churn
offline using memory traces, EMAD uses dynamic binary
instrumentation and exploratory data analysis to determine
whether an application performs excessive dynamic memory
allocations.

5 Limitations
One limitation of our work is its currently limited evaluation
based on a small set of use cases. We plan to find more open-
source projects that suffered from memory anomalies in the
past which we can use to build a reference set of real-world
applications. This collection could then be used to evaluate
memory monitoring tools.
In addition to that, we are currently conducting a user

study. One goal of this study is to see how well people with
different backgrounds are able to detect suspicious time win-
dows themselves. Preliminary results suggest that novice
users are not always able to recognize suspicious memory
growth in an application. Also, it seems that most users also
underestimate the possible severity of high memory churn.

6 Future Work
User Study As stated in the previous section, we are cur-
rently conducting a user study with university students hav-
ing various levels of expertise. The aim of the study is to
gain insights on how well the study participants are able
to analyze memory anomalies with AntTracks and which
features they would expect from a memory monitoring tool
in general. This could help the community to improve the
quality of memory monitoring tools.

Visualization Many of AntTracks’s analysis features com-
municate their results in form of tables, line charts or stacked

area charts. We plan to evaluate alternative visualization ap-
proaches, for example, an application’s memory evolution
could also be displayed as small multiples [50] or as a soft-
ware city [57]. To investigate keep-alive relationships i a
heap state, we plan to support users by displaying aggre-
gated heap objects as graphs [1].

Guided Exploration The aim of this work is to automate
the first step of memory evolution analysis over time, namely
the selection of a suspicious time window. Nevertheless, once
a time window is selected, an appropriate analysis approach
has to be selected, and the users are left on their own during
this analysis. Thus, we are currently integrating features
into AntTracks that we call guided exploration. The goal of
guided exploration is to lead users through AntTracks’s dif-
ferent analysis views. Within each view, those parts that
contain the most information should automatically be de-
tected, highlighted and explained to the user. This way, we
want to achieve a learning-by-doing effect, with the goal
that AntTracks should be usable by users without any prior
memory monitoring experience.

7 Conclusion
In this paper, we presented an approach to automatically
detect time windows that show typical behaviors of various
memory anomalies. Freeing users from this non-trivial task
enables them to focus more on finding the root cause of the
problem. Especially inexperienced users that often struggle
to recognize anomalies on their own profit from this feature.
The first type of memory anomaly that our approach is

able to automatically detect is continuous memory growth
caused by memory leaks.
The second type are windows that suffer from high GC

overhead. High GC overhead can stem from two main root
causes. Either the individual garbage collections within the
time window took a long time, or a very high number of
garbage collections had to be performed.

The third type of suspicious time windows we are able to
detect are those that show high memory churn. High memory
churn is caused by objects that are frequently allocated and
freed shortly after their allocation. This also leads to a high
number of garbage collections.
These algorithms to automatically select suspicious time

windows have been integrated into AntTracks, a memory
monitoring tool developed by us. Throughout the paper,
their applicability was shown by applying them to different
real-world applications.

Acknowledgments
The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development, and Dynatrace is
gratefully acknowledged.

Detection of Suspicious Time Windows in Memory Monitoring MPLR ’19, October 21–22, 2019, Athens, Greece

References
[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci,

Sara L. Su, and Samuel Z. Guyer. 2010. Heapviz: Interactive Heap
Visualization for Program Understanding and Debugging. In Proc. of
the 5th Int’l Symp. on Software Visualization (SOFTVIS ’10).

[2] Verena Bitto, Philipp Lengauer, and Hanspeter Mössenböck. 2015.
Efficient Rebuilding of Large Java Heaps from Event Traces. In Proc.
of the Principles and Practices of Programming on The Java Platform
(PPPJ ’15).

[3] Michael D. Bond and Kathryn S. McKinley. 2006. Bell: Bit-encoding
Online Memory Leak Detection. In Proc. of the 12th Int’l Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS XII).

[4] K. Chen and J. Chen. 2007. Aspect-Based Instrumentation for Locat-
ing Memory Leaks in Java Programs. In Proc. of the 31st Annual Int’l
Computer Software and Applications Conf. (COMPSAC ’07).

[5] Trishul Chilimbi, Richard Jones, and Benjamin Zorn. 2000. Designing
a Trace Format for Heap Allocation Events. In Proc. of the 2nd Int’l
Symposium on Memory Management (ISMM ’00).

[6] Bas Cornelissen, Andy Zaidman, Danny Holten, Leon Moonen, Arie
van Deursen, and Jarke J. van Wijk. 2008. Execution trace analy-
sis through massive sequence and circular bundle views. Journal of
Systems and Software 81, 12 (2008), 2252 – 2268.

[7] Wim De Pauw and Gary Sevitsky. 1999. Visualizing Reference Patterns
for Solving Memory Leaks in Java. In Proc. of the European Conference
on Object-Oriented Programming (ECOOP ’99).

[8] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004.
Garbage-first Garbage Collection. In Proc. of the 4th Int’l Symposium
on Memory Management (ISMM ’04).

[9] Dino Distefano and Ivana Filipović. 2010. Memory Leaks Detection in
Java by Bi-abductive Inference. In Proc. of the Int’l Conf. on Fundamental
Approaches to Software Engineering (FASE 2010).

[10] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2007. Blended
Analysis for Performance Understanding of Framework-based Appli-
cations. In Proc. of the 2007 Int’l Symposium on Software Testing and
Analysis (ISSTA ’07).

[11] Dynatrace. 2019. Demo Applications: easyTravel. https://community.
dynatrace.com/community/display/DL/Demo+Applications+-
+easyTravel

[12] Christine H. Flood, Roman Kennke, Andrew Dinn, Andrew Haley, and
Roland Westrelin. 2016. Shenandoah: An Open-source Concurrent
Compacting Garbage Collector for OpenJDK. In Proc. of the 13th Int’l
Conf. on Principles and Practices of Programming on the Java Platform:
Virtual Machines, Languages, and Tools (PPPJ ’16).

[13] Mohammadreza Ghanavati, Diego Costa, Artur Andrzejak, and Janos
Seboek. 2018. Memory and Resource Leak Defects in Java Projects: An
Empirical Study. In Proc. of the 40th Int’l Conf. on Software Engineering:
Comp. Proc. (ICSE ’18).

[14] Matthias Hauswirth and Trishul M. Chilimbi. 2004. Low-overhead
Memory Leak Detection Using Adaptive Statistical Profiling. In Proc. of
the 11th Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XI).

[15] Matthew Hertz, Stephen M Blackburn, J Eliot B Moss, Kathryn S.
McKinley, and Darko Stefanović. 2002. Error-free Garbage Collection
Traces: How to Cheat and Not Get Caught. In Proc. of the 2002 ACM
SIGMETRICS Int’l Conf. on Measurement and Modeling of Computer
Systems (SIGMETRICS ’02).

[16] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S.
McKinley, and Darko Stefanović. 2006. Generating Object Lifetime
Traces with Merlin. ACM Trans. Program. Lang. Syst. 28, 3 (May 2006),
476–516.

[17] Swaminathan Jayaraman, Bharat Jayaraman, and Demian Lessa. 2017.
Compact Visualization of Java Program Execution. Software: Practice
and Experience 47, 2 (2017), 163–191.

[18] Richard Jones, Antony Hosking, and Eliot Moss. 2016. The garbage col-
lection handbook: the art of automatic memory management. Chapman
and Hall/CRC.

[19] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory
Leak Detection for Garbage-collected Languages. In Proc. of the 34th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’07).

[20] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory
Leak Detection for Garbage-collected Languages. In Proc. of the 34th
Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (POPL ’07).

[21] Maria Jump and Kathryn S. McKinley. 2009. Detecting Memory Leaks
in Managed Languages with Cork. Software: Practice and Experience
40, 1 (2009).

[22] Evan K. Maxwell, Godmar Back, and Naren Ramakrishnan. 2010. Diag-
nosing Memory Leaks using Graph Mining on Heap Dumps. In Proc. of
the ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining
(KDD ’10).

[23] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and
Hanspeter Mössenböck. 2016. Efficient Memory Traces with Full
Pointer Information. In Proc. of the 13th Int’l. Conf. on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Lan-
guages, and Tools (PPPJ ’16).

[24] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015.
Accurate and Efficient Object Tracing for Java Applications. In Proc. of
the 6th ACM/SPEC Int’l. Conf. on Performance Engineering (ICPE ’15).

[25] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2016.
Efficient and Viable Handling of Large Object Traces. In Proc. of the
7th ACM/SPEC Int’l Conf. on Performance Engineering (ICPE ’16).

[26] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus
Weninger. 2017. A Comprehensive Java Benchmark Study on Mem-
ory and Garbage Collection Behavior of DaCapo, DaCapo Scala, and
SPECjvm2008. In Proc. of the 8th ACM/SPEC on Int’l Conf. on Perfor-
mance Engineering (ICPE ’17).

[27] Nick Mitchell. 2006. The Runtime Structure of Object Ownership.
In Proc. of the 20th European Conf. on Object-Oriented Programming
(ECOOP ’06).

[28] Nick Mitchell and Gary Sevitsky. 2003. LeakBot: An automated and
lightweight tool for diagnosing memory leaks in large Java applica-
tions. In Proc. of the European Conference on Object-Oriented Program-
ming (ECOOP ’03).

[29] Nick Mitchell and Gary Sevitsky. 2007. The Causes of Bloat, the Limits
of Health. In Proc. of the 22nd Annual ACM SIGPLAN Conf. on Object-
oriented Programming Systems and Applications (OOPSLA ’07).

[30] Raymond H Myers and Raymond H Myers. 1990. Classical and modern
regression with applications. Vol. 2. Duxbury press Belmont, CA.

[31] Wim De Pauw and Gary Sevitsky. 2000. Visualizing Reference Patterns
for SolvingMemory Leaks in Java. Concurrency: Practice and Experience
12, 14 (2000).

[32] Manjula Peiris and James H. Hill. 2016. Automatically Detecting
"Excessive Dynamic Memory Allocations" Software Performance Anti-
Pattern. In Proc. of the 7th ACM/SPEC on Int’l Conf. on Performance
Engineering (ICPE ’16).

[33] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Du-
boscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019.
Renaissance: Benchmarking Suite for Parallel Applications on the JVM.
In Proc. of the 40th ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI 2019).

[34] J. Qian and X. Zhou. 2012. Inferring weak references for fixing Java
memory leaks. In Proc. of the 2012 28th IEEE Int’l Conf. on Software
Maintenance (ICSM ’12).

[35] Derek Rayside and Lucy Mendel. 2007. Object Ownership Profiling: A
Technique for Finding and Fixing Memory Leaks. In Proc. of the 22nd
IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE ’07).

https://community.dynatrace.com/community/display/DL/Demo+Applications+-+easyTravel
https://community.dynatrace.com/community/display/DL/Demo+Applications+-+easyTravel
https://community.dynatrace.com/community/display/DL/Demo+Applications+-+easyTravel

MPLR ’19, October 21–22, 2019, Athens, Greece Markus Weninger, Elias Gander, and Hanspeter Mössenböck

[36] Derek Rayside, Lucy Mendel, and Daniel Jackson. 2006. A Dynamic
Analysis for Revealing Object Ownership and Sharing. In Proc. of the
Int’l Workshop on Dynamic Systems Analysis (WODA ’06).

[37] S. P. Reiss. 2009. Visualizing The Java Heap to Detect Memory Prob-
lems. In Proc. of the 5th IEEE Int’l Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT ’09).

[38] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. 2001. Heap Profiling
for Space-efficient Java. In Proc. of the ACM SIGPLAN 2001 Conf. on
Programming Language Design and Implementation (PLDI ’01). ACM,
New York, NY, USA, 104–113. https://doi.org/10.1145/378795.378820

[39] Ran Shaham, Elliot K. Kolodner, and Shmuel Sagiv. 2000. Automatic
Removal of Array Memory Leaks in Java. In Proc. of the 9th Int’l Con-
ference on Compiler Construction (CC ’00).

[40] Connie U. Smith and Lloyd G. Williams. 2000. Software Performance
Antipatterns. In Proc. of the 2nd Int’l Workshop on Software and Perfor-
mance (WOSP ’00).

[41] Connie U. Smith and Lloyd G. Williams. 2002. New Software Perfor-
mance Antipatterns: More Ways to Shoot Yourself in the Foot. In Intl.
CMG Conf.

[42] Connie U. Smith and Lloyd G. Williams. 2003. More New Software
Performance Antipatterns: Even More Ways to Shoot Yourself in the
Foot. In Intl. CMG Conf.

[43] V. Sor, P. Oü, T. Treier, and S. N. Srirama. 2013. Improving Statistical
Approach for Memory Leak Detection Using Machine Learning. In
Proc. of the 2013 IEEE Int’l Conf. on Software Maintenance (ICSM ’13).

[44] Vladimir Šor, Nikita Salnikov-Tarnovski, and Satish Narayana Srirama.
2011. Automated Statistical Approach for Memory Leak Detection:
Case Studies. In On the Move to Meaningful Internet Systems (OTM
2011).

[45] Vladimir Šor and Satish Narayana Srirama. 2014. Memory leak detec-
tion in Java: Taxonomy and classification of approaches. Journal of
Systems and Software 96 (2014).

[46] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue. 2005.
Extracting sequence diagram from execution trace of Java program.
In Proc. of the 8th Int’l Workshop on Principles of Software Evolution
(IWPSE ’05).

[47] Oracle. 2019. The HotSpot Group. http://openjdk.java.net/groups/
hotspot/

[48] Oracle. 2019. ZGC - The Z Garbage Collector. http://openjdk.java.
net/projects/zgc/

[49] Per Lidén & Stefan Karlsson. 2018. The Z Garbage Collector - An
Introduction, FOSDEM 2018. http://cr.openjdk.java.net/~pliden/slides/
ZGC-FOSDEM-2018.pdf

[50] Stef van den Elzen and Jarke J. van Wijk. 2013. Small Multiples, Large
Singles: A New Approach for Visual Data Exploration. Comput. Graph.
Forum 32 (2013).

[51] MarkusWeninger, Elias Gander, and Hanspeter Mössenböck. 2019. An-
alyzing Data Structure Growth Over Time to Facilitate Memory Leak
Detection. In Proc. of the 2019 ACM/SPEC Int’l Conf. on Performance
Engineering (ICPE ’19).

[52] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018.
Analyzing the Evolution of Data Structures Over Time in Trace-Based
Offline Memory Monitoring. In Proc. of the 9th Symposium on Software
Performance (SSP ’18).

[53] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018.
Utilizing Object Reference Graphs and Garbage Collection Roots to
Detect Memory Leaks in Offline Memory Monitoring. In Proc. of the
15th Int’l Conf. on Managed Languages & Runtimes (ManLang ’18).

[54] MarkusWeninger, Philipp Lengauer, and Hanspeter Mössenböck. 2017.
User-centered Offline Analysis of Memory Monitoring Data. In Proc.
of the 8th ACM/SPEC on Int’l Conf. on Performance Engineering (ICPE
’17).

[55] Markus Weninger, Lukas Makor, Elias Gander, and Hanspeter Mössen-
böck. 2019. AntTracks TrendViz: Configurable Heap Memory Visual-
ization Over Time. In Companion of the 2019 ACM/SPEC Int’l Conf. on
Performance Engineering (ICPE ’19).

[56] Markus Weninger and Hanspeter Mössenböck. 2018. User-defined
Classification andMulti-level Grouping of Objects inMemoryMonitor-
ing. In Proc. of the 9th ACM/SPEC Int’l Conf. on Performance Engineering
(ICPE ’18).

[57] RichardWettel and Michele Lanza. 2007. Visualizing Software Systems
as Cities. In Proc. of the 4th IEEE Int’l Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT ’07).

[58] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas Rountev. 2011.
LeakChaser: Helping Programmers Narrow Down Causes of Mem-
ory Leaks. In Proc. of the 32nd ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI ’11).

[59] Guoqing Xu and Atanas Rountev. 2008. Precise Memory Leak Detec-
tion for Java Software Using Container Profiling. In Proc. of the 30th
Int’l Conf. on Software Engineering (ICSE ’08).

[60] Dacong Yan, Guoqing Xu, Shengqian Yang, and Atanas Rountev. 2014.
LeakChecker: Practical Static Memory Leak Detection for Managed
Languages. In Proc. of the Annual IEEE/ACM Int’l Symposium on Code
Generation and Optimization (CGO ’14).

[61] H. Yu, X. Shi, and W. Feng. [n.d.]. LeakTracer: Tracing leaks along the
way. In Proc. of the 2015 IEEE 15th Int’l Working Conf. on Source Code
Analysis and Manipulation (SCAM ’15).

https://doi.org/10.1145/378795.378820
http://openjdk.java.net/groups/hotspot/
http://openjdk.java.net/groups/hotspot/
http://openjdk.java.net/projects/zgc/
http://openjdk.java.net/projects/zgc/
http://cr.openjdk.java.net/~pliden/slides/ZGC-FOSDEM-2018.pdf
http://cr.openjdk.java.net/~pliden/slides/ZGC-FOSDEM-2018.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Memory Snapshots versus Memory Traces
	2.2 Trace Recording by the AntTracks VM
	2.3 AntTracks Analyzer

	3 Approach
	3.1 Desired Window Characteristics
	3.2 Memory Leak Window
	3.3 High GC Overhead Analysis
	3.4 High Memory Churn Analysis
	3.5 Window Detection Performance

	4 Related Work
	5 Limitations
	6 Future Work
	7 Conclusion
	Acknowledgments
	References

