Memory Leak Visualization using Evolving Software Cities

Markus Weninger®, Lukas Makor®, Hanspeter Mossenbock®
® Institute for System Software, Johannes Kepler University Linz, Austria
4 Christian Doppler Laboratory MEVSS, Johannes Kepler University Linz, Austria,

Abstract

Memory leaks occur when no longer needed objects
are unnecessarily kept alive. They can have a signifi-
cant performance impact, possibly leading to a crash
of the application in the worst case.

Most state-of-the-art memory monitoring tools lack
visualizations of memory growth over time. However,
domains such as software evolution and program com-
prehension have shown that graphically visualizing
the growth and evolution of a system can help users
in understanding and interpreting this growth.

In this paper, we present ongoing research on how
to visualize an application’s memory evolution over
time using the software city metaphor. While soft-
ware cities are typically used to visualize static arti-
facts of a software system such as classes, we use them
to visualize the dynamic memory behavior of an appli-
cation. In our approach, heap objects can be grouped
by arbitrary properties such as their types or their al-
locating threads. These groups are visualized as build-
ings arranged in districts, where the size of a building
corresponds to the number of objects it represents.
Continuously updating the city over time creates the
feeling of an evolving city. Users can then identify and
inspect those buildings, i.e., object groups, that grow
the most.

We integrated our approach into AntTracks,
a trace-based memory monitoring tool developed by
us, to prove its feasibility.

1 Introduction

Modern programming languages such as Java use au-
tomatic garbage collection. Heap objects that are no
longer reachable from static fields or thread-local vari-
ables (so-called GC roots) are automatically reclaimed
by a garbage collector (GC). A memory leak occurs
if objects that are no longer needed remain reachable
from GC roots due to programming errors. For ex-
ample, a developer may forget to remove objects from
their (long-living) containing data structures. These
objects cannot be reclaimed by the garbage collector
and will therefore accumulate over time [15].

Most state-of-the-art memory monitoring tools do
not use graphical means to visualize such a growth.
Instead, they just take two heap snapshots, calculate
the difference of the number of objects for every type,
and display these difference values in a table. As it

has been shown in other domains such as software
evolution and program comprehension [8], we think
that users can also profit from software visualizations
in the domain of memory monitoring.

In their work, Knight and Munro [1, 3] pro-
moted the use of metaphors when developing soft-
ware visualizations. Metaphors act as a mapping from
the concepts or artefacts required to be displayed to
their graphical representation. One such visualization
metaphor are software cities. Wettel and Lanza [4]
used software cities to visualize software systems,
where buildings represent classes, grouped into dis-
tricts based on their packages. The size of a build-
ing is determined by the classes’ number of attributes
and number of methods. Steinbriickner and Lewer-
entz [7, 9] adopted and extended this idea by visu-
alizing the development history of software systems
using elevated city maps. Software cities have also
been used in virtual reality environments to support
program comprehension, as done by Fittkau et al. [10].

In this paper, we present ongoing research on how
to use the software city metaphor to visualize memory
monitoring data. Our goal is to ease the inspection
of memory growth over time by providing interactive
easy-to-interpret visualizations to users. To achieve
this, our contributions encompass:

e a method to layout and visualize a heap state as a
software city, see Section 2 and Section 3.

e techniques to visualize the evolution of memory
over time as an evolving software city, see Section 4.

e a prototype implementation of our visualization ap-
proach in Unity 3D, see Figure 1.

2 Data

To visualize the memory evolution of an application,
we need continuous information about the live heap
objects. To obtain this information for a single point
in time, most tools use heap dumps. However, con-
tinuously dumping the heap would incur too much
run-time overhead, since the application is halted dur-
ing the heap dump. Thus, we use the AntTracks
VM [11, 12, 14], a virtual machine based on the Java
Hotspot VM, to collect memory data.

From this data, we can reconstruct the heap state
at every garbage collection point. For every heap ob-
ject, a number of properties can be reconstructed, in-



cluding its address, type, allocation site, the thread
that allocated it, and the heap objects it references.

3 Heap State Visualization

Heap objects can be grouped by a combination of their
properties which results in a grouping tree [13]. Such
a grouping tree is typically displayed in a tree table
view, similar to the one shown in Table 1.

Objects

- Heap 100,000
- Thread 1 80,000
Type A 70,000

Type B 10,000

+ Thread 2 10,500

Table 1: A tree table view representing a heap state
grouped by allocating threads and types.

Many tools also show other advanced metrics be-
side the number of objects and use features such
as color encoding to highlight certain object groups.
This can easily become overwhelming and hard to in-
terpret for novice users. Thus, we present an approach
to visualize a heap state as a software city.

3.1 Buildings and Districts

In the software city metaphor, artifacts are visualized
as buildings that are arranged in districts, which can
again be contained in other districts. In our case,
buildings represent leaf nodes of a grouping tree, while
inner tree nodes are represented as districts.
Districts are flat structures. Their area is sized to
enclose all their contained districts and buildings. A
building is a structure with a height and an area that
depends on the number of objects its tree node repre-
sents. One of our goals was to achieve building sizes
that represent more-or-less realistic building measures
of real-world buildings. As preliminary formulas, we
came up with 2 x ¢/Mopjects units as the height and
\/Mobjects Square units as the area for buildings. Map-
ping units to meters, the 70,000 objects of Type A
from Table 1 would, for example, be represented as a
building that has an area of about 264.5 square meters
and a height of 32.5 meters. With adjusted formulas
for height and area, the same approach could be used
to visualize the city based on the number of bytes.
Mixing metrics, such as using the number of objects
for the area and the number of bytes for the height,
is up to future work. For example, having very few
very large arrays, this could result in extremely nar-
row building that are extremely tall if implemented
carelessly, which would distort a realistic city feeling.

3.2 Layout

To layout the districts and buildings, we used the
squarified tree map algorithm by Bruls et al. [2]. As
explained in the previous section, every building has
an area based on the number of objects it represents.

The squarified tree map algorithm tries to shape the
area of each building as an approximate square, such
that they can be laid out in a way that makes the
their districts again resemble squares.

4 Evolution Visualization

To visualize the memory evolution over a selected time
window, we apply time traveling. According to Wettel
and Lanza [6], time traveling is achieved by stepping
back and forth through the history of a system while
the city updates itself to reflect its current state. In
our case, the history is the sequence of grouping trees
generated at every reconstructed heap state in the se-
lected time window.

4.1 Layout

It is mot enough to visualize these grouping trees one
after another. For example, buildings could be added
or removed between two heap states. This would
change the layout of districts and thus the position of
buildings. This leads to the problem that users could
hardly figure out if and which two buildings in two
different heap states represent the same tree node.

To overcome this problem we apply static position
animation [5], which creates a general city plan in
which all buildings remain at the same position during
the animation. To do so, all grouping trees are merged
into a meta tree. Every node in this meta tree stores
the maximum number of objects represented by the
respective node at any time. Then, the layouting of
the city happens once based on the values in this meta
tree to reserve space for every building based on its
largest possible area. Then, to visualize the heap at
a certain point in time, buildings are centered in the
space that has been reserved for them.

4.2 Memory Leak Investigation Mode

If a memory leak exists, typically certain objects
groups grow stronger than others. This is especially
the case if the objects are grouped by type. To make
it easier for users to identify those object groups, i.e.,
buildings, that grew the most, certain buildings are
shown in solid mode, while the others have reduced
opacity, as shown in Figure 1.

Figure 1: An application shortly after startup (left)

and 60 garbage collections later (right). The ten
buildings with the strongest growth are shown in solid
mode, while the others have reduced opacity.



5 Interaction

Users can navigate through the city as a free-moving
camera. The view can be tilted, rotated and zoomed
by using the mouse wheel. By dragging the mouse or
using the keyboard, the user can move the camera.
Clicking on a building or district displays its informa-
tion. This information includes the path from the tree
root, e.g., Overall Heap — Thread 1 — Type A, and
the number of objects the structure represents.

To step back and forth in time, users are provided
with buttons to go to the next and the previous heap
state, as well as a slider to move through time. An
automatic animation can also be played using a user-
defined pause time between heap states. An example
video of such an animation, showing AntTracks during
trace file parsing, can be found here!.

6 Conclusion and Future Work

In this paper, we presented an approach to visual-
ize memory monitoring data using the software city
metaphor. We discussed how a heap state, more
specifically its heap objects, can be grouped into a
tree, and how such a tree can be visualized as dis-
tricts and buildings in a software city. Our approach
is not only suitable for a single heap state, but can also
visualize the memory evolution over time by using an
advanced layout algorithm. Using our approach, the
memory evolution of an application can be animated
as a city that evolves over time, where growing build-
ings hint at an accumulation of objects that could be
the result of a possible memory leak.

Since this work is still in progress, many possibili-
ties exist for future work. Our current software cities
only make use of three visual properties: area, height,
and opacity. There is still potential for more advanced
user interaction that may alter currently unused prop-
erties, such as letting users mark buildings of interest
using custom colors. It is also interesting to explore
how additional information such as object references
could be included in a software city visualization. For
example, selecting a building may also highlight / cre-
ate visual links to other buildings that contain objects
referenced by the selected building’s objects. Also, a
user study should be conducted to evaluate the use-
fulness of our new visualization approach.

7 Acknowledgement

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Develop-
ment, and Dynatrace is gratefully acknowledged.

1Video showing AntTracks as evolving memory city:
http://ssw.jku.at/General/Staff/Weninger/AntTracks/
SSP19/MemoryCities-WorkInProgress.webm

References

1]

[12]

C. Knight and M. Munro. “Comprehension with
[in] virtual environment visualisations”. In: Int’l
Workshop on Program Comprehension. 1999.

M. Bruls, K. Huizing, and J. J. van Wijk.
“Squarified Treemaps”. In: Joint Eurographics
and IEEE TCVG Symp. on Visualization. 2000.

C. Knight and M. Munro. “Virtual but visible
software”. In: Conf. on Information Visualiza-
tion. 2000.

R. Wettel and M. Lanza. “Visualizing Software
Systems as Cities”. In: Int’l Workshop on Visu-
alizing Software for Understanding and Analy-
sis. 2007.

G. Langelier, H. Sahraoui, and P. Poulin.
“Exploring the evolution of software quality
with animated visualization”. In: Symp. on Vi-
sual Languages and Human-Centric Computing.
2008.

R. Wettel and M. Lanza. “Visual Exploration
of Large-Scale System Evolution”. In: Working
Conf. on Reverse Engineering. 2008.

F. Steinbriickner and C. Lewerentz. “Represent-
ing Development History in Software Cities”. In:
Int’l Symp. on Software Visualization. 2010.

R. Wettel, M. Lanza, and R. Robbes. “Software
systems as cities: a controlled experiment”. In:
Int’l Conf. on Software Engineering. 2011.

F. Steinbriickner and C. Lewerentz. “Un-
derstanding software evolution with software
cities”. In: Information Visualization 12.2
(2013).

F. Fittkau, A. Krause, and W. Hasselbring. “Ex-
ploring software cities in virtual reality”. In:
Working Conf. on Software Visualization. 2015.

P. Lengauer, V. Bitto, and H. Mdssenbock. “Ac-
curate and Efficient Object Tracing for Java Ap-
plications”. In: Int’l. Conf. on Performance En-
gineering. 2015.

P. Lengauer et al. “Efficient Memory Traces
with Full Pointer Information”. In: Int’l. Conf.
on Principles and Practices of Programming on
the Java Platform. 2016.

M. Weninger and H. Méssenbock. “User-defined
Classification and Multi-level Grouping of Ob-
jects in Memory Monitoring”. In: Int’l Conf. on
Performance Engineering. 2018.

M. Weninger. AntTracks. 2019. URL: http://
mevss. jku.at/AntTracks.

M. Weninger, E. Gander, and H. Mossenbock.
“Analyzing Data Structure Growth Over Time
to Facilitate Memory Leak Detection”. In: Int’l
Conf. on Performance Engineering. 2019.


http://ssw.jku.at/General/Staff/Weninger/AntTracks/SSP19/MemoryCities-WorkInProgress.webm
http://ssw.jku.at/General/Staff/Weninger/AntTracks/SSP19/MemoryCities-WorkInProgress.webm
http://mevss.jku.at/AntTracks
http://mevss.jku.at/AntTracks

	Introduction
	Data
	Heap State Visualization
	Buildings and Districts
	Layout

	Evolution Visualization
	Layout
	Memory Leak Investigation Mode

	Interaction
	Conclusion and Future Work
	Acknowledgement

