Heap Evolution Analysis Using Tree Visualizations

Markus Weninger*, Lukas Makor*®, Hanspeter Mossenbock*
{firstname.lastname@jku.at}
* Institute for System Software, Johannes Kepler University, Linz, Austria
® Christian Doppler Laboratory MEVSS, Johannes Kepler University, Linz, Austria

Abstract

Memory anomalies such as memory leaks can dramat-
ically impact application performance and can even
lead to crashes. Thus, supporting developers in under-
standing the heap memory behavior of their systems is
essential. Unfortunately, most memory analysis tools
lack advanced visualizations that could facilitate de-
velopers in analyzing suspicious memory behavior.

To analyze heap memory, it is common to group
the heap’s objects, for example, by their types or by
their allocation sites. Using multiple grouping crite-
ria thus results in a tree-shaped representation of the
heap content. Such a heap tree is then typically pre-
sented textually in a tree table.

In this paper, we present ongoing research on using
well-known tree visualization techniques to visualize
such heap trees as well as their evolution over time.
Such visualizations may ease the detection of prolifer-
ating heap objects, facilitating memory leak analysis.

To demonstrate the feasibility and applicability of
the presented approach, we implemented a web-based
visualization tool and integrated it into AntTracks,
our trace-based memory monitoring tool.

1 Introduction

Modern programming languages such as Java use
garbage collection to automatically reclaim objects
that are no longer reachable from static fields or
thread-local variables. While this prevents a num-
ber of programming errors, certain problems such as
memory leaks can still occur. For example, a devel-
oper may forget to remove objects from their contain-
ing long-living data structure. Consequently, these
objects cannot be reclaimed by the garbage collector
and thus accumulate over time [11].

Memory leaks cause more frequent garbage collec-
tions, which can have a significant negative perfor-
mance impact. Worse, running out of memory even
crashes the application. Thus, it is essential to provide
tools to facilitate developers in detecting proliferating
heap objects in their applications.

Even though data visualization [5] can help to con-
vey information faster [6] and can aid in identifying
patterns [7], most state-of-the-art memory monitoring
tools do not take advantage of visualizations (except
for time-series charts) and often present data in the
form of tables and lists.

In this paper, we present work-in-progress to visu-
alize memory evolution over time using tree visual-
izations. Our approach groups similar heap objects
based on properties such as type, allocation site, or
allocating thread into a heap tree (see Section 2). We
then use well-known tree visualizations, i.e., the sun-
burst plot [1] and the icicle plot [9] to visualize the
heap content at a single point in time (see Section 3).
Generating heap trees at multiple points in time en-
ables users to step through time to inspect the moni-
tored application’s heap evolution over time (see Sec-
tion 4). This helps users to recognize suspiciously
growing object groups that may hint at memory leaks.

2 Data Collection

To inspect the heap at single point in time, most tools
use heap dumps. Yet, to visualize the heap’s evolu-
tion over time, we need continuous information about
its objects. Since regularly dumping the heap would
incur too much run-time overhead (as the application
is halted during the dump), we use the AntTracks
VM [8], a modified Java virtual machine based on
the Java Hotspot VM, to collect continuous mem-
ory traces (which introduces only around 5% run-time
overhead [8]). We can reconstruct the heap state from
such a trace at every garbage collection point. For ev-
ery heap object, a number of properties can be recon-
structed, including its address, type, allocation site,
and the thread that allocated it. The heap objects
can then be grouped by a user-defined combination of
these properties which results in a heap tree [10].

3 Heap State Visualization

There is ample work on how to visualize tree-shaped
data. Based on user studies that evaluated the use-
fulness [2] and aesthetics [3] of tree visualizations, we
decided to use the sunburst plot as well as the icicle
plot to visualize heap trees.

a0

Pers |

<0

Heap ci

String e

a0

Buf 0

(a) Tree. (b) Sunburst. (c) Icicle.

Figure 1: Three visualizations showing the same data.

3.1 Tree Visualizations

In a heap tree (Figure 1a), each tree node represents a
group of heap objects. A good heap tree visualization
should show the parent/child relationships as well as
the number of objects/bytes represented by a specific
node; the latter can be expressed as node size, but is
often missing in simple tree visualizations. Thus, the
sunburst plot (Figure 1b) as well as the the icicle plot
(Figure 1lc) use variable-sized graphical elements to
visualize nodes. The sunburst plot uses ring segments,
where the angular size of the ring segments encodes a
value. The icicle plot uses rectangles to encode a value
using the rectangle’s height. Instead of using explicit
links to depict the tree hierarchy, in the sunburst plot
the tree hierarchy is moving outwards, starting at a
root circle in the middle. Similarly, in the icicle plot
the tree hierarchy is moving from left to right.

To compare these tree visualizations, Figure la
through Figure lc visualize the same data. Imagine
that the underlying heap tree was generated by group-
ing all heap objects by their types, and all objects of
the same type by their allocation sites. The gray root
node (Heap) represents the whole heap. The nodes on
the first level represent different types. For example,
we can see that the heap consists of objects of the
types Pers (blue), String (orange), and Buf (green).
In the sunburst and icicle plot we can further see
that 50% of the heap space is taken up by objects
of type Pers. On the second level, allocation sites are
shown. There we can see that objects of type Pers
have been allocated at four different allocation sites,
most of them at site a().

3.2 Handling Huge Trees

Heap trees can be too wide or too deep to be visualized
as a whole. For example, real-world applications use
objects of hundreds of different types, thus grouping
the heap objects by type would result in a tree with
hundreds of siblings, i.e., a wide tree. On the other
hand, using multiple grouping criteria may lead to
a tree with lots of levels, i.e., a deep tree. Thus, we
apply tree pruning to narrow trees and provide a drill-
down feature to hide deep tree levels by default.

Tree Pruning To reduce a heap tree’s width, we
only keep nodes that represent large object groups
(i.e., those objects that most likely accumulated due
to a memory leak), while smaller object groups are
merged into artificial “Other” nodes. More specifi-
cally, we sort the child nodes of every node by their
size (i.e., by their object count or byte count) and
(1) keep the largest child nodes until they represent
90% of the objects on the current tree branch, yet we
(2) keep a maximum of 9 child nodes. The remaining
nodes are merged into an “Other” node.

Drill Down We only show two tree levels with the
possibility to drill down into a certain tree branch.
Clicking on a non-leaf node selects it as the new root

of the visualization. Figure 2 depicts an icicle that
groups all heap objects by allocating thread, then by
type and finally by allocation site. The left-hand
side shows the icicle without drill-down (the alloca-
tion sites are not visible since only two levels are
shown). The right-hand side shows the icicle after
drilling down into the node Thread 2. To step out
again, the user can click on the Thread 2 root node.

Root Thread 1| Integer Thread 2(Integer | main()

Date foo()
Thread 2| Integer Drill down String main()

String into

Date Thread 2 bar()
Thread 3| String Date | baz()

Figure 2: A drill-down feature enables users to ex-
plore deeper tree levels by selecting new tree roots.

4 Heap Evolution Visualization

It is not only possible to visualize the heap state at a
single point in time, but also to visualize its evolution
over time. For this, we use time traveling [4], a tech-
nique we already successfully applied in our Memory
Cities visualization technique [12]. In time travelling,
users can step back and forth through time, either
using buttons or a time slider. After each step, the
visualization updates itself to reflect the current heap
state. Knowing which kinds of objects accumulate
over time can greatly reduce the amount of source
code that has to be inspected to fix a possible leak.

4.1 Stable Layout

A problem when switching from one point in time
to another is that the order of the tree nodes could
change. For example, if sibling nodes are ordered by
size, and if their sizes change, the order of the nodes
changes as well, which makes it hard to keep track of
the evolution of different tree nodes.

In a stable layout, every node is assigned a sort po-
sition (based on a certain criterion) across all points
in time once after all trees have been computed. This
means that every node stays at the same relative po-
sition, e.g., at the second position, even if it grows or
shrinks over time. In our heap evolution visualization,
we currently sort all nodes based on their end size, i.e.,
based on their size in the last tree. For example, in
Figure 3, the blue heap object group has the largest
end size and is thus positioned first in both sunbursts.

4.2 Example

We implemented the presented approach as a d3.js
web application®. In Figure 3, we show a composi-
tion of tool screenshots taken while inspecting Dyna-
trace easyTravel, a state-of-the-art demo application

IPrototype with example data hosted on http://ssw.jku.
at/General/Staff/Weninger/AntTracks/SSP20/WebTreeViz/

http://ssw.jku.at/General/Staff/Weninger/AntTracks/SSP20/WebTreeViz/
http://ssw.jku.at/General/Staff/Weninger/AntTracks/SSP20/WebTreeViz/

t2

From GC #200 END @ 152.176ms|
To GC #361 END @ 660.121ms

Figure 3: Heap evolution time travel through easyTravel shown at three different points in time ¢1, ¢5, and t3.

that simulates a broken travel agency website. As
apparent in the time-series chart, easyTravel’s back-
end exhibits continuous memory growth. ¢; through
ts exemplarily show our time travel sunburst visual-
ization at three different points in time. The first
tree level (inner ring) indicates the type, the second
level depicts allocation sites. We can clearly see that
the blue (type Location) and orange (type Date) seg-
ments grow. Both of these types are allocated only at
a single allocation site each (as each type only has a
single circle segment on the second level). Knowing
which types accumulate the most objects (Location
and Date) and where these objects are allocated (at
a specific method in the class JourneyJpaProvider)
makes it easy to locate the problematic code location.

5 Conclusion and Future Work

In this paper, we presented our approach to apply tree
visualizations to facilitate heap memory analysis. We
discussed how a heap state, more specifically its heap
objects, can be grouped into a heap tree and how such
a tree can be visualized using existing tree visualiza-
tion techniques. We also visualize the heap evolution
over time, where growing graphical elements hint at
proliferating heap objects. These objects could be the
result of a possible memory leak, which can then be
inspected in more detail on the source code level based
on information provided by the tree visualization.

Since this work is still in progress, various possi-
bilities exist for future work. For example, our tool
currently displays a single tree visualization, depicting
the heap’s composition at a given point in time, and
this visualization is updated when moving through
time (a technique called time traveling). In the fu-
ture, we plan to implement a timeline view. In this
view, based on a number of points in time selected
by the user, multiple tree visualizations are generated
and displayed next to each other, similar to an inter-
active version of Figure 3. This should make it even
easier for the user to detect growth trends.

6 Acknowledgement

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Develop-
ment, and Dynatrace is gratefully acknowledged.

References

[1] J. Stasko and E. Zhang. “Focus+Context Dis-
play and Navigation Techniques for Enhancing
Radial, Space-filling Hierarchy Visualizations”.
In: VISSOFT. 2000, pp. 57-65.

[2] S.T. Barlow and P. Neville. “A Comparison of
2-D Visualizations of Hierarchies”. In: INFO-
VIS. 2001, pp. 131-138.

[3] N. Cawthon and A. V. Moere. “The Effect of
Aesthetic on the Usability of Data Visualiza-
tion”. In: IV. 2007, pp. 637-648.

[4] R. Wettel and M. Lanza. “Visual Exploration
of Large-Scale System Evolution”. In: WCRE.
2008, pp. 219-228.

[6] J. Heer, M. Bostock, and V. Ogievetsky. “A
Tour through the Visualization Zoo”. In: ACM
Queue 8.5 (2010), p. 20.

[6] M. O. Ward, G. G. Grinstein, and D. A. Keim.
Interactive Data Visualization - Foundations,
Techniques, and Applications. A K Peters, 2010.

[7] S. Murray. Interactive Data Visualization for
the Web. O’Reilly Media, 2013.

[8] P.Lengauer, V. Bitto, and H. M6ssenbock. “Ac-
curate and Efficient Object Tracing for Java Ap-
plications”. In: ICPE. 2015, pp. 51-62.

[9] I. Bacher, B. M. Namee, and J. D. Kelleher.
“Using Icicle Trees to Encode the Hierarchical
Structure of Source Code”. In: EuroVis. 2016,
pp- 97-101.

[10] M. Weninger and H. Méssenbock. “User-defined
Classification and Multi-level Grouping of Ob-
jects in Memory Monitoring”. In: ICPE. 2018,
pp. 115-126.

[11] M. Weninger, E. Gander, and H. Mdossenbock.
“Analyzing Data Structure Growth Over Time
to Facilitate Memory Leak Detection”. In:
ICPE. 2019, pp. 273-284.

[12] M. Weninger, L. Makor, and H. Mdssenbock.
“Memory Cities: Visualizing Heap Memory Evo-
lution Using the Software City Metaphor”. In:
VISSOFT. 2020.

	Introduction
	Data Collection
	Heap State Visualization
	Tree Visualizations
	Handling Huge Trees

	Heap Evolution Visualization
	Stable Layout
	Example

	Conclusion and Future Work
	Acknowledgement

