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Abstract
Memory leaks occur when no longer needed objects are unnecessarily kept alive. They can have a significant negative perfor-
mance impact, leading to a crash in the worst case. Thus, tool support for heap evolution analysis, especially memory leak
analysis, is essential. Unfortunately, most memory analysis tools lack advanced visualizations to facilitate this task.
In this paper, we present an approach to use well-known tree visualization techniques for memory growth visualization. Our
approach groups heap objects into memory trees based on a user-defined set of properties such as their types or their allocation
sites at multiple points in time. We present two novel approaches to inspect how these trees evolve over time: In our time-travel-
based visualization, a single space-filling tree visualization shows the monitored application’s heap memory at a given point
in time. Users can step back and forth in time, causing the visualization to update itself. In our timeline-based visualization, a
time-series chart depicts the overall memory consumption over time. Above this chart, multiple memory tree visualizations are
shown side-by-side for a number of user-selected points in time. Using these techniques to visually inspect the evolution of the
heap over time should enable users to gain new insights and to detect (problematic) memory trends in their applications.
To demonstrate the feasibility and applicability of the presented approach, we integrated it into AntTracks, a trace-based mem-
ory monitoring tool and applied it in two memory leak case studies.

CCS Concepts
•General and reference → Performance; •Software and its engineering → Software performance; Software maintenance
tools; •Information systems → Data analytics; Information extraction; •Human-centered computing → Interactive systems
and tools; Visualization techniques; Visual analytics; Information visualization;

1. Introduction

Many modern programming languages such as Java use a garbage
collector (GC) to automatically reclaim heap objects that are no
longer reachable from static variables or thread-local variables (i.e.,
GC roots). Even though automatic memory management prevents
certain memory-related mistakes, various problems can still occur.
Memory leaks are very common defects [GCS∗20] and occur when
objects remain reachable even though they are no longer needed.
For example, a developer may forget to correctly clear a long-living
data structure. Consequently, its objects cannot be reclaimed by the
GC and thus accumulate over time [WGM18a, WGM19a].

Memory leaks can have a significant performance impact, lead-
ing to a crash in the worst case. Therefore, it is essential to provide
tooling for memory analysis. Yet, existing tools have two major
drawbacks: most of them (1) inspect the heap only at a single point
in time and (2) do not use advanced visualizations. For example,
existing tools such as VisualVM [Ora20] or Eclipse Memory Ana-
lyzer (MAT) [Ecl20] use heap dumps to inspect the heap at a sin-
gle point in time. Yet, to detect and inspect trends in the memory

behavior, which is needed to investigate memory leaks, the heap
has to be compared at multiple points in time [WMGM19]. Those
tools that do support memory evolution analysis often present the
raw data in tables and do not employ visualization techniques.
This is unfortunate, since domains such as software evolution and
program comprehension have shown that using graphical means
can help users in understanding and interpreting systems and their
growth [CZvDR09, WLR11, FKH15, FFHW15, FKH17, BAB18].

In this paper, we tackle both of the mentioned problems by pre-
senting an approach to visualize the heap memory evolution over
time using tree visualizations. In order to create useful heap vi-
sualizations, the heap objects have to be brought into a suitable
structure first. Many tools group heap objects based on a certain
property (e.g., type or allocation site). Using multiple grouping
criteria results in a hierarchical grouping structure, i.e., a mem-
ory tree [WLM17, WM18]. We record memory traces that allow
us to create memory trees of a monitored application at multiple
points in time, each representing the state of the heap at a certain
point in time. In this work, we present a time travel visualization
approach that enables users to step through the individual points
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in time, as well as a timeline visualization approach that visualizes
the heap at multiple points in time in juxtaposition side-by-side.
This way, we enable users to recognize trends in the memory be-
havior of the monitored application to identify accumulating object
groups, thereby gaining new insights that help to locate and resolve
memory leaks. The contributions of this paper are:

• a suggestion of tree visualizations suitable for memory visual-
ization based on a requirements catalog (Section 3).
• an approach to visualize a single heap state using the previously

selected tree visualizations (Section 4).
• two novel approaches to visualize the evolution of the heap

over time: the time-travel-based approach (Section 5.3) and the
timeline-based approach (Section 5.4).
• an implementation of the presented techniques in the memory

monitoring tool AntTracks (Section 6).
• two memory leak analysis case studies that demonstrate the ap-

proach’s feasibility and applicability (Section 7).

2. Background

This section explains how our approach collects memory data and
how this data is transformed to be suitable for visualization. As
the approach has been integrated into AntTracks, this section gives
a short overview of the tool. AntTracks consists of two parts, the
AntTracks VM [LBM15,LBF∗16,LBM16], a virtual machine based
on the Java Hotspot VM, and the AntTracks Analyzer, a trace-based
memory analysis tool [WLM17, WM18]. We chose this tool since
its source code is publicly available [Wen20] and the authors al-
ready had prior experience with its code base.

2.1. Trace Recording

While heap dumps are good enough to perform analyses at a single
point in time, they fall short compared to continuous memory trac-
ing approaches when performing analyses over time [WGM19a].
Thus, the AntTracks VM records memory events such as object
allocations or objects moves during garbage collection and stores
them in a trace file [LBM15]. This approach introduces a run-time
overhead of about 5%, but provides more fine-grained memory in-
formation than heap dumps. To keep the size of the trace file low,
the AntTracks VM tries to avoid storing redundant data [LBM16].

2.2. Heap State Reconstruction and Memory Trees

The AntTracks Analyzer uses the recorded trace file as input to
reconstruct the memory data and provides various features to ana-
lyze this data. By incrementally parsing the recorded trace file, the
tool is able to reconstruct a heap state for each garbage collection
point [BLM15]. A heap state is a set of heap objects that were live
in the monitored application at a certain point in time. Properties
such as the address, type, allocation site, and allocating thread can
be reconstructed for each heap object.

One of the core features of the AntTracks Analyzer is to perform
object classification and multi-level grouping [WLM17, WM18].
This approach groups the heap objects into a hierarchical memory
tree based on a user-defined set of criteria (called classifiers), e.g.,
based on their types, allocation sites, or allocating threads. Every

node in such a tree represents a set of objects that share the same
properties, also called an object group. An exemplary memory tree
created using the allocating thread classifier and type classifier is
depicted in Figure 1. The root node of the memory tree represents
the whole heap, every node represents an object group. For exam-
ple, the node T1 represents objects 0, 1 and 2, which were allocated
by thread T1. The Integer node below T1 represents objects 0 and
1, which were allocated by thread T1 and are of type Integer.

Heap

T1 T2

Integer String String

1. Classify by 
allocating thread

2. Classify by type

… Tree node … Object

0 1

i

2 4

40 1 32

0 1 32 4

3

Figure 1: A memory tree that resulted from first grouping all ob-
jects by their allocating threads and then by their types.

3. Tree Visualizations

Memory traces enable reconstructing a vast amount of information
about all heap objects that have been live at some point in time in
the monitored application. Since presenting this data with raw num-
bers would most probably overwhelm the user, we chose tree visu-
alizations as a means of data visualization [HBO10]. Data visual-
ization can help to convey information faster [KK91, WGK10] and
can facilitate the identification of patterns [War13, Mur13] which
can lead to new insights [War13]. This section discusses different
properties of tree visualization and presents a requirements catalog
we used to select two tree visualizations that seem to be adequate
for an interactive heap evolution visualization.

3.1. Tree Properties and Requirements Catalog

Tree visualizations are the most common type of visualization to
depict hierarchies such as memory trees [SZ00]. Consequently, am-
ple research has been performed on tree visualizations, which re-
sulted in a vast number of tree visualization techniques. For exam-
ple, treevis.net [Sch11] lists more than 300 publications on
tree visualizations. However, not all tree visualization techniques
are suitable for visualizing the heap memory evolution over time.

In general, different tree visualizations use different approaches
to display a tree’s content information as well as its structural infor-
mation. Content information associates data of the underlying tree
nodes to visual attributes of the nodes (such as node size, color,
or transparency). Structural information concerns the tree’s hier-
archy and can either be expressed explicitly or implicitly [JS91] .
Explicit visualizations, also called node-link visualizations, use ex-
plicit graphical elements such as lines between nodes to indicate re-
lationships. Implicit visualizations, also called space-filling visual-
izations, indicate the relationships of the nodes via spatial arrange-
ment, e.g., containment [SS06]. Various works provide further and
more detailed taxonomies on tree visualizations [Sch11, STLD20].

To identify tree visualizations suitable for memory evolution vi-
sualization, we define four requirements that are vital to help users
in gaining insights into the heap’s evolution over time.
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Figure 2: Four different tree visualization techniques depicting the same memory tree.

1. A node’s content information (e.g., its number of heap objects)
should at least be represented by size, following the visualiza-
tion metaphor more is bigger [Lak94, HHK∗17].

2. Updating hundreds of nodes should be feasible in real-time
since our approach revolves around an interactive visualization.
It must not involve inconvenient latency since this complicates
making observations and drawing generalizations [LH14]. Fur-
thermore, it has been shown that users tend to use an interactive
system less often if it exhibits interaction latency [Bru09].

3. Since we want to make the tool accessible to novice users, the
visualization has to be easy to understand, even for inexperi-
enced users. Explicit explanation should not be necessary. Thus,
we do not search for novel and experimental visualization tech-
niques, but rather want to use visualizations that have been em-
pirically proven to be effective, efficient and easy to use.

4. The tree visualization has to support a stable layout of evolving
data over time. As Hahn et al. [HTMD14] state layout stability is
considered essential for [...] visual analysis tasks such as com-
paring hierarchies and attributes of such hierarchies’ nodes,
and tracking changes to hierarchies over time, which are com-
mon tasks in memory analysis. When visually exploring data,
users create cognitive maps that are based on spatial relations
and attributes of the presented data [Kit94]. Consequently, we
look for visualizations that support a stable layout, i.e., a layout
that requires few changes to the user’s cognitive map as the spa-
tial relations mostly stay intact when updating the visualization.

3.2. Exemplary Tree Visualizations

Figure 2 shows four different tree visualizations, all of which depict
the same tree. This memory tree was generated by grouping all heap
objects by their types, and all objects of the same type by their al-
location sites. The gray Heap root node represents the whole heap,
nodes on the first level represent different types. We can see that
the heap consists of objects of the types Pers (blue), String (or-
ange), and Buf (green). In Figure 2b through Figure 2d we can fur-
ther see that 50% of the heap is taken up by objects of type Pers.
On the second level we can see that the Pers objects have been
allocated in four different methods, most of them in method a().

3.3. Selection of Tree Visualization Techniques

Most explicit visualizations (such as the node-link diagram in Fig-
ure 2a) do not use variable-sized nodes, making it hard to distin-

guish nodes that represent few or many objects. As this contradicts
our first requirements, no explicit visualizations were chosen for
our approach.

We also excluded visualizations that require complex layout cal-
culations, as they cannot be updated fast enough to not disturb the
users during analysis (requirement three). Examples for excluded
visualizations encompass variational circular treemaps [ZL15] or
GosperMaps [AHL∗13], since calculating their layout based on a
few hundred nodes already takes seconds.

To fulfill the third requirement, we explored existing study re-
sults. Barlow and Neville [BN01] performed two experiments to
compare the performance of icicle visualizations, tree ring visual-
izations (a visualization similar to the sunburst visualization) and
treemap visualizations. They found that icicle and tree ring both
worked quite well, while treemap worked significantly worse than
the other tree visualizations. Cawthon and Moere [CM07] con-
ducted an online survey to evaluate the aesthetics and task perfor-
mance of eleven visualization techniques. With regard to aesthet-
ics, sunburst was the clear winner, while in terms of correctness
and response time, both sunburst and icicle were among the best
techniques. Treemap again ranked among the worst techniques.

The fourth requirement, i.e., that the chosen visualizations have
to support stable layouts, is discussed in more detail in Section 5.1.

As icicle and sunburst fulfill all our requirements and consis-
tently ranked among the best tree visualization techniques in the
discussed studies, both were chosen to be used for our heap evo-
lution analysis. Consequently, we chose to not include treemaps
due to their negative study results. Nevertheless, treemap algo-
rithms are still useful. For example, they are successfully used to
generate layouts for software maps and software cities [LSDT19]
such as CodeCity [WL07, WLR11], SynchroVis [WWF∗13], Ex-
plorViz [FKH17], or Memory Cities [WMM19, WMM20].

3.4. Chosen Tree Visualizations

This section shortly explains the sunburst and icicle visualizations
that were chosen to be part of our heap visualization approach.

Sunburst As shown in Figure 2c, sunburst is a radial space-filling
visualization [SZ00]. In a sunburst, the root node of the hierarchy is
depicted as a circle in the center of the visualization. This circle is
surrounded by multiple levels of circular ring segments where each
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ring segment represents a tree node. The tree hierarchy is moving
outwards, i.e., each tree level is further away from the center. The
sunburst visualization is adjacency-based, meaning that the chil-
dren of a node are positioned next to each other on the next level
within the angular sweep of their parent. The angular size of the
segment is based on an attribute of that node, in our case the num-
ber of objects or bytes of the respective heap object group.

Icicle Icicle is another space-filling visualization [HBO10]. Simi-
lar to sunburst, it is adjacency-based, meaning that the children of
each node are positioned next to each other on the next level within
the extent of their parent. In a horizontal icicle [BNK16] (as shown
in Figure 2d), each rectangle has the same width and its height is
based on some attribute of its respective tree node.

4. Heap State Visualization

A memory tree, i.e., the result of grouping heap objects based on
common properties, is the basis for our heap state visualization.
Figure 3 shows an example of the same memory tree being dis-
played in our tool, once as an icicle and once as a sunburst.

Problems that can arise are that memory trees can be too wide or
too deep to be visualized as a whole. For example, real-world ap-
plications use objects of hundreds of different types, thus grouping
the heap objects by type would result in a tree with hundreds of sib-
lings, i.e., a wide tree. On the other hand, using multiple grouping
criteria may lead to a tree with lots of levels, i.e., a deep tree. Thus,
we apply tree pruning to narrow trees and provide a drill-down fea-
ture to hide deep tree levels by default. This section discusses these
techniques in more detail.

Figure 3: Screenshots of a memory tree visualized in our tool, once
as an icicle and once as a sunburst.

4.1. Tree Pruning

The goal of tree pruning is to keep only the most significant nodes
and to hide less important ones. In memory leak analysis, we are in-
terested in nodes that represent large object groups, as their objects
potentially accumulated due to a memory leak. Thus, unimportant
smaller object groups can be merged. In our implementation, we
sort the child nodes of every node by their size (i.e., by their ob-
ject count or byte count) and (1) keep the largest child nodes until
they represent 90% of the objects on the current tree branch, yet
we (2) keep a maximum of 9 child nodes. The remaining nodes are
merged into an artificial “Other” node.

4.2. Drill-Down

As the screen space is limited, it is neither feasible nor reasonable to
display the full hierarchy of deep trees. Consequently, we decided
to only display two levels below the root node by default, with
the possibility to drill-down into deeper tree branches. By click-
ing on a non-leaf node, the selected node becomes the new root
of the visualization. Figure 4 depicts an icicle that was created us-
ing the allocating thread, type and allocation site classifiers. On the
left, the visualization is shown without drill-down. On the right, the
drill-down has been performed on the node Thread 2. The orange
and green rectangles highlight the node selected for drill-down as
well as its children. Additionally, the allocation sites of the objects
that were allocated by Thread 2 are now shown in the drilled-down
view. While in a drill-down, the user can click on the root node to
step up one level again.

Root Thread 1 Integer Integer main()

Drill down
into 
Thread 2

Thread 3

Date

Integer

String
Date

String

String

Date

foo()

main()

bar()
baz()

Thread 2

Thread 2

Figure 4: Drilling down into a node in the initial icicle (left) results
in the selected node becoming the root of the visualization (right).

4.3. Local View and Global View

Showing only a limited number of tree levels enables us to dis-
play the shown nodes with reasonable size. Thus, also more room
is available for text within the nodes (e.g., type names or method
names). However, limiting the number of shown levels comes at
the cost of losing the hierarchy overview, e.g., how many levels re-
ally exist. Users may also possibly lose track of their current drill-
down position within the hierarchy after multiple drill-down steps,
putting potential additional cognitive load on the user [TM04].

To tackle these problems, we use two synchronized visualiza-
tions next to each other. The first one, called the local view, only
displays the currently selected node and its two sublevels (as dis-
cussed before). Additionally, a second view called the global view
displays the full hierarchy, independent of the tree depth or the cur-
rently selected drill-down node. An example for this can be seen in
Figure 5, where an icicle is shown that was generated using the allo-
cating thread, type and allocation site classifiers. The local view on
the left shows the Thread 2 node (that has been selected via drill-
down) as the root as well as its two direct sublevels. The global
view on the right shows the full hierarchy, i.e., all tree levels, with
the drill-down node highlighted. The other tree branches are set
to semi-transparent. Having these two visualizations next to each
other solves the problems of losing track in the overall hierarchy.
To further make orientation easier, in addition to highlighting the
currently selected node, when the user hovers a node in the local
view we also highlight the respective node in the global view. This
makes it easier to spot its position within the hierarchy. Local and
global view (including an example) will be revisited in Section 5.3.
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Figure 5: The local view (left) shows the current drill-down node
as root and two more levels, while the global view (right) shows the
whole hierarchy with highlighted drill-down branch.

5. Heap Evolution Visualization

Visualizing the heap evolution means to not only visualize the state
of the heap at a single point in time, but to visualize its evolu-
tion across multiple points in time. To narrow down the search
space, users can select a time window of interest for visualiza-
tion [WGM19b]. Within the selected time window, a user-selected
list of classifiers is used to group all live heap objects into memory
trees at multiple points in time. This results in a sequence of mem-
ory trees, where each tree represents the heap state of the monitored
application at a certain point in time. In this section, we discuss pre-
processing steps to achieve a stable layout of the tree visualizations
across multiple points in time, as well as a technique to better visu-
alize absolute growth. Following, we present two novel approaches
to inspect the evolution of these trees: the time-travel-based ap-
proach and the timeline-based approach.

5.1. Stable Layout

Visualizations that show the evolution of a system have to be care-
fully designed. A major risk is that a small change in the underlying
data can result in vastly different layouts being generated. For ex-
ample, between two points in time it can happen that the order of
the tree nodes would change. Imagine two sibling nodes that are
ordered by size: when their size, e.g., heap object count, changes,
the order of their nodes changes as well. Such a behavior would
make it unnecessarily hard to keep track of the evolution of differ-
ent tree nodes. Thus, it is of utmost importance to ensure that our
tree visualizations exhibit a stable layout across all points in time.

Static Position Animation One way to achieve a stable layout is
the static position animation approach [LSP08, WL08]. In it, all
visual elements stay in the same place throughout the whole evolu-
tion and just grow and shrink within a fixed area reserved for them.
This area is calculated based on the maximum size that the element
will reach at any point in time. A downside of this approach is that
it wastes lots of space when an element is not at its maximum size
(or worse, not shown at all). Also, it may work well for certain vi-
sualizations such as treemaps but not for most other tree visualiza-
tions. For example, applying this approach to an icicle would lead
to empty spaces between the rectangles if they are not at their max-
imum size. As such a layout might rather distract than help users,
we decided to implement a relaxed version of it that we call relative
position animation.
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Figure 6: Preprocessing steps applied before heap evolution visu-
alization: (1) meta tree calculation, (2) sorting, and (3) pruning.

Relative Position Animation Relative position animation means
that the absolute position of a tree node might change when step-
ping through time, but the order of the nodes will stay the same.
This is achieved by assigning a sort position (based on a certain
criterion) to each node. This sort position is fixed across all points
in time and is calculated for all nodes once after all memory trees
have been computed. Weninger et al. [WMGM19] already used a
similar concept in another memory evolution visualization. There,
they used various sorting strategies, including start size sorting, end
size sorting and absolute growth sorting, which we also support for
our tree visualizations. When applying the start size or the end size
sorting strategy, all nodes in all trees are sorted by their object count
or byte count at the start or end of the inspected time window re-
spectively. Yet, we found that the absolute growth sorting strategy
is usually the most useful strategy for investigating memory leaks.
When applying the absolute growth sorting strategy, the absolute
growth of each node between the first and the last point in time
is calculated and stored in a meta tree. The first step in Figure 6
depicts how such a meta tree is calculated based on the nodes’ ab-
solute growth and how the meta tree is used to create a fixed sort
order. In the second step of Figure 6, all nodes in each tree are
sorted based on this sort order.

Tree Pruning Revisited In Section 4.1, we described tree prun-
ing for a single memory tree by keeping the largest tree nodes.
When pruning trees for heap evolution visualization, this pruning
is slightly adjusted. Now, those nodes that have been ranked first
based on the sorting strategy are preserved (instead of selecting
them based on the current size). This ensures as few node additions
and removals as possible between multiple points in time, while
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Figure 7: Unscaled visualizations may hide absolute growth.

T=1 T=2
Heap 100 200
— A 50 60
— B 30 60
— C 20 80

Heap
A

B
C Heap

A

B

C

t T=1 T=2
Figure 8: Scaled visualizations reveal absolute growth.

still benefiting from tree pruning. In the example in Figure 6, the
sorted trees are pruned in the third step by preserving the first two
nodes per tree, even though they might not be the biggest ones at
that point in time (as is the case for String in the tree at T = 2).

5.2. Absolute Growth Visualization

A problem of our chosen tree visualizations is that they use the
same amount of screen space to visualize any heap, independent of
the heap’s size. Figure 7 illustrates this problem. At time T = 1, the
heap has a size of 100MB, and at time T = 2 it has a size of 200MB,
i.e., it doubled in size. Yet, the resulting visualizations do not reflect
this. For example, by only looking at the tree visualizations, one
may think that the number of A objects shrank between the two
points in time, while the contrary is the case. Thus, we support to
display scaled visualizations, as shown in Figure 8. For example,
icicles are scaled along the y-axis based on the heap size at the
respective point in time, where the largest heap within the analyzed
time window uses the whole height. This should make it easier for
users to comprehend the absolute growth of the heap over time.

Unscaled visualizations, i.e., visualizations that use the whole
available space, are especially useful when text should be dis-
played. This is the reason why we use an unscaled visualization
as the local view of our tool, which will be explained in more detail
in Section 5.3. Scaled visualizations are more helpful when com-
paring the heap state of a system at multiple points in time, thus the
timeline-based approach (which will be explained in more detail in
Section 5.4) uses a scaled visualization by default.

5.3. Time-Travel-based Approach

In the context of visualization, Wettel and Lanza [WL08] define
time traveling as stepping back and forth through time while the
visualization updates itself to reflect the current state. Other mem-
ory evolution visualization approaches [WMM19, WMM20] also
successfully used time travelling as their means of evolution visu-
alization, which inspired us to also use this interaction technique
for our memory tree evolution visualization.

Figure 9 shows a snapshot of our tool. On the bottom half the
tool shows our time-travel-based visualization. It shows the heap
at the currently selected point in time, once in 1 local mode and

once in 2 global mode. Users are provided with 3 buttons to
go to the next and the previous heap state, as well as a slider to

Figure 9: Overview of our visualization tool. The bottom-left visu-
alization shows (1) the drilled-down local view of the heap, the
bottom-right visualization shows (2) the global view with high-
lighted drill-down node and highlighted hover node. On the top
right, the (3) time controls and the (4) visualization options can be
found. Beside them, the (5) timeline-based visualization is situated.

move through time. When stepping through time, the visualization
updates itself to show the memory tree at the given time. To make
these updates more appealing, we leverage various animation fea-
tures. For example, when the visualized data changes, the existing
nodes do not snap to their new location but their positions and their
sizes are gradually adjusted to match their new values, an approach
called tweening [Wil09]. If a node was selected for drill-down, this
selection is also preserved when stepping through time. At any time
during analysis, the user 4 can switch between the different vi-
sualizations, i.e., sunburst and icicle (beside being able to change
other settings). The visualizations are synchronized, i.e., the cur-
rent drill-down node (if any) and all user-chosen settings such as
metric (i.e., either object count or byte count) are preserved. Thus,
users are able to continue at the exact same state of the analysis at
which they were before they switched the visualization type.

5.4. Timeline-based approach

While the time-travel-based approach displays only one tree visu-
alization (or more specifically, two, i.e., the local and the global
view) at a time, the timeline-based visualization displays multiple
tree visualizations, each representing the heap at a different point in
time, in juxtaposition side-by-side. The name timeline-based stems
from the fact that users can select which points in time to visual-
ize by selecting them on a time-series chart, i.e., on a timeline. By
comparing these tree visualizations with each other, the user should
be able to detect changes over time in the heap composition.

In the upper left part of Figure 9 at 5 , our timeline-based vi-
sualization can be seen. We display the overall heap consumption
in a time-series line chart with clickable data points. Clicking them
toggles the visualization of the tree visualization of the heap at the
respective point in time. The tree at the currently selected point
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in time is always shown in the timeline. Since the visualizations
in the timeline view are quite small, it is not possible to display
reasonable sized text within the node elements. Nevertheless, com-
paring the visualizations with each other quickly provides insight
into the general evolution of the heap. Thus, the timeline-based vi-
sualization (overview) and the local view of the time-travel-based
visualization (detailed analysis) complement each other well.

Figure 10 shows another example of the timeline view with four
icicle visualizations, each depicting the heap state at a different
point in time. The trees have been generated using the type clas-
sifier, followed by the allocation site classifier. This example uses
scaled icicle visualizations, as explained in Section 5.2. Thus, the
growth of the grey rectangle reflects the heap’s overall growth. As
the first level represents objects of different types, we can see that
at any point in time the heap mostly consists of four different types.
Looking at the second level, we can see that the blue and the orange
types have two different allocation sites each (where one of the two
created far more objects than the other one), while the green and
violet objects all have been allocated within a single method each.

Figure 10: The timeline view shows the evolution of the heap over
time by showing its state at multiple points in time in juxtaposition.

6. Implementation Details

We implemented our approach as a Javascript web application that
heavily uses the D3.js library. This library provides many utility
functions to create hierarchical visualizations [BOH11, CPRG16].
The implemented web application was integrated into AntTracks,
which is a JavaFX-based application, using a JavaFX WebView. Af-
ter loading a trace file, the user can select a time window and a list
of classifiers which are used to classify the heap at multiple points
within the selected time window. Subsequently, the resulting se-
quence of memory trees is converted to JSON and sent to the tree
visualization web application via WebSockets [FM11, WPJR11].
Using this JSON interface, our visualization tool could also be
used by other monitoring tools than AntTracks. A prototype of the
tool can be found at http://bit.ly/STAG-MemoryTreeVizTool.
This prototype also contains the data used in the following
two case studies. A video explaining the tool can be found at
http://bit.ly/STAG-MemoryTreeVizVideo.

7. Case Studies

To demonstrate the feasibility of our approach, we searched online
for real-world applications that contain memory leaks to showcase
how to investigate them. In the following, we present the analysis
of a memory leak in the Commons HttpClient library, as well as the
analysis of a memory leak in the Dynatrace easyTravel application.

7.1. Commons HttpClient

Finding applications or libraries that contain memory leaks re-
quires lots of effort, since their source code and the needed build
tools have to be publicly available. To find the memory leak-
ing library discussed in this section, we browsed Apache’s issue
tracker [Apa20] for the keyword leak. This way, we found an old
issue regarding a memory leak in the Commons HttpClient library,
a library that can be used to send HTTP requests. As the library
was completely unknown to us authors, it seemed like a good ex-
ample to check if our tree visualizations are useful to detect ac-
cumulating objects even in an unknown application. We down-
loaded the affected version 3.0.1 [Apa06] and built a small driver
application [WM20], which creates HTTP connections in multiple
batches, where in each batch 10,000 connections are created and
deleted shortly thereafter.

To analyze the memory behavior of our driver application, we
recorded a memory trace and inspected it using AntTracks. One
would expect to see spikes in the memory usage, as it should go up
when the connections are created and should go down after their
deletion. Yet, contrary to this expectation, Figure 11 shows that the
memory consumption continuously rose. It seems as if only a part
of the objects that were allocated during every batch are actually
garbage-collected afterwards. To create the tree visualizations in
Figure 12 through Figure 14, we grouped the heap objects by type
and allocation site and sorted them by absolute growth.

We started our analysis by comparing the first two sunbursts in
Figure 12. The first sunburst depicts the heap at the first memory
consumption peak, while the second sunburst depicts the heap at
the first dip. What immediately catches one’s eye is that the percent-
age of the heap that is occupied by the red type (i.e., the memory
tree’s artificial Other node) shrank significantly between the peak
and the dip, while the relative amount of memory occupied by ob-
jects of the other types grew. Looking at the next two sunbursts we
can see that this trend continues. In the end, around 90% of the
heap are occupied by objects of only six different types. The local
view of the time-travel-based visualizations at this point in time is
also shown in Figure 13. All of these types except HostParams
(brown) are allocated at a single allocation site each (since all types
only have a single node on the second level).

To better grasp how the absolute sizes of the nodes develop over
time, the scaling feature of our icicle views is used in Figure 14.
Comparing the first icicle to the last icicle immediately indicates
that the heap grew several-fold. Furthermore, we again can see that
nearly the complete growth accounts to six different types.

To find the reason for the memory leak, the allocation
sites of the types that grew the most are inspected. We
can see that nearly all LinkedList objects were allocated
in the constructor of MultiThreadedHttpConnection-
Manager$HostConnectionPool, which is the type that grew
the third most (green). The main allocation site of that type is
the method MultiThreadedHttpConnectionManager$-
ConnectionPool::getHostPool(). This provided us with
enough information to investigate that method in the source code.
There we found that the MultiThreadedHttpConnection-
Manager$HostConnectionPool objects are added to a map,
yet they are not removed from that map when the connection is
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Figure 11: AntTracks reports continuous memory growth in
HttpClient.

Figure 12: Timeline view with unscaled sunbursts.

Figure 13: Final sunburst at the end of the time window.

Figure 14: Timeline view with scaled icicles.

deleted, resulting in a memory leak. This causes the connection
pool (and all other objects referenced by it) to accumulate over
time. Fixing the code by correctly removing the objects from the
map once the connections are closed gets rid of the memory leak
and leads to the expected memory behavior, as shown in Figure 15.

7.2. easyTravel

The second investigated application is Dynatrace easyTravel. Dy-
natrace focuses on application performance monitoring (APM) and

Figure 15: Expected spike pattern after fixing the memory leak.

distributes easyTravel as their state-of-the-art demo application. It
is a multi-tier application for a travel agency, using a Java back-
end. An automatic load generator distributed together with easy-
Travel can simulate accesses to the service. When easyTravel is
started, different problem patterns can be enabled and disabled, one
of which is a hidden memory leak somewhere in the backend.

Our heap evolution visualization grouped the heap at multiple
points in time using three classifiers: containing data structure,
type, and closest domain call site. The first classifier groups objects
based on the data structure(s) they are contained in. If an object is
contained in a single data structure it is assigned the group “<Data
structure type> (allocated in <Data structure allocation site>)”,
for example “HashMap (allocated in MyClass::myMethod())”, oth-
erwise it is either assigned the group “Not contained in a data struc-
ture” or “Contained in multiple data structures”. This way, single
data structures that keep alive a lot of objects can easily be detected.
The third classifier, i.e., closest domain call site, differs from the
normal allocation site classier as it returns the method call within
easyTravel’s code base that caused the allocation even if the allo-
cation itself is hidden inside a third-party framework.

Figure 16 shows the local view of our time-travel-based sunburst
visualization at three different points in time. The nodes within
the trees have been sorted by absolute growth, i.e., independent
of which sunburst we look at, we can automatically infer that the
object group represented by the blue segment (i.e., objects stored
in a ConcurrentHashMap data structure that has been allo-
cated in method findLocations() of class JourneySer-
vice) grows the most over the selected time window. This also
becomes apparent when comparing the sunburst at time t1 to the
sunburst at time t3. While all other data structure segments (inner
circle segments) shrink, the segment of the suspicious Concur-
rentHashMap grows strongly. By hovering over the circle seg-
ment at both points in time, we can find out that the Concurren-
tHashMap only makes up 11.8% of the heap at t1, while it makes
up 39.5% at t3.

Figure 17 shows the sunburst at t3, with a drill-down performed
on the ConcurrentHashMap. We can see that around 45% of
the objects stored in this data structure are each of type Location
and Date. Due to the drill-down, we can now also see the third tree
level, i.e., the closest domain call sites. Since Location as well as
Date both only have one child node, we know that all allocations
of these objects are caused by a single method each.

The collected information greatly helps to locate and fix the
problem. The method in which the Location objects depicted in
Figure 17 are added to the suspicious ConcurrentHashMapwas
easily found. Its name locationCache and its use in the code
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Figure 16: Heap evolution time travel through easyTravel shown at three different points in time t1, t2, and t3. This indicates a leak involving
a data structure of type ConcurrentHashMap that has been allocated in method findLocations() of class JourneyService
(inner blue circle segment). This data structure accumulates Location and Date objects over time (outer blue circle segments).

Figure 17: Drill-down into the suspicious Concurren-
tHashMap data structure at timestamp t3.

reveal that this map should serve as a cache for location searches.
Once a search has been executed for a given QueryKey, a list of
Location objects is stored. Subsequent searches for the same key
should find the respective entry in the map. However, QueryKey
neither implements hashCode nor equals. Thus, every request
(even for an already existing key) resulted in a cache miss, which
led to this typical memory leak. We were able to easily resolve this
problem by implementing the two mentioned methods accordingly.

8. Related Work

As ample work regarding tree visualizations has already been pre-
sented throughout this work, this section focuses on visualizations
in the domain of memory monitoring. Most memory visualizations

revolve around object (reference) graph visualization. A pure object
graph consists of nodes representing heap objects and edges that
represent the references between them [PNC98]. Even though such
a graph could be directly visualized as a node-link diagram [ZZ01],
the size of modern applications (having millions of live objects)
renders approaches that display every heap object as a separate
node infeasible. Thus, most approaches create ownership trees us-
ing the concept of object ownership [PNC98, Mit06, WGM18b]
based on the dominator relation [LT79]. Ownership trees can be
used to detect objects that keep many other objects alive.

Reiss [Rei09, Rei10] visualizes the aggregated ownership graph
in an icicle-like visualization using coloring, hatching, hue and sat-
uration. The approach by Hill et al. [HNP00,HNP02] plots the evo-
lution of ownership trees in a scalable tree visualization that shares
visual similarities with flame graph [Gre16a, Gre16b]. Mitchell et
al. [MSS09] apply further transformations on ownership trees to de-
tect costly data structures, which are then displayed in a node-link
diagram. Heapviz [AKG∗10, KAG∗13] is a tool that also displays
data structures on different levels of detail, arranging collapsible
nodes in a radial node-link diagram. The work by De Pauw and
Sevitsky [DPS00] is one of the few object graph visualization ap-
proaches that does not utilize the dominator relation. Instead, they
extract reference patterns, i.e., repetitive reference sequences in the
heap object graph, and visualize occurrences of these patterns. The
detection of these patterns can be restricted to those objects that
have been created between two heap snapshots (i.e., potentially
leaking objects), which then can be explored visually.

Our approach is orthogonal to these existing visualization ap-
proaches. Most object reference graph visualizations focus on the
analysis of the keep-alive relation between objects (e.g., which ob-
jects keep alive objects of type B). Yet, this expects the user to
already know which objects need to be inspected in more detail.
This is where our approach comes into play. It gives the user visual
information about which objects accumulate over time, as these are
the objects that are most likely the result of a memory leak. For
example, it may report that objects of type B that are allocated in
method MyClass:myMethod() consistently increased in num-
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ber over time. Thus, the main focus of this work lies in the detection
of growing heap object groups. Nevertheless, the information pro-
vided by our visualizations may not only help in detecting growing
object groups, but are also often already detailed enough to help in
fixing a leak. As shown in Section 7, knowing which kinds of ob-
jects accumulate, where these accumulating objects are allocated
and in which data structures they are stored (information that can
be provided by our approach) is often enough to be able to locate
and fix a problem in the source code. Thus, our approach can be
used on its own, or in combination with existing graph-based anal-
ysis techniques if additional information is needed or wanted.

9. Current Limitations and Future Work

In this section, we discuss current limitations of our work and our
tool and how we will address them in the future.

9.1. User Study

We believe that the presented techniques are useful to inspect mem-
ory evolution over time, especially for novice users that could oth-
erwise easily be overwhelmed if the visualized data was presented
in raw format or tables. We presented case studies to demonstrate
how tree visualization can be used in the domain of memory mon-
itoring and how users are able to understand and reason about the
memory behavior of real world applications. Even though existing
work suggests that tree visualizations are useful for a variety of
analysis tasks [WTM06, Teo07, BPP17], a more thorough evalua-
tion is planned. We want to conduct a user study to compare the
performance of participants who use tree visualizations to inspect
an application’s memory behavior with the performance of partici-
pants who use other graphical and textual representations.

9.2. Information Highlighting and Guidance

Even though information visualization has the potential to ease
the analysis of the underlying data, a person still requires a fair
amount of background knowledge and experience to perform mem-
ory analysis effectively. Especially novice users often lack this ex-
perience and consequently struggle when using memory analysis
tools [WGGS20]. In the future, we want to further increase the ac-
cessibility of our tree visualizations by making their use easier. The
tool should automatically detect suspicious memory behavior, e.g.,
growing object groups, and then guide the user through the analysis
by explaining the steps that have to be performed, alongside auto-
matic highlighting of important information in the visualization.

9.3. Reference Visualization

As shown, our current visualizations are a great way to detect and
inspect growth over time. Yet, once we know which objects accu-
mulate over time (often objects of a few different types allocated at
a few different allocation sites), most of the further analysis hap-
pens on the source code level in the IDE. Objects accumulate over
time if they are directly or indirectly referenced by a GC root. For
example, as presented in Section 7.1, objects of one type that were
stored in a map caused objects of multiple different types to accu-
mulate. Thus, the references between objects can be a vital infor-
mation in the analysis of memory leaks. In the future, we plan to

extend our tree visualization to support the depiction of references
between object groups, for example by using tree visualization that
support hierarchical edge bundling [Hol06, HCvW07, HdRFH12].

9.4. Data Structure Growth Visualization

Currently, our visualization tool can display the evolution of the
whole heap over time by grouping the live heap objects based on a
list of user-defined classifiers at multiple points in time. In the fu-
ture, we want to explore how to use the same tree visualization tech-
niques to display the results of existing analysis features that yet
lack visualization support. Inspired by related work on data struc-
ture visualization [AKG∗10, KAG∗13], one of AntTracks’s analy-
sis features that we want to enrich using our visualizations is its
automatic data structure growth analysis [WGM18a, WGM19a].
This feature automatically detects strongly growing data structures
in a monitored application and reports them to the user for more
detailed inspection using drill-down operations within a tree table.
Since the visualization of evolutionary data as well as drilling down
on the data are core features of our approach, we plan to integrate
our tree visualizations with the existing data structure analysis.

10. Conclusions

In this paper, we presented our approach to apply tree visualiza-
tions to facilitate the analysis of memory leaks. We discussed how
a heap state, more specifically its heap objects, can be grouped into
a memory tree, and how such a tree can be visualized using exist-
ing tree visualization techniques. We defined a requirements cata-
log that we used to select the sunburst and the icicle visualization
techniques as suitable to display heap memory. We then presented
techniques how to reduce a memory tree’s complexity by pruning it
and how a drill-down functionality can be used in the selected visu-
alizations to enable detailed analyses of the heap composition. Our
approach is not only able to display a single heap state, but can also
visualize the memory evolution over time in two different ways:
a timeline-based approach that displays the visualized state of the
heap at multiple point in time side-by-side, and a time-travel-based
approach for detailed analyses. Growing elements in these visual-
izations hint at an accumulation of heap objects that could be the
result of a possible memory leak.

We implemented our approach as a D3.js web application that
supports various convenience features such as animations when
moving between points in time. We presented case studies in which
we performed memory analyses of different applications to show
the approach’s feasibility and usefulness. We hope that our tree vi-
sualizations can aid experienced users as well as users with a lim-
ited background in memory analysis in visually inspecting and an-
alyzing the memory behavior of their applications.
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