
Memory Cities: Visualizing Heap Memory
Evolution Using the Software City Metaphor

Markus Weninger
Institute for System Software

Johannes Kepler University Linz
Linz, Austria

markus.weninger@jku.at

Lukas Makor
CD Laboratory MEVSS

Johannes Kepler University Linz
Linz, Austria

lukas.makor@jku.at

Hanspeter Mössenböck
Institute for System Software

Johannes Kepler University Linz
Linz, Austria

hanspeter.moessenboeck@jku.at

Abstract—Tool support is essential to help developers in un-
derstanding the memory behavior of complex software systems.
Anomalies such as memory leaks can dramatically impact appli-
cation performance and can even lead to crashes. Unfortunately,
most memory analysis tools lack advanced visualizations (espe-
cially of the memory evolution over time) that could facilitate
developers in analyzing suspicious memory behavior.

In this paper, we present Memory Cities, a technique to
visualize an application’s heap memory evolution over time using
the software city metaphor. While this metaphor is typically used
to visualize static artifacts of a software system such as class
hierarchies, we use it to visualize the dynamic memory behavior
of an application. In our approach, heap objects can be grouped
by multiple properties such as their types or their allocation
sites. The resulting object groups are visualized as buildings
arranged in districts, where the size of a building corresponds to
the number of heap objects or bytes it represents. Continuously
updating the city over time creates the immersive feeling of an
evolving city. This can be used to detect and analyze memory
leaks, i.e., to search for suspicious growth behavior. Memory
cities further utilize various visual attributes to ease this task.
For example, they highlight strongly growing buildings using
color, while making less suspicious buildings semi-transparent.

We implemented memory cities as a standalone application
developed in Unity, with a JSON-based interface to ensure easy
data import from external tools. We show how memory cites
can use data provided by AntTracks, a trace-based memory
monitoring tool, and present case studies on different applications
to demonstrate the tool’s applicability and feasibility.

Index Terms—Memory City, Software City, Software Map,
Visualization Metaphor, Heap Memory Evolution, Memory Leak
Analysis, 3D Visualization, Interactive Analysis System

I. INTRODUCTION

Modern programming languages such as Java use automatic
garbage collection to free the developer from the error-prone
task of allocating and freeing memory manually. To do so,
heap objects that are no longer reachable from static fields or
thread-local variables (so-called GC roots) are automatically
reclaimed by a garbage collector (GC). Nevertheless, memory
problems and anomalies such as memory leaks can still occur

The Memory Cities artifact (including binaries, data sets, video, and
instructions) is available at [1], a video of the tool can be found at http://ssw.
jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.mp4

This is the author’s version of the work. The definitive version was
published in the Proceedings of the IEEE Working Conference on Software
Visualization (VISSOFT 2020).

https://doi.org/10.1109/VISSOFT51673.2020.00017

even in garbage-collected languages. For example, memory
leaks happen if objects that are no longer needed remain
reachable from GC roots. A common cause for this is that
a developer accidentally forgets to remove objects from a
(long-living) container data structure [2]–[4]. Such objects
cannot be reclaimed by the garbage collector and will therefore
accumulate over time.

To inspect a memory leak, users have to search for groups
of objects that grow suspiciously over time. To perform such
inspections, memory monitoring tools such as VisualVM [5]
or Eclipse MAT [6] are often used. Unfortunately, many of
these state-of-the-art tools do not use graphical means (except
for time-series charts) to visualize the evolution of the heap.
Yet, the usefulness of advanced visualization techniques in
domains such as software evolution and program comprehen-
sion has already been shown in various user studies [7]–[14].
Thus, we think that developers can also profit from software
visualizations in the domain of memory monitoring.

Visualizations often rely on metaphors to serve as “a map-
ping from the concepts or artefacts required to be displayed in
the virtual world to their graphical representation” [15]. For
example, in their inspiring works, Knight and Munro [15],
[16] suggest the software world metaphor which consists of
countries, cities, districts, and even details such as gardens and
interior. Since this level of detail may not always be suitable
or needed, the software cities metaphor emerged. Wettel and
Lanza [17], [18] used software cities to visualize the static
structure of a software system, where buildings represent
classes, grouped into districts based on their packages. The
size of a building is determined by the classes’ number of at-
tributes and number of methods. They extended this approach
to also visualize the evolution of the code base over time [19]–
[21]. Subsequent software city approaches used this metaphor
to visualize the dynamic behavior of a software system based
on recorded traces, such as SynchroVis to visualize concur-
rency [22] and ExplorViz to visualize the communication and
dependencies between software components [11], [23]–[26].

Inspired by the widespread use of the software city
metaphor, we combined existing techniques with new ideas
to apply this metaphor to the domain of memory monitoring.
In this paper, we present Memory Cities, an approach to
visualize the heap evolution as an evolving software city.

http://ssw.jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.mp4
http://ssw.jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.mp4
https://doi.org/10.1109/VISSOFT51673.2020.00017

In memory cities, buildings represent heap object groups
that are arranged in districts based on shared heap object
properties such as type. The size of the buildings can change
over time, representing growing and shrinking heap object
groups throughout the lifetime of a monitored application. Our
goal is to ease the inspection and comprehension of memory
growth over time, a common task in memory leak analysis, by
providing an interactive and easy-to-understand visualization.
Based on a work-in-progress report [27], this paper discusses
the full visualization pipeline [28], [29] of memory cities, see
Section III. In detail, our scientific contributions encompass:

• a data model based on which memory cities can be
generated (Section IV),

• a discussion of the layout algorithm used (Section V),
• a mapping from memory metrics to visual attributes

(Section VI),
• interaction features such as time traveling, information

retrieval and a novel heap object reference analysis in
3D memory cities (Section VII),

• a fully functional 3D memory city visualization tool,
• various memory city case studies to showcase the ap-

proach’s feasibility and applicability (Section VIII).

II. BACKGROUND

Our memory city visualization has a well-defined JSON
interface to be independent of a specific data source. Yet,
to make this work more tangible, we regularly refer to data
imported from the memory monitoring tool AntTracks [30].

Thus, this section presents the basics of AntTracks, a fully
functional trace-based memory monitoring tool consisting of
the AntTracks VM [31]–[33] and the AntTracks Analyzer [3],
[4], [34]–[39].

A. Trace Recording by the AntTracks VM

The AntTracks VM (a slightly modified Java VM) records
events such as object allocations and object movements per-
formed by the GC during garbage collection and writes them
into a trace file [31]. Additionally, the VM collects information
about garbage collection roots and the references between
objects [33], [37]. To reduce the trace size, the VM does not
record any redundant data and applies compression [32].

B. Reconstruction in the AntTracks Analyzer

The AntTracks Analyzer incrementally processes the events
in a trace file, reconstructing the heap state, i.e., the set of
objects that were live in the monitored application, at every
garbage collection point [34]. For every heap object, various
properties can be reconstructed, including its memory address,
type, allocation site, allocating thread, GC roots, the heap
objects it references, and the heap objects it is referenced by.

The tool’s core mechanism is object classification and multi-
level grouping [35], [36]. A classifier groups heap objects
according to certain criteria such as type or allocation site.
Grouping the heap objects based on multiple classifiers results
in a hierarchical grouping tree. A common classifier combi-
nation is to group all heap objects by their types and then by

root

Object[] LinkedList

Stack:init() MyService:foo() X:meth()

1. Classify by type

2. Classify by
allocation site

… Tree node … Object

0 1 3

i

2 4

40 1 32

0 1 32 4

Fig. 1. A classification tree that first groups all heap objects by their types
and then by their allocation sites.

their allocation sites, as shown in Figure 1. Yellow rectangles
represent tree nodes and blue circles represent the objects that
were classified into the respective tree branch. For example,
the objects 0 to 3 are of type Object[], of which the objects
0, 1 and 3 have been allocated in Stack:init() and object
2 has been allocated in MyService:foo().

C. Common Techniques for Growth Visualization

As heap objects can be grouped by their properties, resulting
in a grouping tree, it is common to display such data in a tree
table, similar to the one shown in Table I.

TABLE I
A TREE TABLE VIEW REPRESENTING A HEAP STATE GROUPED BY TYPES

AND ALLOCATION SITES.

Objects
- Heap 100,000

- Type A 80,000
Allocated in foo() 70,000
Allocated in bar() 10,000

+ Type B 10,500
...

Some tools also provide features to visualize the differences
between two points in time. For this, they typically (1) take a
heap snapshot at two points in time, (2) group the heap objects
in both snapshots according to the same criteria, (3) calculate
the differences of the number of objects for every tree node,
and then (4) display these differences in a tree table. Even
though object groups that grew between two points in time
may hint at a memory problem, comparing two snapshots does
not reveal general trends in an application’s memory behavior.
To detect trends, the heap has to be compared at multiple
points in time, a feature that is not supported by most state-
of-the-art tools.

III. APPROACH

Our memory cities approach tackles the problem stated
at the end of Section II-C: It aims to provide an intuitive
and immersive visualization to inspect an application’s heap
evolution over time. This section discusses the approach in
general and presents its most important features and steps
(shown in Figure 2) that also serve as an outline for the rest
of the paper.

A. Overview

In general, a memory city displays a grouping tree, i.e.,
grouped sets of heap objects, as a 3D city visualization. Such a

AntTracks Analyzer

Memory
Trace

Monitored
Application

Memory Cities

b()a() c()

①
Window
selection

②
Group heap

states into trees

X

③
Meta trees

max growth

419 7

30

+3+8 -2

④
Layout based on

max tree

⑤
Center buildings at

given time

⑦
Color / Opacity
based on growth

⑥
render

3D
city

< >

⑧
Time

navigation

Play /
Pause

Inspect
references

Building
information

Interaction⑨
JSON /

WebSocket

a()

Fig. 2. Overview of our memory cities approach, corresponding to the typical visualization pipeline steps preprocessing, filtering, mapping, and rendering [29].

city consists of two types of structures: buildings and districts.
Buildings represent tree leaf nodes, where a building’s area
and height is determined by the number of objects / bytes
represented by the respective tree node. For example, if the
heap objects have been grouped by their types and allocation
sites, each building represents a set of heap objects of the
same type that have been allocated in the same method. These
buildings are then grouped into districts based on their parent
tree nodes, where districts can again be grouped into other
districts. An example of such a city can be seen in Figure 3.

To generate such a layout, a tree map algorithm [40], [41]
can be used. Figure 4 shows a tree map example, in which
the orange parent node (district) represents 40MB of Person
objects, with two yellow leaf nodes (buildings) representing
30MB allocated in method m2 and 10MB allocated in method
m1. As the set of classifiers that is used to group the heap
objects is user-defined in AntTracks, various memory cities
for different analysis purposes can be created. For example,
if the user is interested in the most frequent types of objects
allocated per thread, one could first group the heap objects
by their allocating threads (districts) followed by their types
(buildings). Memory cities can not only be inspected at a
single point in time, but the user can step back and forth in
time. This creates the feeling of an evolving city and enables
users to search for strongly growing buildings, i.e., heap object
groups that may be part of a memory leak. This task is further
supported by the use of color highlighting and opacity settings.

B. Steps

Figure 2 presents the steps that lead from a recorded
memory trace to the final memory city. The following list
shortly describes each of them; they are explained in more
detail throughout the rest of this work.
1 Once a memory trace file has been loaded by the

AntTracks Analyzer, the user sees the total heap memory
utilization over time in a time-series chart. In this chart, the
user can then select a suspicious time window, which may also
be automatically suggested by AntTracks [39].
2 Within the selected time window, the heap is grouped at

every garbage collection point according to a user-defined set
of heap object properties, resulting in a list of grouping trees.
3 Based on these grouping trees, various meta trees are

calculated. For example, a max tree stores the maximum
number of objects and bytes a tree node represents at any
point in time (in other words, the largest size a district or
building may reach), while a growth tree stores the growth of
each node between the first and the last grouping tree.
4 To reserve space for every building that will eventually

be displayed in the city, we use the object/byte counts stored
in the max tree as an input for the squarified tree map
algorithm [42] to generate the city’s general layout once. By
doing so, the generated layout ensures that every building
could fit into the city even if all of them reached their largest
size at the same point in time.
5 To display a memory city at a certain point in time, each

building’s base area is calculated at that point and the building
is then centered in the layout spot reserved for it.
6 Once every building has received its location, the build-

ing’s height is calculated and the corresponding cuboid is
placed in the 3D environment.
7 To ease the search for growing structures, we use the

growth information (stored in the growth tree) to highlight
certain buildings using color and opacity.
8 The user can step back and forth through time to visualize

the evolution of the city. When the user navigates between
points in time, steps 5 to 7 are executed for each new
point, and the visualization is updated. It is also possible to run
this animation automatically to watch the whole city evolution
without any user interaction needed.
9 Moving through time is not the only interaction possibility

in memory cities. Users can also gather more information
about a structure (i.e., a building or district) by hovering or
clicking it. Another feature is to show references between two
buildings. In the case of a memory leak, this feature helps
users to differentiate between buildings, i.e., object groups,
that cause other buildings to grow and those that grow because
their object’s are kept alive by others.

Fig. 3. An application’s heap visualized with memory cities shortly after
startup (left) and 2 minutes / 300 garbage collections later (right). Districts
are colored blue-ish based on their hierarchy level, buildings are colored from
gray to red based on their growth. The ten buildings with the strongest growth
are shown in solid mode, while the others have reduced opacity.

IV. DATA

This section discusses in more detail which data is needed
by software cities in general, how this need translates to
memory cities, and how we collect and process the needed
data using AntTracks.

A. General

In general, a software city is built upon tree data. In its most
basic form, each tree node contains a key for identification
and at least one value based on which the city is laid out.
Nevertheless, limiting each tree node to a single value also
massively limits the number of visual attributes a software
city can make use of. For example, a single value can be
represented by the size of a building, with no other attributes
such as color that could convey further information. If each
tree node contained three values, one of them could be used to
calculate a building’s base area, one could be used to calculate
the building’s height, and one could be used to determine the
building’s color, providing much more information for more
diverse inspections. Using more visual attributes can make the
visualization richer, yet complex mappings should be used for
complex tasks or expert systems only since the mappings may
become challenging to perceive [29]. Thus, when designing a
new software city for a certain task (such as memory cities
for the task of heap memory evolution analysis), the designers
first have to decide whether they want to develop an expert
system or a system that is also usable by novices.

B. Memory Cities

Since many expert memory monitoring tools already exist,
our focus is to make memory anomaly inspection easier
for novice users [43]. To achieve this, the goal of memory
cities is to provide enough details to enable the detection
of memory anomalies such as memory leaks, while keeping
the visualization simple enough to understand it without prior
training or explanations.

Once this decision is made, the next step is to define which
data is needed. In general, a memory city is based on a

Heap

Buffer
10MB

Person
40MB

X
20MB

m1()
10MB

m2()
30MB

m1()

10 MB

m2()

30 MB

Building
m2()

District
Person

Heap

Tree Tree Map

Fig. 4. We use tree mapping to lay out the buildings in memory cities.

tree in which each node represents a group of heap objects.
As already discussed in Section II, a grouping tree can be
constructed in AntTracks by applying a user-defined set of
classifiers on the heap to group its objects accordingly. There
are two ways to aggregate the heap objects in each node:
Either by counting the number of objects, or by counting the
number of bytes that the respective objects take up in the
heap. We decided that for every tree node both metrics should
be available for visualization in the memory city. Thus, our
memory city tool expects the following data in each tree node:

• A unique key to identify the object group
(e.g., “Heap#Person#m1”).

• A name to display (e.g., “m1()”).
• A role that specifies the object group’s grouping criteria

(e.g., “Allocation Site”).
• An object count value.
• A byte count value.
• A list of child nodes which is empty for leaf nodes.
Since the heap grows and shrinks over time while an

application is running (as new objects are allocated and others
are freed by the GC), a major goal is to visualize this memory
evolution. Especially, memory cities should help users to
detect object groups that grow suspiciously strong, as this
behavior hints at memory leaks. To this end, a memory city
may not only load a single tree, but also a list of trees
(representing heap states at garbage collection points), where
each tree has a timestamp to ensure correct ordering.

Once such a list of trees has been imported, the memory
city calculates two meta trees that are used to lay out the city
and to highlight buildings: The max tree stores the maximum
number of objects and bytes a tree node represents at any point
in time (in other words, the largest size a district or building
may reach), while a growth tree stores the growth of each node
between the first and the last grouping tree.

Our memory city visualization has explicitly been developed
to not depend on AntTracks’ grouping trees or any internals
of AntTracks. To achieve this, we provide two ways of how to
import data into our memory cities tool: Either by loading a
list of grouping trees in JSON format1 from disk, or by sending
a list of grouping trees in JSON format to the memory cities
tool via a WebSocket. Thus, any other memory monitoring
tool besides AntTracks could also use our memory cities tool

1JSON format example for list of grouping trees: http://ssw.jku.at/General/
Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.json

http://ssw.jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.json
http://ssw.jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.json

to visualize heap states and heap evolution, as long as the
tool can provide a list of trees with the previously mentioned
information per tree node.

V. LAYOUT

In the software city metaphor, artifacts are visualized as
buildings that are arranged in districts, which can again be
contained in other districts. In this section, we present how
memory cities are laid out using the squarified tree map al-
gorithm [42] and how we apply static position animation [44]
to achieve a stable layout over multiple points in time.

A. Single Tree

In general, tree maps implicitly visualize a tree’s hierarchy
via containment, i.e., the tree is visualized as a rectangle that
contains other rectangles, which again can contain rectangles
and so on. Thus, each rectangle represents a tree node, and
the rectangle’s area is determined by one of the tree node’s
values. In case of memory cities, this value is either the node’s
object count or byte count. Instead of using the value directly
(i.e., an increase of objects/bytes by a factor of 2 results in a
building with a base area twice as big), a mapping function
such as sqrt can be applied on the values beforehand.

To generate a tree map, we use a recursive algorithm that
is given a tree node and a rectangle, which is then divided
to fit the tree node’s child nodes [40], [41]. The alignment
and rectangle ratio vary between different tree mapping algo-
rithms [45]. We use the squarified tree map algorithm by Bruls
et al. [42], which tries to shape the area of each tree node as
an approximate square. This creates more realistic cities than
using elongated shapes. The resulting layout is then used to
generate the 3D city visualization by displaying leaf nodes
as buildings and inner nodes as flat districts, which will be
explained in more detail in Section VI.

B. Evolution Over Time

The visualization of the heap’s evolution over time, i.e.,
visualizing multiple trees one after another to inspect their
growth, needs special handling, as it is not enough to perform
a simple tree map layout whenever switching from one tree to
another. One of the reasons for this is that if tree nodes were
added or removed between two points in time, the respective
rectangles in the tree map layout also have to be added or
removed. This may happen if all objects of a certain type
were collected by the GC, which leads to the disappearance
of the respective tree node. Such a change in the tree structure
would result in a change of the overall arrangement of districts
and/or buildings. An unstable layout may cause users to lose
track of a certain building. It becomes hard to figure out if
and which two buildings in different heap states represent the
same tree node, a core requirement for visualizations that want
to visually express a system’s growth.

We apply static position animation [44] to overcome the
problem of an unstable layout. This technique creates a general
city plan in which all buildings and districts remain at the same
position at every point in time. To create this general city plan,

we use the max tree presented in Section IV-B as an input to
the tree map algorithm. Every node in this meta tree stores
the maximum number of objects / bytes represented by the
respective node at any time. This layout is calculated once
when the memory city is initialized and contains a rectangle
for every district and every building that will eventually be
shown. More specifically, it reserves space for every district
and building based on its largest possible area. Then, to
visualize the heap at a certain point in time, buildings are
centered in the space that has been reserved for them.

C. Tree Pruning

During the layout phase, it is also possible to prune the tree
to reduce the complexity of the resulting memory city. For
example, the tree map algorithm could be restricted to only
take into account the N largest child nodes per parent, thus
only reserving space for those buildings that represent larger
groups of heap objects. When the city is shown for a certain
point in time and no reserved space is found for a given tree
node, this means that the object group is not relevant enough
for the visualization and no building is shown for that node.

This feature is particularly useful for very wide trees. For
example, grouping the live objects of a real-world application
by type (e.g., String, HashMap, etc.) may result in hun-
dreds or thousands of tree nodes, many of which may only
represent a few objects [37]. Since one of the main goals
of memory cities is to support the visualization of memory
leaks, i.e., object groups that accumulate a large number of
objects over time, small object groups are not of interest to
the user and can be dropped. By default, memory cities have
tree pruning enabled, using a user-defined number of child
nodes to be shown.

VI. METRICS AND VISUAL MAPPING

As discussed in the previous section, the area of a building
in a memory city depends either on the number of objects
or the number of bytes its tree node represents. Yet, memory
cities also use a number of other visual attributes to convey
information to the user. This section discusses these attributes.

A. Districts

Similar to other software cities, districts in memory cities
are flat structures, i.e., their height is fixed and does not encode
information. Their purpose is to visualize the hierarchy of
the underlying grouping tree. Thus, the bottom-most district
always represents the whole heap, which may be divided into
(multiple levels of) districts, one for each inner node in the
underlying grouping tree. We use a linear color gradient from
dark blue to light blue to encode a district’s level.

B. Buildings

As shown in Figure 5, in addition to the area metric (which
is either based on the object count or the byte count a building
represents) we further utilize the visual attributes height, color
and opacity for each building. Each of these attributes will be
discussed in the following.

Districts
(hierarchy):

Height
metric

Area
metric

Color
metric

Opacity
metric

&

Height metric
(fixed)

Color metric
(based on level)

Fig. 5. Various visual attributes are used to express metrics.

1) Height: One of our goals was to achieve building sizes
that represent more-or-less realistic measures of real-world
buildings. Thus, for a building with an area of A square units,
we use 2 ∗

√
A units as its height. This results in buildings

that, if visualized with a perfectly squarified foundation, have
a height twice the size of the building’s side length. Mapping
units to meters, for example, a building with an area of 100
square meters (squarified side length of 10 meters) would have
a height of 20 meters, while a building with an area of 400
square meters would have a height of 40 meters. Calculating
the height based on the area means that both visual attributes
represent the same metric, either object count or byte count.
Mixing these metrics, i.e., using one metric for the area and
the other one for the height, is still up to future research, since
doing so did not yield satisfying results so far. For example,
having a node that represents few very large arrays could
result in (a) extremely narrow buildings that are quite tall (if
the object count was used for the area and the byte count
was used for the height) or (b) extremely wide buildings that
are quite flat (if the byte count was used for the area and
the object count was used for the height). Such unrealistic
buildings would distort a realistic city feeling and would also
be hard to interact with in certain situations (e.g., narrow tall
buildings are hard to see and click). A possible solution in
future work could be to use categorical data for the height,
e.g., mapping the byte count to a few fixed heights such as
tiny, small, medium, large and huge.

2) Color: Memory cities try to support users in understand-
ing memory evolution (especially memory growth) over time.
To make this task easier, memory cities encode the hitherto
growth of a building as color. To this end, we utilize the linear
color gradient shown in Figure 6.

Fig. 6. The color gradient used for buildings, ranging from gray (shrinking
/ no growth) over orange (medium growth) to red (strong growth).

Fig. 7. Three different city representations. Left: Every building fully opaque.
Middle: Five strongest growing buildings fully opaque, rest 40% opaque.
Right: Five strongest growing buildings fully opaque, rest fully transparent.

The gradient maps a value in the range [0, 1] to its respective
color. Given a certain tree node with the identifier key, the
access functions first(key) and cur(key) to query the node’s
value (either objects or bytes) at the first point in time and
at the current point in time, respectively, and the function
max() that returns the largest growth of any building stored
in the growth tree. The color can then be calculated using
gradient((cur(key)− first(key))/max()). Negative values
are mapped to gray and represent buildings that shrank.

3) Opacity: To further increase the user’s focus on strongly
growing object groups, the opacity of less important buildings
can be decreased. The growth tree contains information about
the growth between the first and the last point in time, i.e., the
overall growth. Since object groups, i.e., buildings, that grew
the strongest over the selected time window are those which
are most likely involved in a potential memory leak, it seems
reasonable to highlight those buildings and damp the others.
Thus, memory cities allow the user to turn on the building
opacity mode and select a number of N buildings that should
stay opaque. As shown in Figure 7, the N buildings with
the strongest growth (queried from the growth tree) stay fully
opaque, while all other buildings are drawn at a user-defined
reduced level of opaqueness (by default 40%). It is worth
mentioning that the metric on which this visual attribute is
based, namely the overall growth over the whole time window,
differs from the metric used to define the building’s color,
namely the relative growth since the start of the time window
up to the current point in time. It is thus possible for a building
to appear red and transparent at some point in time, i.e., strong
growth up to that point but no strong overall growth, if the
building shrinks again afterwards. Consequently, at the last
point in time, those buildings that are shown opaque also have
the most intense red color.

VII. INTERACTION

Users can navigate the camera through a memory city, they
can step back and forth in time, they can click and hover
structures to inspect them in detail, and they can display the
number of references between buildings, i.e., heap objects. All
of these features are explained in more detail in the following.

A. Navigation

The camera can be tilted, rotated and zoomed using the
mouse wheel. By dragging the mouse or using the keyboard,

Fig. 8. The keyboard shortcut B positions the camera into a bird’s eye view.

the user can move the camera. Memory cities also provide
keyboard shortcuts for typical tasks. For example, pressing the
B key moves the camera into a bird’s eye view (see Figure 8),
which can be useful to inspect the district structure.

B. Evolution Visualization: Time Travel

To visualize the memory evolution over time, we apply
time traveling. Wettel and Lanza [19] define time traveling
in the context of software cities as stepping back and forth
through the history of a system while the city updates itself to
reflect the current state. In our case, the history of the system
is the sequence of grouping trees. The time stepping can be
performed manually using buttons or a slider as well as using
the arrow keys on the keyboard. Additionally, the evolution
can also be animated automatically. During this animation,
every heap state is shown for a user-defined period of time
(0.5 seconds by default) before automatically switching to the
next one. Users can pause and restart the animation at any
point in time.

C. Structure Information

Hovering over a building or district displays information
about its respective heap object group. This information in-
cludes the path from the tree root, e.g., Heap → Type: Per-
son → Allocation Site: foo(), the number of objects and the
number of bytes, as shown in Figure 9.

Besides showing a structure’s information on hover, users
can also click on a structure to highlight it, which is also
shown in Figure 9. The structure stays selected when moving
through time to make it easier to track its evolution.

D. Heap Object References

A novel feature of memory cities is the visualization of
heap object references in a 3D environment. This feature is
especially useful to reveal the root cause of a memory leak,
since objects may accumulate over time even if they are not
directly kept alive by a GC root, but rather indirectly by other
objects, which would be the actual root cause of the problem.
To fix such a leak, we want to find out the root cause by
inspecting the references between the heap objects.

For example, imagine a memory leak caused by a
LinkedList<Person> where persons are only added but

Fig. 9. Information about a structure is shown when hovering it (gray tool
tip) or when selecting it with a click (selected building is highlighted in blue).

never removed. Further imagine that every person has a first
name and a last name, each stored as a String field.
Every addition to this list will result in six heap objects
to be created: One LinkedList$Node that references the
Person which in turn references two String objects which
again reference a char[] each. 1 in Figure 10 shows
how such an application’s memory city could look like if
we group all heap objects by package (districts) and type
(buildings). Since the application allocates more String
and char[] objects than Person and LinkedList$Node
objects, these two buildings are colored more intensively, even
though they are only a symptom of the memory leak and not
the root cause. To find the real root cause of the memory
leak, we can inspect the references between the buildings. 2
indicates that nearly all char[] instances are referenced by
String objects (indicated by a thick purple frustum between
the buildings). 3 shows the state of the memory city after
selecting the String building. We can see that a lot of
different types reference strings, but the most references come
from Person, which is selected in 4 . All persons are
referenced by LinkedList$Node objects. 5 contains a
very thin purple frustum which tells us that one of the nodes
(i.e., the list head) is kept alive by the LinkedList.

To create the reference visualization, we utilize two maps,
i.e., a points-to map and a pointed-from map, as shown in
Table II. These maps (that, similarly to the grouping trees, can
be imported as JSON files or via WebSockets) contain an entry
for every building. For each building, they store how many
objects the respective building references in other buildings,
or by how many objects of other buildings it is referenced
by, respectively. Based on these numbers and the building size
itself, the frustums between the buildings can be sized, i.e., the
more are objects involved, the bigger the visualized frustum.
Since we know for every reference between two buildings how
many objects are referencing and how many are referenced,

Fig. 10. Heap object reference analysis. The currently selected building in each step is highlighted in blue. Incoming references, i.e., references that keep
objects alive in the selected building are colored purple. Outgoing references, i.e., references to objects that are kept alive by objects in the selected building
are colored green. The more references there are between the objects of two buildings, the bigger the respective frustum.

TABLE II
A POINTED-FROM MAP AND A POINTS-TO MAP ARE USED AS DATA

SOURCE TO CREATE THE REFERENCES BETWEEN BUILDINGS

Pointed-From Map
String Person 10,000

Buffer 300
...

Person LinkedList$Node 10,000
...

Points-To Map
LinkedList LinkedList$Node 1
LinkedList$Node Person 10,000
Person String 20,000
String char[] 20,000
...

we can even scale the start and the end radius of the frustum
differently. For example, if 1% of the objects in building A
reference 80% of objects in building B, the radius of the
frustum attached to A will be much smaller than the radius at
B, indicating a few-to-many reference. This information can
especially be useful to detect (few) arrays that reference a lot
of other objects. Vice versa, this technique can also indicate a
many-to-few reference behavior, i.e., many objects share few
other objects. Currently, a reference between two buildings is
shown as a straight color-textured frustum, which might cut
through other buildings in its way. Future research includes
the evaluation of different reference placement techniques, for
example pipe routing [46] or hierarchical edge bundling [47].

VIII. CASE STUDIES

To explain how memory cities can be used and to argue
their usefulness and applicability, we present two case studies
in which we use them to investigate memory leaks. To this end,
we searched for real-world applications that contain memory
leaks. In the following, we present the analysis of a memory
leak in the Commons HttpClient library, as well as the analysis
of a memory leak in the Dynatrace easyTravel application.

A. Commons HttpClient

Finding applications or libraries that contain memory leaks
requires lots of effort, since their source code and the needed
build tools have to be publicly available. To find the memory

leaking library discussed in this section, we browsed Apache’s
issue tracker2 for the keyword leak. This way, we found an old
issue regarding a memory leak in the Commons HttpClient
library, a library that can be used to send HTTP requests.
As we did not know the library beforehand, it seemed like a
good example to check if memory cities are helpful to detect
proliferating objects even in an unknown application. We
downloaded the affected version 3.0.13 and built a small driver
application4 which creates HTTP connections in multiple
batches. In each batch, 10, 000 connections are created and
deleted shortly thereafter. One would expect to see spikes in
the memory usage, as it should go up when connections are
created and should go down after their deletion.

Contrary to this assumption, AntTracks reported a contin-
uous memory growth in the application. Thus, we decided
to inspect the heap evolution using memory cities. To do
so, we selected the type and allocation site classifiers to be
used at multiple GC points to generate grouping trees, which
were then imported into the memory cities tool. The left half
of Figure 11 shows the evolution of the resulting city over
time. As we can clearly see in the third picture, six buildings
grew strongly. Inspecting their type names and allocation sites,
i.e., the methods in which the object have been allocated,
already revealed interesting insights. In addition to that, the
right-hand side of Figure 11 shows the reference patterns we
observed. This made it clear that the leak has to do with
HostConnectionPool objects that are kept alive (purple
frustum) by HashMap$Node (i.e., the nodes of a HashMap).

Knowing this reference pattern and the name of the method
in which the accumulating HostConnectionPool objects
are allocated provides us enough information to investigate the
problem on the source code level. In the allocating method,
we find that the HostConnectionPool objects are added
to a map upon the creation of a new HTTP creation. However,
they are not removed from that map when the connection is
deleted, resulting in a memory leak.

2Apache’s issue tracker for HttpClient: https://issues.apache.org/jira/
projects/HTTPCLIENT/issues

3Commons HttpClient in version 3.0.1: https://mvnrepository.com/artifact/
commons-httpclient/commons-httpclient/3.0.1

4Driver application: https://github.com/NeonMika/httpclient-leak-driver

https://issues.apache.org/jira/projects/HTTPCLIENT/issues
https://issues.apache.org/jira/projects/HTTPCLIENT/issues
https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient/3.0.1
https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient/3.0.1
https://github.com/NeonMika/httpclient-leak-driver

Fig. 11. In the Commons HttpClient application, HostConnectionPools (that reference HostConfigurations and LinkedLists) are kept alive
because they are added to a HashMap but never removed.

Fig. 12. In easyTravel, Location objects accumulate over time, together with many Date objects and a few String objects that they reference.

B. easyTravel
The second investigated application is Dynatrace easy-

Travel. Dynatrace focuses on application performance mon-
itoring (APM) and distributes easyTravel as their state-of-the-
art demo application. It is a multi-tier travel agency appli-
cation, using a Java backend. A built-in load generator can
simulate accesses to the service. When easyTravel is started,
different problem patterns can be enabled and disabled, one
of which is a hidden memory leak somewhere in the backend.

To inspect the heap evolution over time, we grouped all
heap objects by type and closest domain call site, i.e., the
method within easyTravel that led to the allocation even if the
allocation itself was hidden inside a third-party framework.
Figure 12 depicts the resulting memory city as it evolves over
time. The two buildings that are clearly visible as strongest
contributors to the heap growth represent Location and
Date objects, each allocated by a certain method. To inspect
if this parallel growth is coincidental or caused by either of the
two, we inspected their references, as shown on the right-hand
side of Figure 12. This makes it clear that the Locations
reference the Date objects, as well as some Strings.

Using this information, we inspected the problem on the
source code level. We found that the method in which all
Location object are allocated is only called by the method
findLocations in class JourneyService. There, we
found a map that should have served as a cache for location
searches. Once a search has been executed, a QueryKey
instance is created and stored in the map, together with a
list of the Location objects (the backbone of these lists
can also be seen connected to the Location building via a
purple frustum in the last picture of Figure 12). Subsequent
searches for the same key should have found the respective
entry in the map. However, QueryKey neither implements

hashCode nor equals. Thus, every request (even for an
already existing key) resulted in a cache miss, which led to
this typical memory leak.

IX. RELATED WORK

In this section, we discuss the use of visualization metaphors
in general, as well as the application of the software city
metaphor in various domains.

A. Using Visualization Metaphors

The use of metaphors in information visualization is wide-
spread and has a long history. In general, metaphors such as
more is bigger (e.g., bigger visual artifacts represent more
of the underlying objects) or similarity is closeness (e.g.,
similar objects are positioned more closely to each other)
often unconsciously shape the way we think and act [48].
In the following, we present a few examples of visualiza-
tion that explicitly state the use of metaphors. For example,
Waguespack [49] used geometrical figures as a metaphor for
coding constructs to teach programming concepts. Boyle and
Gray [50] used 3D structures to visualize database query
results, using attributes such as size and position to convey in-
formation. More immersive and advanced usages of metaphors
include colored virtual reality tunnels for program analysis
and comprehension of concurrent programs [51], [52], or
interactive map-like interfaces to visualize academic research
fields and their similarity to each other [53].

B. Software Cities and Related Metaphors

As explained in Section I, Knight and Munro [15], [16]
promoted the use of metaphors for software visualizations,
especially their metaphor of a software world. As an alternative
to software worlds, 3D city visualizations emerged. While

early 3D city visualization contained a lot of details and so-
phisticated layouts [54], most modern software cities are based
on tree maps that have been extended to three dimensions [55].
New stable tree map algorithms [56], [57] may improve the
process of laying out software cities in the future.

Software cities and similar metaphors have been applied
in a variety of domains [29], [58]. For example, Langelier
et al. [44], [59] as well as Bohnet and Döllner [60] used
software cities to visualize quality metrics of software systems.
Wettel and Lanza [8], [17]–[21] used software cities to visually
explore the evolution of large-scale software system over
time. Steinbrückner and Lewerentz [61], [62] adopted and
extended this idea by visualizing the development history of
software systems using elevated city maps. Software cities
have been applied in the domains of concurrency visualiza-
tion [22], software component communication and dependency
visualization [11], [23]–[26], software performance visualiza-
tion [63], [64], business process visualization [65], and test
case analysis [66], [67]. Software cities have also been used
in virtual reality [13], [14], [64], [68] and have been integrated
into computer games such as Minecraft [69]. To the best of
our knowledge, we are the first to employ the software city
visualization metaphor in the domain of memory monitoring.

X. CURRENT LIMITATIONS AND FUTURE WORK

In this section, we discuss current limitations of our work
and how we will address them in the future.

A. User Study

We believe that memory cities are a useful metaphor to
inspect memory growth, especially for novice users that could
otherwise be easily overwhelmed if the visualized data was
presented in raw format or tables. We presented case studies to
demonstrate the usefulness of memory cities and to showcase
how they can be used to inspect real-world applications.
Nevertheless, a more thorough evaluation is still missing. We
thus plan to conduct a user study in the future to compare the
performance of participants who use memory cities with the
performance of those who use other tools.

B. Expert Mode

Currently, a primary focus of memory cities is to make
the task of memory leak analysis more novice-friendly. For
this, we rely on a small set of visual attributes, namely area,
height, position, color, and opacity. In their taxonomy of
software maps (the term software city is not uniquely defined
in the software cartography domain), Limberger et al. [29]
presented a large set of visual attributes that can be used
to map data to the software city metaphor. However, they
also mention that a complex mapping [...] should be used for
complex tasks or expert systems only. Thus, we plan to further
expand the feature set of memory cities in the future, including
the use of more complex visual mappings such as a more
advanced growth visualization using different object shapes
and juxtaposition. These “expert mode features” should not be
enabled by default but could be switched on by experienced

memory analysts. Memory cites can also be expanded to
support other typical memory analysis tasks such as memory
churn analysis [70], [71] or memory bloat analysis [72]–[76].

XI. CONCLUSION

In this paper, we presented our memory cities approach
to visualize memory monitoring data using the software city
metaphor. We discussed how a heap state, more specifically
its heap objects, can be grouped into a tree, and how such a
tree can be visualized as districts and buildings. Our approach
is not only able to display a single heap state, but can also
visualize the memory evolution over time by using static
animation positioning and time traveling. Our approach can
animate the memory evolution of an application as a city
that evolves over time, where growing buildings hint at a
proliferation of objects that could be the result of a possible
memory leak. Such growing buildings are further highlighted
using color and opacity.

We implemented our approach as a standalone 3D visualiza-
tion tool using Unity and presented case studies on different
applications to show its feasibility and usefulness. Memory
cities have especially been designed with a focus on easy ac-
cessibility even for novice users. We hope that they can assist
experienced users as well as users with a limited background
in memory analysis to visually inspect their applications for
memory anomalies and problems. We also think that memory
cities and their immersive visualizations could even be used
for other tasks besides typical memory analysis. For example,
they could be used in software engineering education to teach
students about the risks of careless use of memory in a less
theoretical but more tangible way.

XII. ACKNOWLEDGEMENT

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development, and Dynatrace is
gratefully acknowledged.

REFERENCES

[1] M. Weninger, L. Makor, and H. Mössenböck, “Memory Cities:
Visualizing Heap Memory Evolution Using the Software City Metaphor
- Artifact (Binaries, Data Sets, Video, Instructions),” 2020. [Online].
Available: http://doi.org/10.5281/zenodo.3991785

[2] G. H. Xu and A. Rountev, “Precise Memory Leak Detection for
Java Software Using Container Profiling,” ACM Trans. Softw. Eng.
Methodol., vol. 22, no. 3, pp. 17:1–17:28, 2013. [Online]. Available:
http://doi.org/10.1145/2491509.2491511

[3] M. Weninger, E. Gander, and H. Mössenböck, “Analyzing
the Evolution of Data Structures Over Time in Trace-
Based Offline Memory Monitoring,” in Proc. of the 9th
Symp. on Software Performance (SSP), 2018, pp. 64–
66. [Online]. Available: http://pi.informatik.uni-siegen.de/stt/39 3/01
Fachgruppenberichte/SSP18/WeningerGanderMoessenboeck18.pdf

[4] ——, “Analyzing Data Structure Growth Over Time to Facilitate
Memory Leak Detection,” in Proc. of the 2019 ACM/SPEC Int’l. Conf.
on Performance Engineering (ICPE), 2019, pp. 273–284. [Online].
Available: http://doi.org/10.1145/3297663.3310297

[5] Oracle. (2020) VisualVM. [Online]. Available: http://visualvm.github.io/
[6] Eclipse Foundation. (2020) Eclipse Memory Analyzer (MAT). [Online].

Available: http://unity.com/

http://doi.org/10.5281/zenodo.3991785
http://doi.org/10.1145/2491509.2491511
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/WeningerGanderMoessenboeck18.pdf
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/WeningerGanderMoessenboeck18.pdf
http://doi.org/10.1145/3297663.3310297
http://visualvm.github.io/
http://unity.com/

[7] B. Cornelissen, A. Zaidman, A. van Deursen, and B. V. Rompaey,
“Trace Visualization for Program Comprehension: A Controlled
Experiment,” in Proc. of the 17th IEEE Int’l. Conf. on Program
Comprehension (ICPC), 2009, pp. 100–109. [Online]. Available:
http://doi.org/10.1109/ICPC.2009.5090033

[8] R. Wettel, M. Lanza, and R. Robbes, “Software Systems as Cities:
A Controlled Experiment,” in Proc. of the 33rd Int’l. Conf. on
Software Engineering (ICSE), 2011, pp. 551–560. [Online]. Available:
http://doi.org/10.1145/1985793.1985868

[9] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller, “Comparing
Trace Visualizations for Program Comprehension Through Controlled
Experiments,” in Proc. of the 23rd IEEE Int’l. Conf. on Program
Comprehension (ICPC), 2015, pp. 266–276. [Online]. Available:
http://doi.org/10.1109/ICPC.2015.37

[10] F. Fittkau, A. Krause, and W. Hasselbring, “Hierarchical Software
Landscape Visualization for System Comprehension: A Controlled
Experiment,” in Proc. of the 3rd IEEE Working Conf. on Software
Visualization (VISSOFT), 2015, pp. 36–45. [Online]. Available:
http://doi.org/10.1109/VISSOFT.2015.7332413

[11] ——, “Software Landscape and Application Visualization for System
Comprehension with ExplorViz,” Inf. Softw. Technol., vol. 87, pp.
259–277, 2017. [Online]. Available: http://doi.org/10.1016/j.infsof.2016.
07.004

[12] A. F. Blanco, J. P. S. Alcocer, and A. Bergel, “Effective Visualization
of Object Allocation Sites,” in Proc. of the IEEE Working Conference
on Software Visualization (VISSOFT), 2018, pp. 43–53. [Online].
Available: http://doi.org/10.1109/VISSOFT.2018.00013

[13] S. Romano, N. Capece, U. Erra, G. Scanniello, and M. Lanza, “On
The Use of Virtual Reality in Software Visualization: The Case of
the City Metaphor,” Inf. Softw. Technol., vol. 114, pp. 92–106, 2019.
[Online]. Available: http://doi.org/10.1016/j.infsof.2019.06.007

[14] ——, “The City Metaphor in Software Visualization: Feelings,
Emotions, and Thinking,” Multim. Tools Appl., vol. 78, no. 23,
pp. 33 113–33 149, 2019. [Online]. Available: http://doi.org/10.1007/
s11042-019-07748-1

[15] C. Knight and M. Munro, “Virtual but Visible Software,” in Proc. of
the Int’l. Conf. on Information Visualisation, (IV), 2000, pp. 198–205.
[Online]. Available: http://doi.org/10.1109/IV.2000.859756

[16] ——, “Comprehension with[in] Virtual Environment Visualisations,” in
Proc. of the 7th Int’l. Workshop on Program Comprehension (IWPC),
1999, pp. 4–11. [Online]. Available: http://doi.org/10.1109/WPC.1999.
777733

[17] R. Wettel and M. Lanza, “Visualizing Software Systems as Cities,”
in Proc. of the 4th IEEE Int’l. Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT), 2007, pp. 92–99. [Online].
Available: http://doi.org/10.1109/VISSOF.2007.4290706

[18] ——, “Program Comprehension Through Software Habitability,” in
Proc. of the 15th Int’l. Conf. on Program Comprehension (ICPC), 2007,
pp. 231–240. [Online]. Available: http://doi.org/10.1109/ICPC.2007.30

[19] ——, “Visual Exploration of Large-Scale System Evolution,” in Proc.
of the 15th Working Conf. on Reverse Engineering (WCRE), 2008, pp.
219–228. [Online]. Available: http://doi.org/10.1109/WCRE.2008.55

[20] ——, “CodeCity: 3D Visualization of Large-Scale Software,” in Comp.
Proc. of the 30th Int’l. Conf. on Software Engineering (ICSE Comp.),
2008, pp. 921–922. [Online]. Available: http://doi.org/10.1145/1370175.
1370188

[21] R. Wettel, “Visual exploration of large-scale evolving software,”
in Comp. of the 31st Int’l. Conf. on Software Engineering (ICSE
Comp.), 2009, pp. 391–394. [Online]. Available: http://doi.org/10.1109/
ICSE-COMPANION.2009.5071029

[22] J. Waller, C. Wulf, F. Fittkau, P. Dohring, and W. Hasselbring,
“Synchrovis: 3D Visualization of Monitoring Traces in the City
Metaphor for Analyzing Concurrency,” in Proc. of the 1st IEEE
Working Conf. on Software Visualization (VISSOFT), 2013, pp. 1–4.
[Online]. Available: http://doi.org/10.1109/VISSOFT.2013.6650520

[23] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live Trace
Visualization for Comprehending Large Software Landscapes: The
ExplorViz Approach,” in Proc. of the 1st IEEE Working Conf. on
Software Visualization (VISSOFT), 2013, pp. 1–4. [Online]. Available:
http://doi.org/10.1109/VISSOFT.2013.6650536

[24] F. Fittkau, A. van Hoorn, and W. Hasselbring, “Towards a Dependability
Control Center for Large Software Landscapes,” in Proc. of the 10th
European Dependable Computing Conf., 2014, pp. 58–61. [Online].
Available: http://doi.org/10.1109/EDCC.2014.12

[25] F. Fittkau, P. Stelzer, and W. Hasselbring, “Live Visualization of Large
Software Landscapes for Ensuring Architecture Conformance,” in Proc.
of the European Conf. on Software Architecture (ECSA), 2014, pp.
28:1–28:4. [Online]. Available: http://doi.org/10.1145/2642803.2642831

[26] F. Fittkau, S. Roth, and W. Hasselbring, “ExplorViz: Visual Runtime
Behavior Analysis of Enterprise Application Landscapes,” in Proc. of
the European Conf. on Information Systems (ECIS), 2015. [Online].
Available: http://aisel.aisnet.org/ecis2015 cr/46

[27] M. Weninger, L. Makor, and H. Mössenböck, “Memory Leak
Visualization using Evolving Software Cities,” in Proc. of the
10th Symp. on Software Performance (SSP), 2019, pp. 44–
46. [Online]. Available: http://pi.informatik.uni-siegen.de/stt/39 4/01
Fachgruppenberichte/SSP2019/SSP2019 Weninger.pdf

[28] S. dos Santos and K. Brodlie, “Gaining Understanding of Multivariate
and Multidimensional Data Through Visualization,” Computers &
Graphics, vol. 28, no. 3, pp. 311 – 325, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0097849304000251

[29] D. Limberger, W. Scheibel, J. Döllner, and M. Trapp, “Advanced
Visual Metaphors and Techniques for Software Maps,” in Proc.
of the 12th Int’l. Symp. on Visual Information Communication
and Interaction (VINCI), 2019, pp. 11:1–11:8. [Online]. Available:
http://doi.org/10.1145/3356422.3356444

[30] M. Weninger et al. (2020) AntTracks. [Online]. Available: http:
//mevss.jku.at/AntTracks

[31] P. Lengauer, V. Bitto, and H. Mössenböck, “Accurate and Efficient
Object Tracing for Java Applications,” in Proc. of the 6th ACM/SPEC
Int’l. Conf. on Performance Engineering (ICPE), 2015, pp. 51–62.
[Online]. Available: http://doi.org/10.1145/2668930.2688037

[32] ——, “Efficient and Viable Handling of Large Object Traces,”
in Proc. of the 7th ACM/SPEC Int’l. Conf. on Performance
Engineering (ICPE), 2016, pp. 249–260. [Online]. Available: http:
//doi.org/10.1145/2851553.2851555

[33] P. Lengauer, V. Bitto, S. Fitzek, M. Weninger, and H. Mössenböck,
“Efficient Memory Traces with Full Pointer Information,” in Proc. of
the 13th Int’l. Conf. on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools (PPPJ),
2016, pp. 4:1–4:11. [Online]. Available: http://doi.org/10.1145/2972206.
2972220

[34] V. Bitto, P. Lengauer, and H. Mössenböck, “Efficient Rebuilding
of Large Java Heaps from Event Traces,” in Proc. of the
Int’l. Conf. on Principles and Practices of Programming on
The Java Platform (PPPJ), 2015, pp. 76–89. [Online]. Available:
http://doi.org/10.1145/2807426.2807433

[35] M. Weninger, P. Lengauer, and H. Mössenböck, “User-centered Offline
Analysis of Memory Monitoring Data,” in Proc. of the 8th ACM/SPEC
on Int’l. Conf. on Performance Engineering (ICPE), 2017, pp. 357–360.
[Online]. Available: http://doi.org/10.1145/3030207.3030236

[36] M. Weninger and H. Mössenböck, “User-defined Classification
and Multi-level Grouping of Objects in Memory Monitoring,”
in Proc. of the 2018 ACM/SPEC Int’l. Conf. on Performance
Engineering (ICPE), 2018, pp. 115–126. [Online]. Available: http:
//doi.org/10.1145/3184407.3184412

[37] M. Weninger, E. Gander, and H. Mössenböck, “Utilizing Object
Reference Graphs and Garbage Collection Roots to Detect Memory
Leaks in Offline Memory Monitoring,” in Proc. of the 15th Int’l. Conf.
on Managed Languages & Runtimes (ManLang), 2018, pp. 14:1–14:13.
[Online]. Available: http://doi.org/10.1145/3237009.3237023

[38] M. Weninger, L. Makor, E. Gander, and H. Mössenböck, “AntTracks
TrendViz: Configurable Heap Memory Visualization Over Time,”
in Comp. of the 2019 ACM/SPEC Int’l. Conf. on Performance
Engineering (ICPE), 2019, pp. 29–32. [Online]. Available: http:
//doi.org/10.1145/3302541.3313100

[39] M. Weninger, E. Gander, and H. Mössenböck, “Detection of Suspicious
Time Windows In Memory Monitoring,” in Proc. of the 16th
ACM SIGPLAN Int’l. Conf. on Managed Programming Languages
and Runtimes (MPLR), 2019, pp. 95–104. [Online]. Available:
http://doi.org/10.1145/3357390.3361025

[40] B. Johnson and B. Shneiderman, “Tree-Maps: A Space-Filling
Approach to the Visualization of Hierarchical Information Structures,”
in Proc. of the IEEE Conf. on Visualization, 1991, pp. 284–291.
[Online]. Available: http://doi.org/10.1109/VISUAL.1991.175815

[41] B. Shneiderman, “Tree Visualization with Tree-Maps: 2-D Space-Filling
Approach,” ACM Trans. Graph., vol. 11, no. 1, pp. 92–99, 1992.
[Online]. Available: http://doi.org/10.1145/102377.115768

http://doi.org/10.1109/ICPC.2009.5090033
http://doi.org/10.1145/1985793.1985868
http://doi.org/10.1109/ICPC.2015.37
http://doi.org/10.1109/VISSOFT.2015.7332413
http://doi.org/10.1016/j.infsof.2016.07.004
http://doi.org/10.1016/j.infsof.2016.07.004
http://doi.org/10.1109/VISSOFT.2018.00013
http://doi.org/10.1016/j.infsof.2019.06.007
http://doi.org/10.1007/s11042-019-07748-1
http://doi.org/10.1007/s11042-019-07748-1
http://doi.org/10.1109/IV.2000.859756
http://doi.org/10.1109/WPC.1999.777733
http://doi.org/10.1109/WPC.1999.777733
http://doi.org/10.1109/VISSOF.2007.4290706
http://doi.org/10.1109/ICPC.2007.30
http://doi.org/10.1109/WCRE.2008.55
http://doi.org/10.1145/1370175.1370188
http://doi.org/10.1145/1370175.1370188
http://doi.org/10.1109/ICSE-COMPANION.2009.5071029
http://doi.org/10.1109/ICSE-COMPANION.2009.5071029
http://doi.org/10.1109/VISSOFT.2013.6650520
http://doi.org/10.1109/VISSOFT.2013.6650536
http://doi.org/10.1109/EDCC.2014.12
http://doi.org/10.1145/2642803.2642831
http://aisel.aisnet.org/ecis2015_cr/46
http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Weninger.pdf
http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Weninger.pdf
http://www.sciencedirect.com/science/article/pii/S0097849304000251
http://doi.org/10.1145/3356422.3356444
http://mevss.jku.at/AntTracks
http://mevss.jku.at/AntTracks
http://doi.org/10.1145/2668930.2688037
http://doi.org/10.1145/2851553.2851555
http://doi.org/10.1145/2851553.2851555
http://doi.org/10.1145/2972206.2972220
http://doi.org/10.1145/2972206.2972220
http://doi.org/10.1145/2807426.2807433
http://doi.org/10.1145/3030207.3030236
http://doi.org/10.1145/3184407.3184412
http://doi.org/10.1145/3184407.3184412
http://doi.org/10.1145/3237009.3237023
http://doi.org/10.1145/3302541.3313100
http://doi.org/10.1145/3302541.3313100
http://doi.org/10.1145/3357390.3361025
http://doi.org/10.1109/VISUAL.1991.175815
http://doi.org/10.1145/102377.115768

[42] M. Bruls, K. Huizing, and J. J. van Wijk, “Squarified Treemaps,”
in Proc. of the Joint Eurographics and IEEE TCVG Symp.
on Visualization (VisSym), 2000, pp. 33–42. [Online]. Available:
http://doi.org/10.1007/978-3-7091-6783-0 4

[43] M. Weninger, P. Grünbacher, E. Gander, and A. Schörgenhumer,
“Evaluating an Interactive Memory Analysis Tool: Findings from
a Cognitive Walkthrough and a User Study,” Proc. ACM Hum.-
Comput. Interact., vol. 4, no. EICS, Jun. 2020. [Online]. Available:
http://doi.org/10.1145/3394977

[44] G. Langelier, H. A. Sahraoui, and P. Poulin, “Exploring the
Evolution of Software Quality with Animated Visualization,” in
Proc. of the IEEE Symp. on Visual Languages and Human-
Centric Computing (VL/HCC), 2008, pp. 13–20. [Online]. Available:
http://doi.org/10.1109/VLHCC.2008.4639052

[45] W. Scheibel, M. Trapp, D. Limberger, and J. Döllner, “A Taxonomy
of Treemap Visualization Techniques,” in Proc. of the 15th Int’l.
Joint Conf. on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP), 2020, pp. 273–280. [Online].
Available: http://doi.org/10.5220/0009153902730280

[46] G. Belov, W. Du, M. G. de la Banda, D. Harabor, S. Koenig, and
X. Wei, “From Multi-Agent Pathfinding to 3D Pipe Routing,” in Proc.
of the Int’l. Symp. on Combinatorial Search (SOCS), 2020, pp. 11–19.
[Online]. Available: http://aaai.org/ocs/index.php/SOCS/SOCS20/paper/
view/18513

[47] P. Caserta, O. Zendra, and D. Bodenes, “3D Hierarchical Edge
bundles to Visualize Relations in a Software City Metaphor,” in
Proc. of the 6th IEEE Int’l. Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT), 2011, pp. 1–8. [Online].
Available: http://doi.org/10.1109/VISSOF.2011.6069451

[48] G. Lakoff, Master Metaphor List. University of California, 1994.
[49] L. J. W. Jr., “Visual Metaphors for Teaching Programming Concepts,”

in Proc. of the SIGCSE Techn. Symp. on Comp. Sci. Ed., 1989, pp.
141–145. [Online]. Available: http://doi.org/10.1145/65293.71203

[50] J. Boyle and P. M. D. Gray, “The Design of 3D Metaphors for
Database Visualisation,” in Proc. of the 3rd IFIP 2.6 Working Conf.
on Visual Database Systems, vol. 34, 1995, pp. 185–202. [Online].
Available: http://doi.org/10.1007/978-0-387-34905-3 12

[51] B. Reitinger, D. Kranzlmüller, and J. Volkert, “The MOST Immersive
Approach for Parallel and Distributed Program Analysis,” in Proc.
of the Int’l. Conf. on Information Visualisation (IV). IEEE
Computer Society, 2001, pp. 517–522. [Online]. Available: http:
//doi.org/10.1109/IV.2001.942105

[52] B. Reitinger, D. Kranzlmüller, and A. Ferko, “Program Visualization
Through Visual Metaphors,” in Proc. of the Int’l. Conf. in Central
Europe on Computer Graphics, Visualization and Computer Vision,
2003. [Online]. Available: http://wscg.zcu.cz/wscg2003/Papers 2003/
J79.pdf

[53] A. Hiniker, S. R. Hong, Y. Kim, N. Chen, J. D. West, and C. R.
Aragon, “Toward the Operationalization of Visual Metaphor,” J. Assoc.
Inf. Sci. Technol., vol. 68, no. 10, pp. 2338–2349, 2017. [Online].
Available: http://doi.org/10.1002/asi.23857

[54] T. Panas, R. Berrigan, and J. C. Grundy, “A 3D Metaphor for Software
Production Visualization,” in Proc. of the Seventh Int’l. Conf. on
Information Visualization (IV), 2003, pp. 314–319. [Online]. Available:
http://doi.org/10.1109/IV.2003.1217996

[55] T. Bladh, D. A. Carr, and J. Scholl, “Extending Tree-Maps to Three
Dimensions: A Comparative Study,” in Proc. of the 6th Asia Pacific
Conf. on Computer Human Interaction (APCHI), 2004, pp. 50–59.
[Online]. Available: http://doi.org/10.1007/978-3-540-27795-8 6

[56] W. Scheibel, C. Weyand, and J. Döllner, “EvoCells - A Treemap
Layout Algorithm for Evolving Tree Data,” in Proc. of the 13th Int’l.
Joint Conf. on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP), 2018, pp. 273–280. [Online].
Available: http://doi.org/10.5220/0006617102730280

[57] M. Sondag, B. Speckmann, and K. Verbeek, “Stable Treemaps via Local
Moves,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 729–738,
2018. [Online]. Available: http://doi.org/10.1109/TVCG.2017.2745140

[58] P. Caserta and O. Zendra, “Visualization of the Static Aspects of
Software: A Survey,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 7,
pp. 913–933, 2011. [Online]. Available: http://doi.org/10.1109/TVCG.
2010.110

[59] G. Langelier, H. A. Sahraoui, and P. Poulin, “Visualization-
based Analysis of Quality for Large-scale Software Systems,”
in Proc. of the 20th IEEE/ACM Int’l. Conf. on Automated

Software Engineering (ASE), 2005, pp. 214–223. [Online]. Available:
http://doi.org/10.1145/1101908.1101941

[60] J. Bohnet and J. Döllner, “Monitoring Code Quality and Development
Activity by Software Maps,” in Proc. of the 2nd Workshop on
Managing Technical Debt (MTD), 2011, pp. 9–16. [Online]. Available:
http://doi.org/10.1145/1985362.1985365

[61] F. Steinbrückner and C. Lewerentz, “Representing Development
History in Software Cities,” in Proc. of the ACM Symp. on Software
Visualization (SOFTVIS), 2010, pp. 193–202. [Online]. Available:
http://doi.org/10.1145/1879211.1879239

[62] ——, “Understanding software evolution with software cities,”
Information Visualization, vol. 12, no. 2, pp. 200–216, 2013. [Online].
Available: http://doi.org/10.1177/1473871612438785

[63] K. Ogami, R. G. Kula, H. Hata, T. Ishio, and K. Matsumoto,
“Using High-Rising Cities to Visualize Performance in Real-
Time,” in Proc. of the IEEE Working Conference on Software
Visualization (VISSOFT), 2017, pp. 33–42. [Online]. Available:
http://doi.org/10.1109/VISSOFT.2017.25

[64] L. Merino, M. Hess, A. Bergel, O. Nierstrasz, and D. Weiskopf,
“PerfVis: Pervasive Visualization in Immersive Augmented Reality for
Performance Awareness,” in Comp. of the ACM/SPEC International
Conference on Performance Engineering (ICPE), 2019, pp. 13–16.
[Online]. Available: http://doi.org/10.1145/3302541.3313104

[65] S. Saito, “ProcessCity - Visualizing Business Processes as City
Metaphor,” in Proc. of the CAiSE Forum on Information Systems
Engineering in Responsible Information Systems, 2019, pp. 207–214.
[Online]. Available: http://doi.org/10.1007/978-3-030-21297-1 18

[66] A. Sosnówka, “Test City Metaphor as Support for Visual Testcase
Analysis Within Integration Test Domain,” in Proc. of the Federated
Conf. on Computer Science and Information Systems, 2013, pp. 1353–
1358. [Online]. Available: http://ieeexplore.ieee.org/document/6644194/

[67] ——, “Test City Metaphor for Low Level Tests Restructuration in Test
Database,” in Proc. of the 8th Int’l. Conf. on Evaluation of Novel
Approaches to Software Engineering (ENASE), 2013, pp. 141–150.
[Online]. Available: http://doi.org/10.1007/978-3-642-54092-9 10

[68] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring Software Cities
in Virtual Reality,” in Proc. of the 3rd IEEE Working Conf. on Software
Visualization (VISSOFT), 2015, pp. 130–134. [Online]. Available:
http://doi.org/10.1109/VISSOFT.2015.7332423

[69] G. Balogh and Á. Beszédes, “CodeMetrpolis - A Minecraft based
Collaboration Tool for Developers,” in Proc. of the IEEE Working
Conf. on Software Visualization (VISSOFT), 2013, pp. 1–4. [Online].
Available: http://doi.org/10.1109/VISSOFT.2013.6650528

[70] C. U. Smith and L. G. Williams, “Software Performance Antipatterns,”
in Proc. of the Int’l. Workshop on Software and Performance (WOSP),
2000, pp. 127–136. [Online]. Available: http://doi.org/10.1145/350391.
350420

[71] M. Peiris and J. H. Hill, “Automatically Detecting ”Excessive
Dynamic Memory Allocations” Software Performance Anti-Pattern,”
in Proc. of the 7th ACM/SPEC Int’l. Conf. on Performance
Engineering (ICPE). ACM, 2016, pp. 237–248. [Online]. Available:
http://doi.org/10.1145/2851553.2851563

[72] N. Mitchell and G. Sevitsky, “The Causes of Bloat, the Limits of
Health,” in Proc. of the 22nd Annual ACM SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2007, pp. 245–260. [Online]. Available: http://doi.org/10.
1145/1297027.1297046

[73] G. H. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky,
“Software Bloat Analysis: Finding, Removing, and Preventing
Performance Problems in Modern Large-scale Object-oriented
Applications,” in Proc. of the Workshop on Future of Software
Engineering Research (FoSER), 2010, pp. 421–426. [Online]. Available:
http://doi.org/10.1145/1882362.1882448

[74] G. H. Xu and A. Rountev, “Detecting Inefficiently-used Containers to
Avoid Bloat,” in Proc. of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2010, pp. 160–173.
[Online]. Available: http://doi.org/10.1145/1806596.1806616

[75] N. Mitchell, E. Schonberg, and G. Sevitsky, “Four Trends Leading to
Java Runtime Bloat,” IEEE Software, vol. 27, no. 1, pp. 56–63, 2010.
[Online]. Available: http://doi.org/10.1109/MS.2010.7

[76] G. H. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg,
and G. Sevitsky, “Scalable Runtime Bloat Detection Using Abstract
Dynamic Slicing,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 3, pp.
23:1–23:50, 2014. [Online]. Available: http://doi.org/10.1145/2560047

http://doi.org/10.1007/978-3-7091-6783-0_4
http://doi.org/10.1145/3394977
http://doi.org/10.1109/VLHCC.2008.4639052
http://doi.org/10.5220/0009153902730280
http://aaai.org/ocs/index.php/SOCS/SOCS20/paper/view/18513
http://aaai.org/ocs/index.php/SOCS/SOCS20/paper/view/18513
http://doi.org/10.1109/VISSOF.2011.6069451
http://doi.org/10.1145/65293.71203
http://doi.org/10.1007/978-0-387-34905-3_12
http://doi.org/10.1109/IV.2001.942105
http://doi.org/10.1109/IV.2001.942105
http://wscg.zcu.cz/wscg2003/Papers_2003/J79.pdf
http://wscg.zcu.cz/wscg2003/Papers_2003/J79.pdf
http://doi.org/10.1002/asi.23857
http://doi.org/10.1109/IV.2003.1217996
http://doi.org/10.1007/978-3-540-27795-8_6
http://doi.org/10.5220/0006617102730280
http://doi.org/10.1109/TVCG.2017.2745140
http://doi.org/10.1109/TVCG.2010.110
http://doi.org/10.1109/TVCG.2010.110
http://doi.org/10.1145/1101908.1101941
http://doi.org/10.1145/1985362.1985365
http://doi.org/10.1145/1879211.1879239
http://doi.org/10.1177/1473871612438785
http://doi.org/10.1109/VISSOFT.2017.25
http://doi.org/10.1145/3302541.3313104
http://doi.org/10.1007/978-3-030-21297-1_18
http://ieeexplore.ieee.org/document/6644194/
http://doi.org/10.1007/978-3-642-54092-9_10
http://doi.org/10.1109/VISSOFT.2015.7332423
http://doi.org/10.1109/VISSOFT.2013.6650528
http://doi.org/10.1145/350391.350420
http://doi.org/10.1145/350391.350420
http://doi.org/10.1145/2851553.2851563
http://doi.org/10.1145/1297027.1297046
http://doi.org/10.1145/1297027.1297046
http://doi.org/10.1145/1882362.1882448
http://doi.org/10.1145/1806596.1806616
http://doi.org/10.1109/MS.2010.7
http://doi.org/10.1145/2560047

