Towards Advanced Debugging Support
for Actor Languages

Studying Concurrency Bugs in Actor-based Programs

Carmen Torres Lopez

Stefan Marr, Hanspeter

Elisa Gonzalez Boix

Vrije Universiteit Brussel MoOssenbock Vrije Universiteit Brussel
Pleinlaan 2, 1050 Johannes Kepler University Pleinlaan 2, 1050
Brussel, Belgium Linz, Austria Brussel, Belgium

ctorresl@vub.ac.be

ABSTRACT

With the ubiquity of multicore hardware, concurrent and
parallel programming has become a fundamental part of
software development. If writing concurrent programs is
hard, debugging them is even harder. The actor model
is attractive for developing concurrent applications because
actors are isolated concurrent entities that communicates
through asynchronous message sending and do not share
state, thus they avoid common concurrency bugs such as
race conditions. However, they are not immune to bugs.
This paper presents initial work on a taxonomy of concur-
rent bugs for actor-based applications. Based on this study,
we propose debugging tooling to assist the development pro-
cess of actor-based applications.

Keywords

Concurrency; Bug; Debugging; Actor-based languages; Event-

100p concurrency

1. INTRODUCTION

Identifying the root cause of concurrency bugs is hard,
perhaps even an art, and providing tooling for the debug-
ging of concurrent programs is a challenge. Concurrent pro-
grams, unlike traditional sequential programs, often exhibit
non-deterministic behavior, which makes debugging more
complex. For instance, the communication or synchroniza-
tion between concurrent entities (e.g. processes, threads,
actors [2]) can be sensitive to timing, which makes it hard
to reproduce bugs. The debugging mechanisms itself may
also modify the behavior of the program while monitoring
its execution, hampering debugging even further [21]. This
is a phenomenon similar to the Heisenberg Uncertainty [17],
also known as probe effect [9].

Our first research question is what types of concurrency
bugs appear in complex concurrent programs. The answer to
this question depends on the concurrency model in which the
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

AGERE ’16 Amsterdam, Netherlands

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

firstname.lasthname@ijku.at

egonzale@vub.ac.be

program is written. Most existing surveys of concurrency
bugs focus on thread-based concurrency [19, 1, 5]. Currently,
there are no similar surveys for other concurrency models,
and the established terminology does not directly applied
to non-shared-memory concurrency models. Therefore, in
this paper we study concurrency bugs in message passing
concurrent software, in particular, actor-based programs.

The actor model is attractive for concurrent programming
because it avoids by design many well-known concurrency
issues related to thread-based programs. Since actors do
not share mutable state, programs cannot exhibit memory-
level race conditions, e.g., data races. In addition, deadlocks
can be avoided if communication between actors is solely
based on asynchronous message passing. However, programs
can still be subject to deadlocks if the actor-based language
provides blocking operations (such as in Erlang).

This paper focuses on exploring debugging tooling for con-
current programs written in one of the offsprings of the actor
model: communicating event loops [22]. To define the fea-
tures a debugger should provide, we first study which con-
currency issues appear in concurrent actor-based programs.
Second, we review which features debuggers for actor-based
languages currently provide. We include debuggers for Er-
lang,' Scala,? JavaScript [10], E[24] and AmbientTalk [4].
Finally, we propose new types of breakpoints to simplify
the identification of the root cause of concurrency bugs.

The contributions of this paper are:

e We conduct a systematic study of concurrency bugs in
actor-based programs. To the best of our knowledge
it is the first attempt to define a taxonomy of bugs in
the context of actor-based concurrent software.

e We present a catalog of features that a debugger for
actor-based programs should support to help the de-
bugging of lack of progress issues and message-level
race conditions.

2. CLASSIFICATION OF CONCURRENCY
BUGS IN ACTOR-BASED PROGRAMS

The actor model was first proposed by Hewitt [13]. Since
then, several additional variations of it emerged. The main
variants model actors as 1) active objects (e.g. ABCL [27],

"http://erlang.org/doc/apps/debugger /debugger_chapter.h
tml

http:/ /scala-ide.org/docs/current-user-doc/features.html

10.1145/1235
http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://scala-ide.org/docs/current-user-doc/features.html

AmbientTalk/1[7]), 2) processes (e.g. Erlang [3], Scala) or

3) communicating event loops (e.g. E[22], AmbientTalk/2 [25],

JavaScript). Depending on the guarantees provided by the
specific actor model at hand, programs may be subject to
different concurrency issues. In the remainder of this sec-
tion, we review the concurrency issues for all actor models
to get a full overview. We divide the study in two categories:
lack of progress issues and race conditions. An overview is
given in table 1.

Lack of Progress | Race Conditions
Thread- D.eadlock Data. race

Livelock Bad interleaving
based . . .

OgTAmS Atomicity violation

prog Order violation
Actor- Communication Bad message inter-
based deadlock leaving
programs Behavioral dead- | Message protocol vi-

lock olation

Livelock

Table 1: Taxonomy of concurrency bugs

2.1 Lack of Progress Issues

Deadlocks and livelocks are the most common concurrency
bugs that lead to a lack of progress in a concurrent system.
Compared to thread-based programs, these issues manifest
themselves differently in actor-based ones. A program is in a
livelock, when actors make local progress, but they prevent
the program from making global progress. For example,
actors that receive and execute messages but they do not
send messages to other actors, preventing global progress.

Deadlocks in thread-based programs happen when two or
more threads are suspended waiting for each other to finish
a computation. In contrast, a deadlock in an actor-based
program happen when two or more actors conceptually wait
on each other because the message to complete the next
step in an algorithm is never sent. In this case, there is no
actor which is actually suspended. We call this situation
a behavioral deadlock, because the mutual waiting prevents
local progress. However, these actors might still process
messages from other actors. Since actors never actually sus-
pend, detecting behavioral deadlocks may be much harder
than detecting deadlocks in thread-based programs.

1 play() —>

Ping = spawn (fun ping/0)
spawn (fun () =-> pong(Ping) end).

ping () —>
receive
pong —> ok
end.

© W N R W N

10 pong (Ping) =>
11 Ping ! pong,

12 receive
13 ping => ok
14 end.

Listing 1: Communication deadlock (from [6])

Certain variants of the actor model can be subject to the
traditional deadlocks known from thread-based programs.
For example, Erlang and Scala Actors framework [12] have
blocking receive operations, on the contrary of Akka 2,

3Lightbend Inc. Akka. http://akka.io

which receive operation is not blocking [11]. When the
receive operation is blocking, can lead to what in Erlang
is known as communication deadlocks [6]. A communication
deadlock occurs when an actor only has messages in its inbox
that cannot be received with the currently active receive
statement. Listing 1 shows a communication deadlock ex-
ample in Erlang discussed by Christakis and Sagonas [6]. In
line 12 the pong process is blocked because it is waiting for
a message that is never sent by the ping process, instead
the ping process returns ‘ok’.

2.2 Race Conditions

Since actors do not share memory and messages are pro-
cessed serially, low-level memory race conditions common
to thread-based programs cannot occur. In particular, actor
programs avoid low-level data races (i.e. simultaneous mem-
ory access errors), bad interleavings (also known as atom-
icity violations [23]), which refer to errors cause by over-
lapping execution of two threads), and order violations (i.e.
out-of-order memory accesses errors) [23].

Nevertheless, all actor-based programs can have high-level
race conditions related to the order or timing of messages.
We consider these high level to distinguish them from the
memory access-level ones. In particular, we identified bad
message interleavings and message protocol violations.

In the original actor model, when an actor sends a mes-
sage to a recipient actor, the message is placed in a mail
queue and is guaranteed to be eventually delivered by the
actor system. For distributed systems on top of Scala, Ac-
torFoundry, or AmbientTalk, however, in-order delivery of
the messages is not guaranteed, i.e. communication links
between actors are not enforced to work in a FIFO manner.
This can be the source of bad interleavings of messages. We
define a bad message interleaving as the condition when a
message is processed in between two messages which are ex-
pected to be processed one after the other, causing some
misbehavior of the application or even a crash.

Listing 2 shows an example of message sending between
two actors, Server and Client, where a bad message in-
terleaving can occur. In line 10, the Client sends an asyn-
chronous message to the Server to store the value 1. In
line 11, the Client does a call, which waits for a result,
to retrieve the value from the Server. This code can cause
problems if the server receives the first get and before the
set message. In this case, the values of v1 and v2 will be
inconsistent.
class Server extends Actor {
int value = 0;

@message void set (int v) { value = v; }
@message int get () { return value; }

class Client extends Actor {
ActorName server;

Client (ActorName s) { server = s; }
@message void start () {

10 send (server, "set", 1);

11 int vl = call(server, "get");

12 int v2 = call(server, "get");

13 assert vl == v2;

14 }

15 }

1
2
3
4
5}
6
7
8
9

Listing 2: Bad message interleaving (based on [16])

Bad message interleavings can also occur within a sin-
gle actor if programs can receive notifications for external
events, e.g. events from the network or sensors. Such issues

have been reported in the context of JavaScript’s event loop
concurrency model by Hong et al. [14].

Another kind of race condition related to message ordering
is what we call a message protocol violation. This issue can
appear when two or more actors exchange messages that are
not consistent with the intended protocol of an actor. This
issue is a generalization of bad message interleavings, and
is also known as ordering problems [16, 18]. They typically
are caused by actors only supporting a subset of all possible
message sequences. Messages that come out of order or in
unexpected interleavings can then cause inconsistent states
or high-level race conditions.

Listing 3 shows an example of message protocol viola-
tion in AmbientTalk. The example tries to transfer money
between two accounts, which are realized as actors. To en-
sure transactional semantics, the txMng transaction man-
ager actor is used. First, a transaction is started for the
two involved customers. Once the transaction is ready, i.e.,
when the resulting future is resolved (line 3), three mes-
sages are sent to the involved actors: withdraw, deposit,
and finishTransaction (lines 4-6). However, this exam-
ple does not use futures to make sure that withdraw and
deposit are finished before completing the transactions.

when: txMng<-startTransaction(cl, c2)@FutureMessage
becomes: { |tx]|

tx.from<-withdraw(10);

tx.to<-deposit (10);

txMng<-finishTransaction (tx);

}

[N

Listing 3: Message protocol violation example in
AmbientTalk

3. DEBUGGING TOOLS FORACTOR LAN-
GUAGES

This section reviews the state of the art in debuggers for
actor languages and identifies missing features that could
help developers to identify the root cause of concurrent bugs.

3.1 State of the Art

Causeway [24] is a post-mortem debugger for distributed
communicating event-loop programs in E [22]. It focuses on
displaying the causal relation of messages to enable devel-
opers to determine the cause of a bug. Causality is modeled
as the partial order of events based on Lamport’s happened-
before relationship [15].

REME-D [4] is an online debugger for distributed commu-
nicating event-loop programs written in AmbientTalk [25].
REME-D provides message-oriented debugging techniques
such as the state inspection, in which the developer can in-
spect an actor’s mailbox and objects, while the actor is sus-
pended. It also supports a catalog of breakpoints, which
can be set on asynchronous and future-type messages sent
between actors. Like Causeway, REME-D allows inspecting
the history of messages that were sent and received when an
actor is suspended, also known as causal link browsing [4].

In the context of JavaScript, the Chrome DevTools on-
line debugger supports Web Workers,* which are actors that
communicates with the main actor through message pass-
ing [10]. The Chrome debugger allows to pause workers. In

*https://www.w3.org/ TR /workers/

the case of shared workers it also provides mechanisms to in-
spect, terminate, and set breakpoints.> For debugging mes-
sages and promises on the event loop, Chrome also supports
asynchronous stack traces. This means, it shows the stack
at the point a callback was scheduled on the event loop.
Since this works transitively, it allows to infer the point and
context of how a callback got executed.

Erlang has an online debugger which supports line, con-
ditional, and function breakpoints. It also supports stepping
through processes and inspected their state.

Scala also features an online debugger supporting step-
ping, line and conditional breakpoints. Furthermore, it has
an extension to facilitate debugging of actor programs.® One
can follow a message send and stop in the receiving ac-
tor. Additionally, the debugger supports asynchronous stack
traces similar to Chrome [8].

3.2 Position Statement

Section 2 showed that actor-based programs are not im-
mune to lack of progress issues and race conditions. Those
concurrency bugs can thus cause a program to misbehave or
even to crash. Nonetheless, our literature study reveals that
actor-specific debugger features are rare.

REME-D allows online debugging based on message break-
points, stepping message sends, and inspecting message his-
tory. Causeway emphasizes tracking the causal relation of
messages for post mortem analysis. Scala’s and Chrome’s
online debugger provides asynchronous stack traces and the
Scala debugger features minimal message stepping.

We argue that these features are rather basic compared to
the possible complexity of concurrency bugs in actor-based
programs. Further research is needed in order to improve the
debugging process, in particular to browse and manipulate
message histories to combine them with online features such
as rich stepping and breakpoint options.

In order to help developers to more directly identify the
cause of bugs, we believe that it is necessary to increase the
flexibility of message breakpoints both on the sender and the
receiver side, enable syntax-token-level granularity of break-
points, together with recording the causality of messages.
For example, we believe that displaying the causal relation-
ships of messages might help identifying the concurrency
issue shown in listing 2 which illustrates a bad message in-
terleaving. Ideally, a visualization could also highlight based
on the source code that certain messages are independent of
each other, because there is no direct ordering relationship
between them.

4. KOMPOS: A DEBUGGER FOR COMMU-
NICATING EVENT-LOOP LANGUAGES

Kémpos is a breakpoint-based online debugger for pro-
grams written in communicating event-loop languages. It
is meant to be a research platform to experiment with new
debugger features that are meant to help developers to iden-
tify concurrency bugs in actor-based languages. Our cur-
rent prototype is built it for the SOMns language [20], a

Newspeak offspring implementing event-loop concurrency based

on the Truffle language implementation framework [26].

®http://blog.chromium.org/2012/04/debugging-web-worke
rs-with-chrome.htm

Shttp://scala-ide.org/docs/current-user-doc/features/asyn
c-debugger/index.html

https://www.w3.org/TR/workers/
http://blog.chromium.org/2012/04/debugging-web-workers-with-chrome.html
http://blog.chromium.org/2012/04/debugging-web-workers-with-chrome.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html

o & &

& \\i‘\o o¢ §°Q

O 2@
@ Fae & L
@ NN e QO\(\

Sender
Activation
Side

Receiver

Line number
Designation Conditional

Token

Before

execution
Objective
After

execution

Figure 1: Extension of REME-D’s breakpoint cat-
alog. Black dots represent features from REME-D,
gray dots represent features not added in Kémpos,
and blue dots are features new in Kémpos.

Kémpos builds on REME-D’s features and extends its
breakpoints catalog to support additional debugging sce-
narios. Figure 1 depicts the breakpoint types, which are
classified by the following three properties:

e The activation side determines the place where the
breakpoint is triggered. A sender-side breakpoint trig-
gers before the message is sent. A receiver-side break-
point triggers before the actor processes the received
message.

e The designation distinguishes how breakpoints are de-
fined. Line number and syntax token characterize break-
points based on source locations. Syntax token break-
points are especially useful to set breakpoints on the
message-send operator.

Conditional breakpoints are triggered when a user-
defined pre or post condition is fulfilled for a turn,
i.e., before or after a message is processed.

e The objective defines whether the goal of the break-
point is to halt the execution before or after a message
is processed.

In the remainder of this section, we discuss the new break-
points in Kémpos that go beyond the ones in REME-D.

Message breakpoint are defined on the asynchronous mes-
sage send operators. In listing 3 one could set for instance a
breakpoint on the <- operator in line 3. If it was defined for
a sender activation side, an actor’s execution is suspended
right before the message would be sent. If it was defined
with a receiver activation side, the actor’s execution is sus-
pended before the message is processed.

Distinguishing these two activation sides for message break-
points allows us to debug the sender side by inspecting
whether the message to be sent has the correct values, as
well as it enables us to debug the receiver side. The receiver
breakpoint allows us to see whether the expected actor re-
ceived the message and whether the actor is in the expected

state before processing the message. By distinguishing these
two breakpoints, developers have fine-grained control over
program execution, which hopefully helps to identify bugs
where the root cause is related to an actors state or behav-
ior. Such bugs could result in a wide variety of symptoms
including but not limited to lack of progress issues and race
conditions.

A message resolution breakpoint is defined on the opera-
tion that creates a future. In Kémpos, this means we can
put a breakpoint on SOMns’ asynchronous send operator,
or an explicit operation to create a future. The sender-side
breakpoint on futures pauses execution before the computed
value is used to resolve the future, i.e., before it is sent. Sim-
ilarly to REME-D’s message resolution breakpoints, this al-
lows developers to inspect the sender and its state after the
message is processed. The receiver-side breakpoint on fu-
tures, on the other hand, pauses the execution potentially
at many different places. All actors that have registered
a callback to be executed when the future is resolved will
be suspended before executing the callback. An actor may
be thus suspended more than once, once per each callback
it registered. Since SOMns features future pipelining, the
breakpoint also causes suspension of actors before process-
ing previously scheduled messages that are sent eventually
to the future’s result once becomes resolved.

S. CONCLUSION

Although the actor model avoids data races and deadlocks
by design, it is still possible to find lack of progress issues
and message-level race conditions on actor programs. Our
systematic review of concurrency bugs showed that actor-
based programs written in languages like Erlang and Scala
can exhibit communication deadlocks because the actor im-
plementation still features blocking operations. Such kinds
of communication deadlocks cannot happen in event loop
concurrency, but nevertheless, bad message interleaving and
message protocol violation can still occur.

When reviewing the state of the art on debugging support
for actor languages we observe that some debuggers provide
features based on setting message breakpoints, inspecting
the history of messages and support for asynchronous stack
traces. We argued that better tools for debugging concur-
rent programs are needed in order to identify the cause of
bugs. To this end, we propose Koémpos, an experimental
platform for online debugging concurrent programs based on
the communicating event-loop model. Kémpos propose an
extension of REME-D catalog, adding the possibility of stop-
ping at sender and receiver side of an asynchronous message,
and enabling syntax-token-level granularity. We believe that
those features could be very helpful when debugging actor
based programs.

In the future we will focus on finishing the implementation
of the breakpoint catalog and we will work on the combina-
tion of strategies such as recording the causality of messages
with some of the breakpoints implemented. We aim to ex-
plore the notion of a debugger that can adapt its features to
the concurrency model in which a program is written.

6. ACKNOWLEDGMENTS

This research is funded by a collaboration grant of the
Austrian Science Fund (FWF) with the project 12491-N31
and the Research Foundation Flanders (FWO Belgium).

References

1]

[10]

[11]

[12]

[14]

[15]

[16]

S. Abbaspour, D. Sundmark, S. Eldh, H. Hansson, and
W. Afzal. 10 years of research on debugging concurrent
and multicore software: a systematic mapping study.
Software Quality Journal, pages 1-34, 2016.

G. Agha. Actors: A model of concurrent computation
in distributed systems. PhD thesis, MIT, Artificial In-
telligence Laboratory, June 1985.

J. Armstrong, R. Virding, C. Wikstrém, and
M. Williams. Concurrent Programming in FRLANG.
Prentice Hall, 1993.

E. G. Boix, C. Noguera, and W. De Meuter. Distributed
debugging for mobile networks. Journal of Systems and
Software, 90:76-90, 2014.

M. Brito, K. R. Felizardo, P. Souza, and S. Souza. Con-
current software testing: A systematic review. On test-
ing software and systems: Short papers, page 79, 2010.

M. Christakis and K. Sagonas. Static Detection of
Deadlocks in Erlang. Technical report, June 2011.

J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondyt,
and W. De Meuter. Ambient-oriented programming
in ambienttalk. In Furopean Conference on Object-
Oriented Programming, pages 230-254. Springer, 2006.

I. Dragos. Stack retention in debuggers for concurrent
programs. In Scala Workshop, 2013.

J. Gait. A debugger for concurrent programs. Software:
Practice and Ezperience, 15(6):539-554, 1985.

I. Green. Web Workers: Multithreaded Programs in
JavaScript. 7 O'Reilly Media, Inc.”, 2012.

P. Haller. On the Integration of the Actor Model in
Mainstream Technologies. AGERE! 2012, pages 1-5,
Nov. 2012.

P. Haller and M. Odersky. Scala Actors: Unifying
thread-based and event-based programming. Theoreti-
cal Computer Science, 410(2-3):202-220, Feb. 2009.

C. Hewitt, P. Bishop, and R. Steiger. A universal mod-
ular actor formalism for artificial intelligence. In Pro-
ceedings of the 3rd International Joint Conference on
Artificial Intelligence, IJCAT'73, pages 235—245. Mor-
gan Kaufmann Publishers Inc., 1973.

S. Hong, Y. Park, and M. Kim. Detecting Concur-
rency Errors in Client-Side Java Script Web Applica-
tions. In 2014 IEEE Seventh International Confer-
ence on Software Testing, Verification and Validation
(ICST), pages 61-70. IEEE, Mar. 2014.

L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558-565, 1978.

S. Lauterburg, M. Dotta, D. Marinov, and G. Agha. A
framework for state-space exploration of java-based ac-
tor programs. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engi-
neering, pages 468-479. IEEE Computer Society, 2009.

(17]

(18]

(19]

(20]

21]

(22]

23]

(24]

(25]

(26]

27]

C. H. LeDoux and D. S. Parker Jr. Saving traces for ada
debugging. In ACM SIGAda Ada Letters, number 2 in
ACM, pages 97-108. Cambridge University press, 1985.

Y. Long, M. Bagherzadeh, E. Lin, G. Upadhyaya, and
H. Rajan. On ordering problems in message passing
software. In Proceedings of the 15th International Con-
ference on Modularity, pages 54-65. ACM, 2016.

S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: A comprehensive study on real world concur-
rency bug characteristics. In Proceedings of the 13th
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS XIII, pages 329-339, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-958-6. .

S. Marr and H. Mossenbock. Optimizing communicat-
ing event-loop languages with truffle, October 2015.
URL http://stefan-marr.de/papers/agere-marr-moess
enboeck-optimizing-communicating-event-loop-langu
ages-with-truffle/.

C. E. McDowell and D. P. Helmbold. Debugging con-
current programs. ACM Comput. Surv., 21(4):593-622,
Dec. 1989. ISSN 0360-0300. .

M. S. Miller, E. D. Tribble, and J. Shapiro. Con-
currency among strangers. In International Sympo-
sium on Trustworthy Global Computing, pages 195-229.
Springer, 2005.

S. Park. Debugging non-deadlock concurrency bugs.
In Proceedings of the 2013 international symposium on
software testing and analysis, pages 358-361. ACM,
2013.

T. Stanley, T. Close, and M. Miller.
message-oriented distributed debugger.
port, HP Labs, Apr. 2009.

Causeway: A
Technical re-

T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix,
J. Dedecker, and W. De Meuter. Ambienttalk: object-
oriented event-driven programming in mobile ad hoc
networks. In Inter. Conf. of the Chilean Computer Sci-
ence Society (SCCC), pages 3—12. IEEE Computer So-
ciety, 2007.

T. Wiirthinger, A. Wo8, L. Stadler, G. Duboscq, D. Si-
mon, and C. Wimmer. Self-optimizing ast interpreters.
In ACM SIGPLAN Notices, volume 48, pages 73-82.
ACM, 2012.

A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-
oriented concurrent programming in abcl/1. In Confer-
ence Proceedings on Object-oriented Programming Sys-
tems, Languages and Applications, OOPSLA ’86, pages
258-268, New York, NY, USA, 1986. ACM. ISBN 0-
89791-204-7. .

http://stefan-marr.de/papers/agere-marr-moessenboeck-optimizing-communicating-event-loop-languages-with-truffle/
http://stefan-marr.de/papers/agere-marr-moessenboeck-optimizing-communicating-event-loop-languages-with-truffle/
http://stefan-marr.de/papers/agere-marr-moessenboeck-optimizing-communicating-event-loop-languages-with-truffle/

	1 Introduction
	2 Classification of concurrency bugs in actor-based programs
	2.1 Lack of Progress Issues
	2.2 Race Conditions

	3 Debugging tools for actor languages
	3.1 State of the Art
	3.2 Position Statement

	4 Kómpos: A Debugger for Communicating Event-Loop Languages
	5 Conclusion
	6 Acknowledgments

