
A Generator for Production Quality Compilers

Hanspeter M/Sssenbrck

ETH Z'tirich

Institut ftir Computersysteme

ETH-Zentrum, CH-8092 Ztirich

Abstract

This paper presents a compiler description language and its implementation Coco/R (Compiler

Compiler for Recursive Descent). Coco/R reads an attributed EBNF grammar of a language and
translates it into a recursive descent parser and a scanner for that language. The programmer has

to supply a main program that calls the parser and semantic modules that are called from within

the parser. Coco/R evolved from two predecessors: the scanner generator Alex [Mrss86] and
the parser generator Coco [ReM689]. Their input languages were merged and simplified due to

our experiences with these tools over several years (a similar tool with a slightly different

motivation also emerged from Alex and Coco [DoPi90]). Using Coco/R, compilers can be

generated that are as efficient as hand-coded and carefully optimized production quality

compilers. Almost as important as efficiency is the simplicity and adequacy of the system.

Programmers are not willing to use a tool if it does not come in handy to their work, if it uses an

arcane notation or a bulk of options and special cases. Coco/R puts simplicity and efficiency

over power.

I. INTRODUCTION

Sometimes the most simple techniques are also the most efficient ones. While hand-written

compilers usually are implemented in recursive descent, most of the generated compilers use

table-driven LL(1) or LALR(1) techniques. After experiences with several parsing methods
[Mrss87] I returned to recursive descent parsing since I believe that there is hardly anything so

efficient, and at the same time so convenient, as this technique. Its advantages are:

° No table access. For table-driven parsers to be space-efficient the tables have to be

compressed and accessing them needs decoding. In recursive descent parsing, recognizing
the current symbol requires only a simple comparison.

• Easy semantic evaluation. Semantic actions are embedded directly into the parser and do not
have to be collected into a procedure that is called whenever an action is to be executed. Every
production corresponds to a parsing procedure with its own scope for local variables.

43

° Transparency. Recursive descent parsers can be read and understood while the tables of a

table-driven parser remain a mystery for the programmer.

• Controlling the parser. Since parsing and semantic analysis are intertwined so closely one

can control the parser from the semantic actions. This makes it possible to parse languages

whose grammars are not LL(1).

• Adequate parser size. Table-driven parsers are usually smaller than recursive descent

parsers. However, while their size is nearly the same for both small and large grammars, the

size of a recursive descent parser depends on the size of the grammar. For small grammars a

recursive descent parser is probably smaller than a table-driven parser.

One of the major problems with recursive descent parsing is that sophisticated error-handling is
harder to implement than for table-driven parsers. The error-handling technique presented in

Section 5 attacks this problem.

2. THE COMPILER DESCRIPTION LANGUAGE

The compiler description language Cocol/R consists of four parts:

• A context-free EBNF grammar describing the structure of the input to be parsed.
• Attributes attached to the nonterminals of the grammar. They denote the result of the

translation of that nonterminal (synthesized attributes) or the context to be used for the

translation of that nonterminal (inherited attributes). Attributes are enclosed by angle brackets

(e.g. <type>).
• Semantic actions that may occur at any point on the right-hand side of a production. Semantic

actions are statement sequences written in the implementation language of the target compiler

(here Oberon [Wirth88]) and bracketed by "(." and ".)". They can use variables and attributes

declared local to a production or global to the whole grammar.
• A specification of the lexical properties of the input such as the structure of tokens or the form

of comments.

Descriptions of this kind are often called attributed grammars. However, attributed grammars

originally were conceived as static descriptions [Knuth68] where the semantic actions specify

dependencies between attributes without giving an order in which the attribute values are to be

computed. In Cocol/R a grammar is a dynamic description (an algorithm): a semantic action is

simply a piece of code that is executed after parsing the symbol to the left and before parsing the
symbol to the right of it. Grammars of this kind are also called syntax-directed translation

schemes [ASU86]. In fact, Cocol/R grammars can be regarded as a short-hand notation for

writing recursive descent compilers.

44

The following example should give an impression of a Cocol/R grammar (a full specification of

Cocol/R can be found in [Mrss90]). Consider the processing of variable declarations for a

Pascal-like language. The context-free syntax of this construct is

VarDeclarafion = Ident {"," Ident} ":" Type ";".

By simply writing down this production, one already gets a parser that can check variable

declarations syntactically. To process them semantically as well, one has to think about how

variable declarations are translated. The translation of an identifier probably yields its name, and

the translation of a type yields some type information. These are synthesized attributes of the

nonterminals Ident and Type. The effect of the whole translation should be to enter the

variables into a symbol table. We keep the symbol table as an abstract data structure into which

VarDeclaration enters the variables without returning a synthesized attribute. However, it has

an inherited attribute that specifies the next available address for the new variables. The

nonterminals can then be seen as sub-translators with the following tasks:

Ident <name>
Type <typ>
VarDeclaration <adr>

recognize an identifier and return its name.
recognize a Type and translate it into some type information typ.
recognize a VarDeclaration. adr denotes the next free address in the variable
space before and after the processing of VarDeclaration.

The only remaining task now is to write semantic actions that enter the variables into the symbol

table and compute their addresses. With Oberon [Wirth88] as the language of semantic actions

this reads as follows:

VarDeclaration <VAR adr: LONGINT>
(. VAR obj, objl: SymTab.Object; ryp: SymTab.Type;

n, a: LONGINT; name: ARRAY 32 OF CHAR; .)
(. obj := SyrnTab.Enter(name); objA.next := NIL; n := 1 .)
(. objl := SymZab.Enter(name); objl^.next := obj; obj := objl; n := n + 1 .)

= Ident <name>
{ Ide , nt <name>
)
...... Type <typ> ";" (. adr := adr + n * t)ff'.size; a := adr;

WHILE obj # NIL DO
a := a - rye.size; obj^.adr := a; objA.typ := typ; obj := objA.next

END .).

Note that the attribute of the left-hand side nonterminal is declared with its type and the keyword

VAR which denotes that adr is both an inherited and a synthesized attribute. Attributes on the

left-hand side of a production are called formal attributes in contrast to actual attributes

appearing on the right-hand side of a production. This naming reflects the similarity between

attributes and parameters in programming languages. A production constitutes a scope for

locally declared objects (obj, objl, etc.). In addition, globally declared or imported names can

be accessed (e.g. SyrnTab). The format for writing down a production is free. However, it is

wise to shift syntactic parts to the left and semantic parts to the right. This gives a clear

separation between syntax and semantics and makes the grammar more readable.

45

Whereas terminals enclosed in quotes denote themselves (e.g. keywords), structured terminals,
such as identifiers, have to be declared in a scanner specification section:

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZatr.Aefghijklmnopqrstuvwxyz",
digit = "0123456789".

TOKENS
identifier = letter {letter I digit}.

The lexical value of a token (its character sequence) can be accessed by its position pos in a
buffer and by its length len. Both variables are exported by the generated scanner. With this
information we can formulate the ldent production.

Ident <VAR name: ARRAY OF CHAR>
= identifier (. Scanner.GetName(Scanner.pos, Scanner.len, name) .).

There are another few constructs to describe the structure of comments or to recognize tokens

with a lookahead of more than one character, but essentially this is all a programmer has to

know about the input language of Coco/R. The effort to learn this language is small, since

semantic parts are written in a familiar programming language and syntactic parts are based on

the well-known EBNF grammars. For an Oberon compiler a grammar with 892 lines is

translated into a scanner and a parser that makes up 1836 lines.

3. THE G E N E R A ~ D SCANNER

The scanner is generated from the token declarations and from the literal strings occurring in the
productions. The token declarations (regular expressions in EBNF) are translated into syntax

graphs from which a deterministic finite automaton is generated. This process is sketched in
Figure 1 (the algorithms for the manipulation of the automaton are described in [M~Sss87]).

regular expressions

CHARACIT_RS
digit = "0123456789".
octdigit = "01234567".

TOKENS
decimal = digit {digit}.
octal = oetdigit {octdigit} "B".

non-deterministic automaton t

~ d i g i t

I octdigit = @ J ~

octdigit

decimal :

octal :

syntax graphs

d i g i t ~

octdigit ~ - octdigit-~

B

deterministic automaton

18.91 --(~)digit
~{8,9}

|octdigit = @ ~

octdigit

Figure 1 Transformation of regular expressions into a deterministic finite automaton

46

The automaton is not generated directly from the regular expressions but from syntax graphs.
This allows making it more deterministic from the beginning, thus simplifying the later

algorithms. Note that tokens may have very similar structures differing only in their last

characters (like decimal and octal). Such ambiguities are resolved by Coco/R automatically.

To make the scanner as efficient as possible, the automaton is not implemented as a table-driven

algorithm but it is casted into code. This saves table accesses at the cost of code size. A scanner
that recognizes identifiers, numbers, and the literals "<" and "<=" is shown in Figure 2.

~ / ¢ ~ - ~ letter PROCEDURE Get(VAR sym: INTEGER);
digit ... (* eh and chPos are global; set by NextCh *)

state := startState[ch]; pos := chPos; len := 0; ~ fl igit _ . . . (~ digit LOOP
NextCh; INC(len);
CASE state OF

~ < - ~ Q 1: IF (ch>="A")& (ch<="Z")OR (cla>='a") & (ch<="z")
... OR (eh>="0") & (oh<="9") THEN (*state := 1")

ELSE sym := ident; CbeckLiterat(sym); RETURN
END

2: IF (ch>="O") & (eh<="9") THEN (*state := 2*)
startState[letter] = 1 ELSE sym := number; RETURN
startState[digit] = 2 END
startState["<"] = 3 I 3: IF ch = "=" THEN state := 4
--- ELSE sym := lss; RETURN

END
1 4: sym := leq; RETURN

END
END

END Get;

Figure 2 A scanner derived from an automaton

NextCh returns the next input character ch and CheckLiteral checks if the just recognized

token is a literal (e.g. when an identifier has been recognized it must be checked if it is a

reserved keyword). Unfortunately, the state transitions of the automaton have to be

implemented by a loop and a test of a state variable. This could be done more efficiently if a

Goto statement were available in Oberon. An experiment showed that generating the scanner in

Assembler using Goto statements (and other optirrdzations) speeds it up by 30 %.

Input buffering

The most time-consuming task in scanning is reading the source text. The scanner can be sped

up significantly if reading can be made faster. Reading a text character by character is usually
slower than reading it in blocks that correspond to disk sectors. With the large memories
available today, it is even possible to read the whole source text into memory at once. In the
Oberon system this is almost three times faster than reading it character by character from the
file system buffer. Even large source programs rarely exceed 50 kilobytes. With several mega-
bytes of memory available, this "waste" of 50 kilobytes seems justified if scanning can be
speeded up so dramatically (the overall run time of a typical compiler is improved by 30 %).

47

Having the whole source text in memory has yet another advantage: the source text can be used

as a name list. The text of tokens like identifiers no longer has to be copied to a separate name

list but can remain where it is, namely in the input buffer. One simply has to remember its

position and its length. This idea is in accordance with the principle that during scanning every

character should be "touched" as little as possible [Waite86].

Another advantage of this technique is that it permits to move back the input pointer to any

previous position. This is useful for handling tokens which require a lookahead of more than
one character. To recognize such tokens the right-hand context has to be analyzed, too. After the

token and its context have been scanned, the input pointer is simply decreased by the length of

the lookahead, so that this text will be reread by the scanner.

4. THE GENERATED PARSER

The parser is generated from the productions of the compiler description. It is implemented in

recursive descent with semantic actions embedded between parsing statements. The parsing
procedures cannot be generated on-the-fly while the grammar is processed since that would
require to know the terminal start symbols of all nonterminals. These sets can only be computed

when the whole grammar has been read. Therefore, the productions are first translated into
syntax graphs, then the terminal start symbols are computed, and finally the parsing procedures

are generated. The syntax graphs are also used to perform certain grammar tests (completeness,

redundancy, LL(1) property).

Let's take a closer look at the syntax graphs. A node is generated for every symbol in the

grammar and for every semantic action (a semantic action node contains the position and the

length of the action in the source text). A sequence of symbols and actions results in a sequence

of nodes. Alternatives, options and iterations are modelled by special nodes:

option,
alternative iteration

.... I " to successor node
to start node of this alternative

U---+-
to next alternative

to successor node
to start node of inner structure

A production like

Expression <VAR x: Item>
= SimExpr <x>

[Relop <op> SimExpr <y>
I "IN" SimExpr <y>
I "IS"

qualident <y>
1.

(. VAR y: Item; op: INTEGER; .)

(. GenOp(op, x, y) .)
(. Genln(x, y) .)
(. IF x.mode >= Typ THEN Error(...) END .)
(. IF y.mode = Typ THEN GenTypTest(x, y) ELSE Error(...) ENrD .)

48

is translated into the following graph

Expression SimExpr
opt

" ~ a / t

RelOp-*- SimExpr ---,,- sere

, ~ [~ IN--~ SimExpr ---,- sere

~ IS ~ s e m ---~qualident --~ sere

Figure 3 Syntax graph for the generation of parsing procedures

Note that these graphs are different from the graphs used for scanner generation (Figure 1).
Alternatives, options and iterations are represented by special nodes. This makes the graphs

better suited for the generation of recursive descent parsers. Having the graphs and the sets of

terminal start symbols it is easy to generate parsing procedures. The graph from Figure 3 is
translated into the following procedure (sym is the lookahead token and G e t is the scanner):

PROCEDURE Expression (VAR x: Item);
VAR y: Item; op: INTEGER;

BEGIN SimExpr(x);
IF sym IN {eql, neq, lss, leq, gtr, geq, in, is} THEN

IF sym IN {eql, neq, lss, leq, gtr, geq} THEN
Relop(op); SimExpr(y); GenOp(op, x, y);

ELSIF sym = in THEN
Get(sym); SimExpr(y); Genln(x, y);

ELSE
Get(sym); IF x.mode >=- Typ THEN Error(...) END;
qualident(y); IF y.mode --- Typ THEN GenTypTest(x, y) ELSE Error(...) END;

END
END

END Expression;

A more interesting example is the following production, which also contains iterations (for
brevity, semantic actions are not shown).

FormalParameters = "(" [FormPar {";" FormPar}] ")" [":" qualident].

The corresponding syntax graph is

49

FormalParameters
opt opt

iter • --~ qtmlident
FormPar -.~ ~ i ; ~

t

• --~ FormPar

Dotted arrows denote pointers to the successors of inner structures. They help in the com-

putation of start and successor sets. The graph is translated into the following procedure

(Expect(s) tries to match s with the lookahead symbol and emits an error if it cannot):

PROCEDURE FormalParameters;
BEGIN

Expect(leftpar);
IFsym IN {ident, var} THEN

FormPar;
WHILE sym = semicolon DO Get(sym); FormPar END

END;
Expect(rightpar);
IF sym = colon THEN Get(sym); qualident END

END FormalParameters;

The translation of EBNF productions into parsing procedures is straightforward and leads to

compact parsers. There are only few cases where a procedure could be written more efficiently

by hand.

5. SYNTAX ERROR-HANDLING

Good and efficient error-recovery is difficult in recursive descent parsers since httle information

about the parsing process is available when an error occurs. A generally used method [Wirth76]

is to dynamically collect the legal successors of all nonterminals that are currently on the parsing

stack. If an error occurs the input is skipped until a symbol is found that is in the successor set.

The parsing stack is then unrolled up to a point where parsing can continue with that symbol.

This technique, although systematically applicable, slows down error-free parsing and inflates

the parser code.

Another technique has therefore been suggested in [Wirth86]. Recovery takes place only at

certain synchronization points in the grammar. When an error occurs it is reported but parsing

continues up to the next synchronization point where the grammar and the input are

synchronized again. Usually there axe only few synchronization points in a grammar. The

symbol sets used for synchronization there do not have to be collected at run rime but can be

50

precomputed at parser generation time. This method is better than the previous one, since it does

only slightly affect error-free parsing and keeps the parser small. However, it requires the

designer of the grammar to mark synchronization points explicitly.

Synchronization points. In Cocol/R a synchronization point is specified by the keyword SYNC

at the appropriate point in a production. Good candidates for synchronization points are
locations where particularly safe symbols (such as keywords) are expected and that are often

visited by the parser. Typical examples are the beginning of a statement (IF, WHILE, REPEAT,

etc. are expected here), the beginning of a declaration (CONST, TYPE, VAR, PROCEDURE

expected) or the beginning of a structured type (RECORD, ARRAY, POINTER, etc. expected).

A synchronization point is translated into a loop that skips all symbols which are not expected at

this point (except the end-of-file symbol). The set of these symbols is precomputed at parser

generation time. The following example shows two synchronization points and their
counterparts in the generated parser.

production generated parsing code

Declarations =
SYNC

("CONST" {ConstDecl ";"}
I "TYPE" {TypeDecl ";"}
I "VAR" {VarDecl ";"}
I ProeDeel
)
SYNC

WHILE ---(syrn IN {const, type, var, proc, begin, end, eof}) DO
Error(...); Get(sym)

END;
WHILE sym IN {const, type, var, proe} DO

IF sym = const THEN Get(sym); ...
ELSIF sym = type THEN Get(sym); ...
ELSIF sym = vat THEN Get(sym); ...
ELSE ProcDecl
END;
WHILE .-(syrn IN {const, type, var, proc, begin, end, eof}) DO

Error(...); Get(sym)
END

END

To avoid spurious error messages, an error is only reported if a certain amount of text (e.g. 10
characters) has been correctly parsed since the last error.

Weak symbols. The knowledge of synchronization points is already sufficient to recover from

errors. However, recovery can be improved if the parser also knows about "weak" symbols that
are often mistyped or missing (such as semicolon). These symbols are marked in the grammar

by the keyword WEAK. ff the parser tries to recognize a weak symbol and does not find it, it
reports an error and skips the input until a legal successor of the expected symbol is found (or a
symbol that is expected at any synchronization point; this is a useful heuristic that avoids
skipping safe symbols). The following example shows the translation of a weak symbol ":=" (it
is considered as weak because it is often rnistyped as "=").

51

production

Statement =
ident
WEAK ":="
Expression.

generated parsing code

Expect(ident);
Weak(becomes, {start symbols of Expression});
Expression

The procedure Weak is implemented as follows:

PROCEDURE Weak(s: INTEGER; expected: Set);
BEGIN

IF sym = s THEN Get(sym)
ELSE

Error(s); WHILE sym ~ expected u {symbols expected at synchronization points} DO Get(sym) END
END

END Weak;

Weak symbols give the parser another chance to synchronize in case of an error. Again, the set

of expected symbols is precomputed at parser generation time and causes no run time overhead

in error-free parsing.

When an iteration starts with a weak symbol, this symbol is called a weak separator. A
mistyped separator is especially harmful, since it causes the iteration to terminate. Therefore,

weak separators are handled in a special way. If they cannot be recognized, the input is skipped

until a symbol is found that is contained in one of the following three sets:

symbols that may follow the weak separator

symbols that may follow the iteration

v symbols expected at any synchronization point (including eof)

The following example shows the translation of a weak separator

production

StatSequence =
Stat
{ WEAK ";" Slat}.

generatedparsingcode

Slat;
WHILE WeakSep(semicolon, ~, ~) DO Stat END

In this example, a is the set of start symbols of a statement (ident, IF, WHILE, etc.) and ~ is the

set of successors of a statement sequence (END, ELSE, UNTIL, etc.). Both sets are

precomputed at parser generation time. WeakSep is implemented as follows:

PROCEDURE WeakSep(s: INTEGER; sySucc, iterSucc: Set): BOOLEAN;
BEGIN

IF sym = s THEN Get(sym); RETURN TRUE
ELSIF sym e iterSucc THEN RETURN FALSE
ELSE Error(s); WlqlI.F. sym ~ sySucc u iterSucc • ~/ DO Get(sym) END;

RETURN sym ~ sySucc (*TRUE means "s inserted"*)
END

END WeakSep;

52

The observant reader may have noticed that the set 9 in the example contains the successors of a
statement sequence in any possible context. This set is too large. If the statement sequence
occurs in a repeat statement, only UNTIL is a legal successor, but not END or ELSE. I tolerate
this fault, since it allows us to precompute the set I~ at parser generation time. The occurrence of
END or ELSE is very unlikely in this context and can only lead to incorrect synchronization,
causing the parser to synchronize again.

The following example demonstrates that the above method yields good error-recovery. I
generated an Oberon compiler and compiled the following erroneous program taken from
[Wirth86]. The parser recovered surprisingly well.

MODULE Error;

CONST M := I0, N = I00 X = I0;

*** ^ "= expected
*** ^ ";" expected
*** ^ ";~ expected

VAR ~ a, b, c;

*** ^ unexpected symbol in Block

PROCEDURE P;

BEGIN

s := 0; a = 5 * (b - 1 END;

• ** ^ error in Star

• ** ^ error in Stat

• ** ^ ident expected

BEGIN

> a > b;

*** ^ unexpected symbol in Stat

*** ^ error in Star

WHILE a DO

BEGIN > b; - c := 0;

*** ^ unexpected symbol in Star

*** ^ unexpected symbol in Stat

*** ^ unexpected symbol in Star

WHILE a > 0 BEGIN

*** ^ "DO" expected
IF ODD a c := c * - b;

*** ^ error in Factor

*** ^ error in Stat

*** ^ error in Factor

b := 2 * b a := a / 2

*** ^ error in Factor

END;

P := 0; P; 666;

*** ^ unexpected symbol in Star

END .

*** ^ ";" expected
*** ^ "END" expected

The proposed error-recovery technique is cheap. It costs only a check at every synchronization
point and therefore does not slow down error-free parsing. The code for error-handling makes
up 10 % of the parser code (without semantic actions).

Oberon parser without error-handling
Error-handling procedures (fixed size)
Synchronization points, weak symbols

3019 Bytes (object code)
248 Bytes

81 Bytes

53

6. MEASUREMENTS

Coco/R is implemented in Oberon on a Ceres workstation. There is another Oberon implemen-

tation for Sun Sparcstation as well as Modula-2 implementations for Macintosh and MS-DOS.

I compared an Oberon compiler generated by Coco/R with a hand-written Oberon compiler and

measured the time to compile a 867-1ine Oberon program (7169 tokens or 24254 characters) on

a Ceres workstation with a NS32532 processor running at 25 MHz and on a Sun Sparcstation 1
with a SPARC processor running at 20 MHz. The back-end of both compilers is the same, only

the scanner and the parser are different.

Compilation time of Ceres Sparc
an 867 line program (see) (sec)

Hand-written compiler 3.6 n.a.
Generated compiler 3.0 0.75

The generated compiler is 20 % faster than the hand-written compiler. This is due to the fact that
the generated compiler reads the source text into main memory at once, while the original

compiler reads it character by character. Without this improvement the generated compiler is

about 10 % slower than the hand-written one. The speed of the several phases is:

Speed of the Ceres Sparc
generated compiler (tokens/sec) (tokens/sec)

Scanning 15 360 39 390
Parsing 51 130 73 910
Total Compilation 2 400 9 560

Scanning, as well as the whole compilation, is considerably faster on the Sparcstation because

of its faster disk access while for parsing the Ceres catches up with Sparc due to its faster set

operations. I avoided the measure "lines per second" since it depends on the density of the

source code. One may assume 5-8 tokens per line as a mean value. Comparing the object code

of the two compilers on the Ceres yields the following results:

Object code in bytes Scanner Parser
(on Ceres) (incl.sem.actions)

Hand-written compiler 3 672 11 740
Generated compiler 3 944 12 236

Compared to the table-driven compilers generated by the old Coco system the compilers
generated by Coco/R are more than twice as fast. This is due to improvements in the scanner

and efficient semantic processing in the recursive descent parser.

54

7. CONCLUSION

The field of compiler construction and compiler generation has long become mature. Various
methods of scanning, parsing and semantic evaluation have been studied extensively. Time has
come now to make good use of that knowledge and to design tools that are as simple and as
efficient as we can achieve today. Coco/R is an effort in this direction. It is definitely not a

prototype but a production quality tool with simplicity and efficiency as a major design goal.

A simple tool should be based on a familiar notation, it should require as little input as possible
and its function should be transparent and predictable to its user. For the generated parts to be

able to compete with production quality compilers they must be small and fast. This can be
achieved by using single-pass compilation with semantic actions executed during parsing, by
burning the grammar into code instead of using table-driven techniques and by using efficient

error-handling that does not slow down en'or-free parsing. For many translation tasks, such as
the processing of small command languages, this kind of compilation scheme is quite sufficient
(more powerful schemes would even be an overkill) and also proper compilers for many real
programming languages such as Modula-2 or Oberon do not require heavier guns.

Coco/R matches the above requirements to a large degree. The compilers generated by it are

comparable to hand-written compilers both in speed and in size. The input language Cocol~ is
easy to learn since it is small and based on familiar concepts (EBNF grammars and a general
purpose programming language). A compiler description in CocolAq is about half the size of the
compiler parts generated from it. It provides a better overview of the syntactic and semantic
activities in a compiler and is therefore more readable.

Let me conclude with a personal remark: Many compiler generating systems strive for power
instead of simplicity and efficiency. I believe that this has done harm to the design of

programming languages. The power of compiler generators may well have encouraged the
complexity of some of today's languages. Are such powerful tools really necessary? I believe
they are not. For me, there seems to be little reason why a programming language should not be
designed in a way that makes it amenable to single-pass compilation and top-down parsing.

55

REFERENCES

[ASU86] A.V.Aho, R.Sethi, J.D.Ullman: Compilers. Addison-Wesley, 1986.

[DoPi90] H.Dobler, K.Pirklbauer: Coco-2 - A New Compiler Compiler. Technical report 90/1,
Institut f'tir Informatik, Universitat Linz, 1990.

[Knuth68] D.E.Knuth: Semantics of Context-Free Languages. Math.Systems Theory 2, 1968.

[M6ss86] H.M6ssenb6ck: Alex - A Simple and Efficient Scanner Generator. SIGPLAN
Notices, Vol.21 (5), May 1986.

[M6ss87] H.M6ssenb6ck: Compilererzeugende Systeme fiir Mikrocomputer. Dissertation,
Institut fiJr Informatik, Universit~t Linz, 1987.

[M6ss90] H.M6ssenb6ck: Coco/R - A Generator for Fast Compiler Front-Ends. Report 127,
Institut f'tir Computersysteme, ETH Zfirich, 1990.

[ReM689] P.Rechenberg, H.M6ssenb6ck: A Compiler-Generator for Microcomputers.
Prentice-Hall, 1989.

[Waite86] W.M.Waite: The Cost of Lexical Analysis. SOFTWARE Practice & Experience,
Vol.16 (5), May 1986.

[Wirth76] N.Wirth: Algorithms + Data S~uctures = Programs. Prentice-Hall, 1976.

[Wirth86] N.Wirth: Compilerbau. Teubner StudienbiJcher, 1986.

0Nirth88] N.Wirth: The Programming Language Oberon. SOFTWARE Practice & Experience,
Vo1.18 (7), July 1988.

