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Abstract 

This paper presents a compiler description language and its implementation Coco/R (Compiler 

Compiler for Recursive Descent). Coco/R reads an attributed EBNF grammar of a language and 
translates it into a recursive descent parser and a scanner for that language. The programmer has 

to supply a main program that calls the parser and semantic modules that are called from within 

the parser. Coco/R evolved from two predecessors: the scanner generator Alex [Mrss86] and 
the parser generator Coco [ReM689]. Their input languages were merged and simplified due to 

our experiences with these tools over several years (a similar tool with a slightly different 

motivation also emerged from Alex and Coco [DoPi90]). Using Coco/R, compilers can be 

generated that are as efficient as hand-coded and carefully optimized production quality 

compilers. Almost as important as efficiency is the simplicity and adequacy of the system. 

Programmers are not willing to use a tool if it does not come in handy to their work, if it uses an 

arcane notation or a bulk of options and special cases. Coco/R puts simplicity and efficiency 

over power. 

I. INTRODUCTION 

Sometimes the most simple techniques are also the most efficient ones. While hand-written 

compilers usually are implemented in recursive descent, most of the generated compilers use 

table-driven LL(1) or LALR(1) techniques. After experiences with several parsing methods 
[Mrss87] I returned to recursive descent parsing since I believe that there is hardly anything so 

efficient, and at the same time so convenient, as this technique. Its advantages are: 

° No  table access.  For table-driven parsers to be space-efficient the tables have to be 

compressed and accessing them needs decoding. In recursive descent parsing, recognizing 
the current symbol requires only a simple comparison. 

• Easy semantic evaluation. Semantic actions are embedded directly into the parser and do not 
have to be collected into a procedure that is called whenever an action is to be executed. Every 
production corresponds to a parsing procedure with its own scope for local variables. 



43 

° Transparency. Recursive descent parsers can be read and understood while the tables of a 

table-driven parser remain a mystery for the programmer. 

• Controlling the parser. Since parsing and semantic analysis are intertwined so closely one 

can control the parser from the semantic actions. This makes it possible to parse languages 

whose grammars are not LL(1). 

• Adequate parser size. Table-driven parsers are usually smaller than recursive descent 

parsers. However, while their size is nearly the same for both small and large grammars, the 

size of a recursive descent parser depends on the size of the grammar. For small grammars a 

recursive descent parser is probably smaller than a table-driven parser. 

One of the major problems with recursive descent parsing is that sophisticated error-handling is 
harder to implement than for table-driven parsers. The error-handling technique presented in 

Section 5 attacks this problem. 

2. THE COMPILER DESCRIPTION LANGUAGE 

The compiler description language Cocol/R consists of four parts: 

• A context-free EBNF grammar describing the structure of the input to be parsed. 
• Attributes attached to the nonterminals of the grammar. They denote the result of the 

translation of that nonterminal (synthesized attributes) or the context to be used for the 

translation of that nonterminal (inherited attributes). Attributes are enclosed by angle brackets 

(e.g. <type>). 
• Semantic actions that may occur at any point on the right-hand side of a production. Semantic 

actions are statement sequences written in the implementation language of the target compiler 

(here Oberon [Wirth88]) and bracketed by "(." and ".)". They can use variables and attributes 

declared local to a production or global to the whole grammar. 
• A specification of the lexical properties of the input such as the structure of tokens or the form 

of comments. 

Descriptions of this kind are often called attributed grammars. However, attributed grammars 

originally were conceived as static descriptions [Knuth68] where the semantic actions specify 

dependencies between attributes without giving an order in which the attribute values are to be 

computed. In Cocol/R a grammar is a dynamic description (an algorithm): a semantic action is 

simply a piece of code that is executed after parsing the symbol to the left and before parsing the 
symbol to the right of it. Grammars of this kind are also called syntax-directed translation 

schemes [ASU86]. In fact, Cocol/R grammars can be regarded as a short-hand notation for 

writing recursive descent compilers. 
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The following example should give an impression of a Cocol/R grammar (a full specification of 

Cocol/R can be found in [Mrss90]). Consider the processing of variable declarations for a 

Pascal-like language. The context-free syntax of  this construct is 

VarDeclarafion = Ident {"," Ident} ":" Type ";". 

By simply writing down this production, one already gets a parser that can check variable 

declarations syntactically. To process them semantically as well, one has to think about how 

variable declarations are translated. The translation of an identifier probably yields its name, and 

the translation of a type yields some type information. These are synthesized attributes of  the 

nonterminals Ident and Type. The effect of  the whole translation should be to enter the 

variables into a symbol table. We keep the symbol table as an abstract data structure into which 

VarDeclaration enters the variables without returning a synthesized attribute. However, it has 

an inherited attribute that specifies the next available address for the new variables. The 

nonterminals can then be seen as sub-translators with the following tasks: 

Ident <name> 
Type <typ> 
VarDeclaration <adr> 

recognize an identifier and return its name. 
recognize a Type and translate it into some type information typ. 
recognize a VarDeclaration. adr denotes the next free address in the variable 
space before and after the processing of VarDeclaration. 

The only remaining task now is to write semantic actions that enter the variables into the symbol 

table and compute their addresses. With Oberon [Wirth88] as the language of semantic actions 

this reads as follows: 

VarDeclaration <VAR adr: LONGINT> 
(. VAR obj, objl: SymTab.Object; ryp: SymTab.Type; 

n, a: LONGINT; name: ARRAY 32 OF CHAR; .) 
(. obj := SyrnTab.Enter(name); objA.next := NIL; n := 1 .) 
(. objl := SymZab.Enter(name); objl^.next := obj; obj := objl; n := n + 1 .) 

= Ident <name> 
{ .... Ide , nt <name> 
) 
...... Type <typ> ";" (. adr := adr + n * t)ff'.size; a := adr; 

WHILE obj # NIL DO 
a := a - rye.size; obj^.adr := a; objA.typ := typ; obj := objA.next 

END .). 

Note that the attribute of  the left-hand side nonterminal is declared with its type and the keyword 

VAR which denotes that adr is both an inherited and a synthesized attribute. Attributes on the 

left-hand side of  a production are called formal attributes in contrast to actual attributes 

appearing on the right-hand side of  a production. This naming reflects the similarity between 

attributes and parameters in programming languages. A production constitutes a scope for 

locally declared objects (obj, objl, etc.). In addition, globally declared or imported names can 

be accessed (e.g. SyrnTab). The format for writing down a production is free. However, it is 

wise to shift syntactic parts to the left and semantic parts to the right. This gives a clear 

separation between syntax and semantics and makes the grammar more readable. 
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Whereas terminals enclosed in quotes denote themselves (e.g. keywords), structured terminals, 
such as identifiers, have to be declared in a scanner specification section: 

CHARACTERS 
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZatr.Aefghijklmnopqrstuvwxyz", 
digit = "0123456789". 

TOKENS 
identifier = letter {letter I digit}. 

The lexical value of a token (its character sequence) can be accessed by its position pos in a 
buffer and by its length len. Both variables are exported by the generated scanner. With this 
information we can formulate the ldent production. 

Ident <VAR name: ARRAY OF CHAR> 
= identifier (. Scanner.GetName(Scanner.pos, Scanner.len, name) .). 

There are another few constructs to describe the structure of comments or to recognize tokens 

with a lookahead of more than one character, but essentially this is all a programmer has to 

know about the input language of Coco/R. The effort to learn this language is small, since 

semantic parts are written in a familiar programming language and syntactic parts are based on 

the well-known EBNF grammars. For an Oberon compiler a grammar with 892 lines is 

translated into a scanner and a parser that makes up 1836 lines. 

3. THE G E N E R A ~ D  SCANNER 

The scanner is generated from the token declarations and from the literal strings occurring in the 
productions. The token declarations (regular expressions in EBNF) are translated into syntax 

graphs from which a deterministic finite automaton is generated. This process is sketched in 
Figure 1 (the algorithms for the manipulation of the automaton are described in [M~Sss87]). 

regular expressions 

CHARACIT_RS 
digit = "0123456789". 
octdigit = "01234567". 

TOKENS 
decimal = digit {digit}. 
octal = oetdigit {octdigit} "B". 

non-deterministic automaton t 

~ d i g i t  

I octdigit = @ J ~  

octdigit 

decimal : 

octal : 

syntax graphs 

d i g i t ~  

octdigit ~ -  octdigit-~ 

B 

deterministic automaton 

18.91 --(~)digit  
~{8,9} 

|octdigit  = @ ~  

octdigit 

Figure 1 Transformation of regular expressions into a deterministic finite automaton 
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The automaton is not generated directly from the regular expressions but from syntax graphs. 
This allows making it more deterministic from the beginning, thus simplifying the later 

algorithms. Note that tokens may have very similar structures differing only in their last 

characters (like decimal and octal). Such ambiguities are resolved by Coco/R automatically. 

To make the scanner as efficient as possible, the automaton is not implemented as a table-driven 

algorithm but it is casted into code. This saves table accesses at the cost of code size. A scanner 
that recognizes identifiers, numbers, and the literals "<" and "<=" is shown in Figure 2. 

~ / ¢ ~ - ~  letter PROCEDURE Get(VAR sym: INTEGER); 
digit ... (* eh and chPos are global; set by NextCh *) 

state := startState[ch]; pos := chPos; len := 0; ~ fl igit  _ . . . ( ~  digit LOOP 
NextCh; INC(len); 
CASE state OF 

~ < - ~ Q  1: IF (ch>="A")& (ch<="Z")OR (cla>='a") & (ch<="z") 
... OR (eh>="0") & (oh<="9") THEN (*state := 1") 

ELSE sym := ident; CbeckLiterat(sym); RETURN 
END 

2: IF (ch>="O") & (eh<="9") THEN (*state := 2*) 
startState[letter] = 1 ELSE sym := number; RETURN 
startState[digit] = 2 END 
startState["<"] = 3 I 3: IF ch = "=" THEN state := 4 
--- ELSE sym := lss; RETURN 

END 
1 4: sym := leq; RETURN 

END 
END 

END Get; 

Figure 2 A scanner derived from an automaton 

NextCh returns the next input character ch and CheckLiteral checks if  the just recognized 

token is a literal (e.g. when an identifier has been recognized it must be checked if  it is a 

reserved keyword). Unfortunately, the state transitions of the automaton have to be 

implemented by a loop and a test of a state variable. This could be done more efficiently if a 

Goto statement were available in Oberon. An experiment showed that generating the scanner in 

Assembler using Goto statements (and other optirrdzations) speeds it up by 30 %. 

Input buffering 

The most time-consuming task in scanning is reading the source text. The scanner can be sped 

up significantly if reading can be made faster. Reading a text character by character is usually 
slower than reading it in blocks that correspond to disk sectors. With the large memories 
available today, it is even possible to read the whole source text into memory at once. In the 
Oberon system this is almost three times faster than reading it character by character from the 
file system buffer. Even large source programs rarely exceed 50 kilobytes. With several mega- 
bytes of memory available, this "waste" of 50 kilobytes seems justified if  scanning can be 
speeded up so dramatically (the overall run time of a typical compiler is improved by 30 %). 
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Having the whole source text in memory has yet another advantage: the source text can be used 

as a name list. The text of tokens like identifiers no longer has to be copied to a separate name 

list but can remain where it is, namely in the input buffer. One simply has to remember its 

position and its length. This idea is in accordance with the principle that during scanning every 

character should be "touched" as little as possible [Waite86]. 

Another advantage of this technique is that it permits to move back the input pointer to any 

previous position. This is useful for handling tokens which require a lookahead of more than 
one character. To recognize such tokens the right-hand context has to be analyzed, too. After the 

token and its context have been scanned, the input pointer is simply decreased by the length of 

the lookahead, so that this text will be reread by the scanner. 

4. THE GENERATED PARSER 

The parser is generated from the productions of the compiler description. It is implemented in 

recursive descent with semantic actions embedded between parsing statements. The parsing 
procedures cannot be generated on-the-fly while the grammar is processed since that would 
require to know the terminal start symbols of all nonterminals. These sets can only be computed 

when the whole grammar has been read. Therefore, the productions are first translated into 
syntax graphs, then the terminal start symbols are computed, and finally the parsing procedures 

are generated. The syntax graphs are also used to perform certain grammar tests (completeness, 

redundancy, LL(1) property). 

Let's take a closer look at the syntax graphs. A node is generated for every symbol in the 

grammar and for every semantic action (a semantic action node contains the position and the 

length of the action in the source text). A sequence of symbols and actions results in a sequence 

of nodes. Alternatives, options and iterations are modelled by special nodes: 

option, 
alternative iteration 

.... I " to successor node 
to start node of this alternative 

U---+- 
to next alternative 

to successor node 
to start node of inner structure 

A production like 

Expression <VAR x: Item> 
= SimExpr <x> 

[ Relop <op> SimExpr <y> 
I "IN" SimExpr <y> 
I "IS" 

qualident <y> 
1. 

(. VAR y: Item; op: INTEGER; .) 

(. GenOp(op, x, y) .) 
(. Genln(x, y) .) 
(. IF x.mode >= Typ THEN Error(...) END .) 
(. IF y.mode = Typ THEN GenTypTest(x, y) ELSE Error(...) ENrD .) 
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is translated into the following graph 

Expression SimExpr 
opt 

" ~ a / t  

RelOp-*- SimExpr ---,,- sere  

, ~ [ ~  IN--~ SimExpr ---,- sere 

~ IS ~ s e m  ---~qualident --~ sere  

Figure 3 Syntax graph for the generation of parsing procedures 

Note that these graphs are different from the graphs used for scanner generation (Figure 1). 
Alternatives, options and iterations are represented by special nodes. This makes the graphs 

better suited for the generation of recursive descent parsers. Having the graphs and the sets of 

terminal start symbols it is easy to generate parsing procedures. The graph from Figure 3 is 
translated into the following procedure (sym is the lookahead token and G e t  is the scanner): 

PROCEDURE Expression (VAR x: Item); 
VAR y: Item; op: INTEGER; 

BEGIN SimExpr(x); 
IF sym IN {eql, neq, lss, leq, gtr, geq, in, is} THEN 

IF sym IN {eql, neq, lss, leq, gtr, geq} THEN 
Relop(op); SimExpr(y); GenOp(op, x, y); 

ELSIF sym = in THEN 
Get(sym); SimExpr(y); Genln(x, y); 

ELSE 
Get(sym); IF x.mode >=- Typ THEN Error(...) END; 
qualident(y); IF y.mode --- Typ THEN GenTypTest(x, y) ELSE Error(...) END; 

END 
END 

END Expression; 

A more interesting example is the following production, which also contains iterations (for 
brevity, semantic actions are not shown). 

FormalParameters = "(" [FormPar {";" FormPar} ] ")" [":" qualident]. 

The corresponding syntax graph is 
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FormalParameters 
opt opt 

iter • --~ qtmlident 
FormPar -.~ ~ i ;  ................................ ~ 

t 

• --~ FormPar ....... 

Dotted arrows denote pointers to the successors of inner structures. They help in the com- 

putation of start and successor sets. The graph is translated into the following procedure 

(Expect(s) tries to match s with the lookahead symbol and emits an error if it cannot): 

PROCEDURE FormalParameters; 
BEGIN 

Expect(leftpar); 
IFsym IN {ident, var} THEN 

FormPar; 
WHILE sym = semicolon DO Get(sym); FormPar END 

END; 
Expect(rightpar); 
IF sym = colon THEN Get(sym); qualident END 

END FormalParameters; 

The translation of  EBNF productions into parsing procedures is straightforward and leads to 

compact parsers. There are only few cases where a procedure could be written more efficiently 

by hand. 

5. SYNTAX ERROR-HANDLING 

Good and efficient error-recovery is difficult in recursive descent parsers since httle information 

about the parsing process is available when an error occurs. A generally used method [Wirth76] 

is to dynamically collect the legal successors of all nonterminals that are currently on the parsing 

stack. If  an error occurs the input is skipped until a symbol is found that is in the successor set. 

The parsing stack is then unrolled up to a point where parsing can continue with that symbol. 

This technique, although systematically applicable, slows down error-free parsing and inflates 

the parser code. 

Another technique has therefore been suggested in [Wirth86]. Recovery takes place only at 

certain synchronization points in the grammar. When an error occurs it is reported but parsing 

continues up to the next synchronization point where the grammar and the input are 

synchronized again. Usually there axe only few synchronization points in a grammar. The 

symbol sets used for synchronization there do not have to be collected at run rime but can be 
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precomputed at parser generation time. This method is better than the previous one, since it does 

only slightly affect error-free parsing and keeps the parser small. However, it requires the 

designer of the grammar to mark synchronization points explicitly. 

Synchronization points. In Cocol/R a synchronization point is specified by the keyword SYNC 

at the appropriate point in a production. Good candidates for synchronization points are 
locations where particularly safe symbols (such as keywords) are expected and that are often 

visited by the parser. Typical examples are the beginning of a statement (IF, WHILE, REPEAT, 

etc. are expected here), the beginning of  a declaration (CONST, TYPE, VAR, PROCEDURE 

expected) or the beginning of a structured type (RECORD, ARRAY, POINTER, etc. expected). 

A synchronization point is translated into a loop that skips all symbols which are not expected at 

this point (except the end-of-file symbol). The set of these symbols is precomputed at parser 

generation time. The following example shows two synchronization points and their 
counterparts in the generated parser. 

production generated parsing code 

Declarations = 
SYNC 

("CONST" {ConstDecl ";"} 
I "TYPE" {TypeDecl ";"} 
I "VAR" {VarDecl ";"} 
I ProeDeel 
) 
SYNC 

WHILE ---(syrn IN {const, type, var, proc, begin, end, eof}) DO 
Error(...); Get(sym) 

END; 
WHILE sym IN {const, type, var, proe} DO 

IF sym = const THEN Get(sym); ... 
ELSIF sym = type THEN Get(sym); ... 
ELSIF sym = vat THEN Get(sym); ... 
ELSE ProcDecl 
END; 
WHILE .-(syrn IN {const, type, var, proc, begin, end, eof}) DO 

Error(...); Get(sym) 
END 

END 

To avoid spurious error messages, an error is only reported if a certain amount of text (e.g. 10 
characters) has been correctly parsed since the last error. 

Weak symbols. The knowledge of synchronization points is already sufficient to recover from 

errors. However, recovery can be improved if the parser also knows about "weak" symbols that 
are often mistyped or missing (such as semicolon). These symbols are marked in the grammar 

by the keyword WEAK. ff  the parser tries to recognize a weak symbol and does not find it, it 
reports an error and skips the input until a legal successor of the expected symbol is found (or a 
symbol that is expected at any synchronization point; this is a useful heuristic that avoids 
skipping safe symbols). The following example shows the translation of a weak symbol ":=" (it 
is considered as weak because it is often rnistyped as "="). 
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production 

Statement = 
ident 
WEAK ":=" 
Expression. 

generated parsing code 

Expect(ident); 
Weak(becomes, {start symbols of Expression}); 
Expression 

The procedure Weak is implemented as follows: 

PROCEDURE Weak(s: INTEGER; expected: Set); 
BEGIN 

IF sym = s THEN Get(sym) 
ELSE 

Error(s); WHILE sym ~ expected u {symbols expected at synchronization points} DO Get(sym) END 
END 

END Weak; 

Weak symbols give the parser another chance to synchronize in case of  an error. Again, the set 

of expected symbols is precomputed at parser generation time and causes no run time overhead 

in error-free parsing. 

When an iteration starts with a weak symbol, this symbol is called a weak separator. A 
mistyped separator is especially harmful, since it causes the iteration to terminate. Therefore, 

weak separators are handled in a special way. If  they cannot be recognized, the input is skipped 

until a symbol is found that is contained in one of the following three sets: 

symbols that may follow the weak separator 

symbols that may follow the iteration 

v symbols expected at any synchronization point (including eof) 

The following example shows the translation of a weak separator 

production 

StatSequence = 
Stat 
{ WEAK ";" Slat}. 

generatedparsingcode 

Slat; 
WHILE WeakSep(semicolon, ~, ~) DO Stat END 

In this example, a is the set of  start symbols of  a statement (ident, IF, WHILE, etc.) and ~ is the 

set of  successors of  a statement sequence (END, ELSE, UNTIL,  etc.). Both sets are 

precomputed at parser generation time. WeakSep is implemented as follows: 

PROCEDURE WeakSep(s: INTEGER; sySucc, iterSucc: Set): BOOLEAN; 
BEGIN 

IF sym = s THEN Get(sym); RETURN TRUE 
ELSIF sym e iterSucc THEN RETURN FALSE 
ELSE Error(s); WlqlI.F. sym ~ sySucc u iterSucc • ~/ DO Get(sym) END; 

RETURN sym ~ sySucc (*TRUE means "s inserted"*) 
END 

END WeakSep; 
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The observant reader may have noticed that the set 9 in the example contains the successors of a 
statement sequence in any possible context. This set is too large. If the statement sequence 
occurs in a repeat statement, only UNTIL is a legal successor, but not END or ELSE. I tolerate 
this fault, since it allows us to precompute the set I~ at parser generation time. The occurrence of 
END or ELSE is very unlikely in this context and can only lead to incorrect synchronization, 
causing the parser to synchronize again. 

The following example demonstrates that the above method yields good error-recovery. I 
generated an Oberon compiler and compiled the following erroneous program taken from 
[Wirth86]. The parser recovered surprisingly well. 

MODULE Error; 

CONST M := I0, N = I00 X = I0; 

*** ^ "= expected 
*** ^ ";" expected 
*** ^ ";~ expected 

VAR ~ a, b, c; 

*** ^ unexpected symbol in Block 

PROCEDURE P; 

BEGIN 

s := 0; a = 5 * (b - 1 END; 

• ** ^ error in Star 

• ** ^ error in Stat 

• ** ^ ident expected 

BEGIN 

> a > b; 

*** ^ unexpected symbol in Stat 

*** ^ error in Star 

WHILE a DO 

BEGIN > b; - c := 0; 

*** ^ unexpected symbol in Star 

*** ^ unexpected symbol in Stat 

*** ^ unexpected symbol in Star 

WHILE a > 0 BEGIN 

*** ^ "DO" expected 
IF ODD a c := c * - b; 

*** ^ error in Factor 

*** ^ error in Stat 

*** ^ error in Factor 

b := 2 * b a := a / 2 

*** ^ error in Factor 

END; 

P := 0; P; 666; 

*** ^ unexpected symbol in Star 

END . 

*** ^ ";" expected 
*** ^ "END" expected 

The proposed error-recovery technique is cheap. It costs only a check at every synchronization 
point and therefore does not slow down error-free parsing. The code for error-handling makes 
up 10 % of the parser code (without semantic actions). 

Oberon parser without error-handling 
Error-handling procedures (fixed size) 
Synchronization points, weak symbols 

3019 Bytes (object code) 
248 Bytes 

81 Bytes 
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6. MEASUREMENTS 

Coco/R is implemented in Oberon on a Ceres workstation. There is another Oberon implemen- 

tation for Sun Sparcstation as well as Modula-2 implementations for Macintosh and MS-DOS. 

I compared an Oberon compiler generated by Coco/R with a hand-written Oberon compiler and 

measured the time to compile a 867-1ine Oberon program (7169 tokens or 24254 characters) on 

a Ceres workstation with a NS32532 processor running at 25 MHz and on a Sun Sparcstation 1 
with a SPARC processor running at 20 MHz. The back-end of both compilers is the same, only 

the scanner and the parser are different. 

Compilation time of Ceres Sparc 
an 867 line program (see) (sec) 

Hand-written compiler 3.6 n.a. 
Generated compiler 3.0 0.75 

The generated compiler is 20 % faster than the hand-written compiler. This is due to the fact that 
the generated compiler reads the source text into main memory at once, while the original 

compiler reads it character by character. Without this improvement the generated compiler is 

about 10 % slower than the hand-written one. The speed of the several phases is: 

Speed of the Ceres Sparc 
generated compiler (tokens/sec) (tokens/sec) 

Scanning 15 360 39 390 
Parsing 51 130 73 910 
Total Compilation 2 400 9 560 

Scanning, as well as the whole compilation, is considerably faster on the Sparcstation because 

of its faster disk access while for parsing the Ceres catches up with Sparc due to its faster set 

operations. I avoided the measure "lines per second" since it depends on the density of the 

source code. One may assume 5-8 tokens per line as a mean value. Comparing the object code 

of the two compilers on the Ceres yields the following results: 

Object code in bytes Scanner Parser 
(on Ceres) (incl.sem.actions) 

Hand-written compiler 3 672 11 740 
Generated compiler 3 944 12 236 

Compared to the table-driven compilers generated by the old Coco system the compilers 
generated by Coco/R are more than twice as fast. This is due to improvements in the scanner 

and efficient semantic processing in the recursive descent parser. 
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7. CONCLUSION 

The field of compiler construction and compiler generation has long become mature. Various 
methods of scanning, parsing and semantic evaluation have been studied extensively. Time has 
come now to make good use of that knowledge and to design tools that are as simple and as 
efficient as we can achieve today. Coco/R is an effort in this direction. It is definitely not a 

prototype but a production quality tool with simplicity and efficiency as a major design goal. 

A simple tool should be based on a familiar notation, it should require as little input as possible 
and its function should be transparent and predictable to its user. For the generated parts to be 

able to compete with production quality compilers they must be small and fast. This can be 
achieved by using single-pass compilation with semantic actions executed during parsing, by 
burning the grammar into code instead of using table-driven techniques and by using efficient 

error-handling that does not slow down en'or-free parsing. For many translation tasks, such as 
the processing of small command languages, this kind of compilation scheme is quite sufficient 
(more powerful schemes would even be an overkill) and also proper compilers for many real 
programming languages such as Modula-2 or Oberon do not require heavier guns. 

Coco/R matches the above requirements to a large degree. The compilers generated by it are 

comparable to hand-written compilers both in speed and in size. The input language Cocol~ is 
easy to learn since it is small and based on familiar concepts (EBNF grammars and a general 
purpose programming language). A compiler description in CocolAq is about half the size of the 
compiler parts generated from it. It provides a better overview of the syntactic and semantic 
activities in a compiler and is therefore more readable. 

Let me conclude with a personal remark: Many compiler generating systems strive for power 
instead of simplicity and efficiency. I believe that this has done harm to the design of 

programming languages. The power of compiler generators may well have encouraged the 
complexity of some of today's languages. Are such powerful tools really necessary? I believe 
they are not. For me, there seems to be little reason why a programming language should not be 
designed in a way that makes it amenable to single-pass compilation and top-down parsing. 
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