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Abstract

Dynamic code evolution is a technique to update a program while
it is running. In an object-oriented language such as Java, this can
be seen as replacing a set of classes by new versions. We mod-
ified an existing high-performance virtual machine to allow arbi-
trary changes to the definition of loaded classes. Besides adding
and deleting fields and methods, we also allow any kind of changes
to the class and interface hierarchy. Our approach focuses on in-
creasing developer productivity during debugging. Changes can be
applied at any point a Java program can be suspended. The eval-
uation section shows that our modifications to the virtual machine
have no negative performance impact on normal program execu-
tion. The fast in-place instance update algorithm ensures that the
performance characteristics of a change are comparable with per-
forming a full garbage collection run. Standard Java development
environments are capable of using the code evolution features of
our modified virtual machine, so no additional tools are required.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages): Processors—Run-time environments

General Terms Algorithms, Languages, Evolution

Keywords Java, virtual machine, class hierarchy, runtime evolu-
tion, dynamic software updating, garbage collection

1.

Updating the code of a running program has been investigated early
in programming history [12]. With the introduction of executing
programs in virtual machines (VM), the possibilities for dynamic
code evolution increased because of the additional layer between
the executing program and the hardware. Nevertheless, support
for this feature in current production-quality VMs is limited. The
ability to evolve the code of a running program has advantages in
several areas. We distinguish four main applications of dynamic
code evolution and their specific requirements:

Introduction

Debugging. When a developer frequently makes small changes to
an application with a long startup time, dynamic code evolu-
tion significantly increases productivity. After modifying and
compiling the program, the developer can resume it directly
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from where it was suspended instead of stopping and restart-
ing it. For example, modifying the action performed by a but-
ton in a graphical user interface does no longer mean that the
whole program has to be closed. The main requirement for suc-
cess is that the code evolution step can be carried out at any
time and the programmer does not need to perform additional
work, e.g., provide transformation methods for converting be-
tween the old and new version of object instances or specify
update points. The performance of program execution is also
important as an application could do intensive calculations be-
fore the first breakpoint is reached or between two consecutive
breakpoints.

Server Applications. Critical applications that must not be shut-
down can only be updated to the next version using dynamic
code evolution. The focus lies on safety and correctness of an
update. We believe that this can only be achieved by designing
an application with code evolution in mind and restricting up-
dates to certain predefined points. The server applications must
not be slowed down before or after performing the code evolu-
tion.

Dynamic Languages. There are various efforts to run dynamic
languages on statically typed VMs (see for example [33]). Dy-
namic code evolution is a common feature of dynamic lan-
guages. Having it as a mechanism of the VM simplifies the
implementation of dynamic languages. The requirement here is
that small incremental changes, e.g., adding a field or method,
can be carried out fast.

Dynamic AOP. Dynamic code evolution is also a feature relevant
for aspect oriented programming (AOP). There are several dy-
namic AOP tools that use the current limited possibilities of the
Java HotSpotTM VM for dynamic code evolution [5, 46]. Those
tools can immediately benefit from enhanced code evolution fa-
cilities.

Our approach to dynamic code evolution focuses on improv-
ing developer productivity during debugging. It can carry out the
change at any point a Java program can be suspended, i.e., at any
point a developer can set a breakpoint. Additionally, a Java program
can be paused by requesting that every thread stops at the next safe-
point. These points are usually used to suspend all threads before a
garbage collection run. The Java VM guarantees that at any point
during program execution, all threads will reach the next safepoint
within a finite time span. Once the VM is suspended, code evolu-
tion can be performed.

The strong need for advanced dynamic code evolution features
is also expressed by the votes for enhancement requests for the
Java HotSpot™ VM: The request for improving the current sup-
port for code evolution that allows only swapping method bodies
is within the top five enhancement requests. Additionally, the in-
creased productivity through fast code modifications is considered
one of the advantages of dynamic languages compared to statically



typed languages such as Java. Enabling dynamic code evolution for
Java VMs gives this advantage to the Java programming language
too.

The main contributions of this paper are:

e We describe the modifications necessary for dynamic code evo-
lution in a production-quality VM.

e Our approach allows arbitrary changes, including the modifica-
tion of subtype relationships. Nevertheless, it does not introduce
any indirections and is without performance loss before or after
the code evolution step.

e We allow co-existence of old and new code. An update is
possible at any point a Java program can be suspended.

e Our modified version of the Java HotSpot™ VM can be used
from within any Java IDE that uses the standard Java Debug
Wire Protocol (JDWP), e.g., NetBeans or Eclipse.

2. Levels of Code Evolution

Several classifications of runtime changes have been published [20,
38]. From the aspect of implementation complexity and impact on
Java semantics, we propose the distinction of four levels of code
evolution as shown in Figure 1:

Swapping Method Bodies: Replacing the bytecodes of a Java
method is the simplest possible change. No other bytecodes
or type information data depend on the actual implementation
of a method. Therefore, this change can be done in isolation
from the rest of the system. The current version of the Java
HotSpot™ VM allows this kind of change.

Adding or Removing Methods: When changing the set of meth-
ods of a class, the virtual method table that is used for dynamic
dispatch needs to be modified. Additionally, a change in a class
can have an impact on the virtual method table of a subclass (see
Section 3.2). The virtual method table indexes of methods may
change and make machine code that contains fixed encodings
of them invalid (see Section 3.6). Machine code can also con-
tain static linkings to existing methods that must be invalidated
or recalculated.

Adding or Removing Fields: Until this level, the changes only
affected the metadata of the VM. Now the object instances
need to be modified according to the changes in their class
or superclasses. The VM needs to convert the old version of
an object to a new version that can have different fields and
a different size. We use a modified version of the mark-and-
compact garbage collector in order to change the object layout
(see Section 3.5). Similarly to virtual method table indexes,
field offsets are used in various places in the interpreter and in
the compiled machine code. They need to be correctly adjusted
or invalidated.

Adding or Removing Supertypes: Changing the set of declared
supertypes of a class is the most complex dynamic code evolu-
tion change for Java. For a class, this can mean changes to its
methods as well as its fields. Additionally, the metadata of the
class needs to be modified in order to reflect the new supertype
relationships.

When a developer changes the signature of a method or the type
or name of a field, the VM sees the change as two operations:
a member being added and another being deleted from the class.
Modifications to interfaces can be treated in a similar way as modi-
fications to classes. Adding or removing an interface method affects
subinterfaces and the interface tables of classes which implement
that interface, but has no impact on instances. Changes to the set of
superinterfaces have a similar effect.
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Figure 1. Levels of code evolution.

Another possible kind of change in a Java class is modifying the
set of static fields or static methods. This does not affect subclasses
or instances, but may invalidate existing code, e.g., when it contains
static field offsets. Additionally, a code evolution algorithm needs
to decide how to initialize the static fields: either run the static
initializer of the new class or copy values from the static fields of
the old class.

Changes to Java programs can also be classified according to
whether they maintain binary compatibility between program ver-
sions or not [8]. The light grey areas of Figure 1 represent binary
compatible changes; the dark grey areas indicate binary incompat-
ible changes. With binary compatible changes, the validity of old
code is not affected. We define old code as bytecodes of methods
that have either been deleted or replaced by a different method in
the new version of the program. When an update is performed at
an arbitrary point, a Java thread can be in the middle of execut-
ing such a method. Therefore, old code can still be executed after
performing the code evolution step.

Binary incompatible changes to a Java program may break old
code. The semantics of instructions that were valid in the old
version but are no longer valid in the new version of the program
are not clear as neither the Java language specification [15] nor the
Java VM specification [29] takes code evolution into account. We
classify binary incompatible changes as follows:

Removing Fields or Methods: The bytecodes of deleted or re-
placed methods can contain references to class members that no
longer exist in the new version of the program. During this con-
tinued execution of old code, the VM might reach those byte-
codes and needs to decide what to do when deleted methods are
called or deleted fields are accessed.

Removing Supertypes: When narrowing the type of a class, an
important invariant during Java program execution can be vio-
lated: The static and dynamic type of a variable no longer nec-
essarily have a subtype relationship. Additionally, the receiver
object of a dynamic call need no longer be compatible with the
class of the called method.

Section 4 gives a description of how we handle the case where
old code is not compatible with new types and in Section 7 we
discuss possible future work that targets this problem.

3.

We implemented our approach as a modification to the Java
HotSpot™ VM [34], a high-performance VM with an interpreter
and two just-in-time compilers (the client compiler [26] and the
server compiler [36]). The implementation is based on the exist-

Implementation



ing mechanism for swapping method bodies [7] and extends it to
allow arbitrary changes to loaded types. Our approach focuses on
implementing code evolution in an existing VM while keeping the
necessary changes small. In particular, we do not modify any of
the just-in-time compilers or the interpreter. Our changes affect
the garbage collector, the system dictionary, and the class meta-
data. They are however small and do not influence the VM during
normal program execution.

Figure 2 gives an overview of the modifications to the VM that
are described in the following subsections. The code evolution is
triggered by a Java Debug Wire Protocol (JDWP) command [32].
First, the algorithm finds all affected classes and sorts them based
on their subtype relationships. Then, the new classes are loaded
and added to the type universe of the VM forming a side universe.
A modified full garbage collection performs the actual version
change. After invalidating state that is no longer consistent with
the new class versions, the VM continues executing the program.

JDWP command

Find Affected Classes Modified GC Run

L Swap Pointers

Sort Topologically

y

Build Side Universe L
Invalidate State

v

Continue Execution

Update Instances

Figure 2. Steps performed by the code evolution algorithm.

3.1 Class Redefinition Command

We use the existing JDWP command for class redefinition to trigger
dynamic code evolution. JDWP is is a specification for the interface
between a Java VM and a Java debugger. Therefore, our modified
VM is immediately usable from within standard Java development
environments that use the JDWP protocol for debugging Java ap-
plications such as NetBeans or Eclipse.

The command requires that all redefined classes are already
loaded in the VM. If a class is not yet loaded, redefinition is not
necessary. The new version can be loaded as the initial version of
the class. For each class, a number identifying the class and an
array with the new class bytes is transmitted. Our modified VM
implements this command exactly based on its specification and
does not need additional information to perform the code evolution.

The first steps of the redefinition (described in the next three
sections) can be done in parallel with normal program execution.
Only the subsequent garbage collection run that performs the in-
stance updates needs to stop all running Java threads. We use the
same safepoint mechanism as the garbage collector to suspend all
active threads.

3.2 Finding Affected Types

When applying more advanced changes than just swapping method
bodies, classes can be indirectly affected by the redefinition step. A
field added to a class is implicitly also added to all its subclasses.
Adding a method to a class can have effects on the virtual method
tables of its subclasses.

Therefore, the algorithm needs to extend the set of redefined
classes by all their subtypes. Figure 3 gives an example with three
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Figure 3. Code evolution example changing the subtype relation-
ship between class A and C.

classes A, B, and C. Class A and C are redefined, but this also affects
class B as itis a subclass of A. Class B is added to the set of redefined
classes and is replaced by B’, which has the same class file data as
B, but possibly different properties inherited from its superclasses.
We need to fully reload B, because its metadata including the virtual
method tables need to be initialized based on the new supertype.

The same rule applies when redefining interfaces. All subinter-
faces and also all classes implementing the interface need to be re-
defined, because adding or removing methods of the superinterface
has effects on their interface method tables.

3.3 Ordering the Types

The redefinition command does not specify an order in which the
classes must be redefined. From the user’s perspective, the classes
must be swapped atomically. Our algorithm does a topological
sorting of the classes based on their subtype relationships. A class
or interface always needs to be redefined before its subtypes can be
redefined. The new version of a class could be incompatible with
the old version of its superclass. In that case, class loading only
succeeds if the superclass was already replaced by its new version.

In order to make changes to the class hierarchy possible, we
need to order the types based on their relationship after the code
evolution step and cannot use the information about their current
relationship. Subtype relationship information is available in the
VM only after a class has been loaded. Therefore, we parse parts
of the class files prior to class loading in order to find out about the
new subtype relationships. In the example of Figure 3, we need to
first redefine C to C’ and subsequently A to A’, because in the new
version of the program A is a subclass of C.

3.4 Building a Side Universe

We keep both the old and the new classes in the system. This is
necessary to be able to keep executing old code that depends on
properties of the old class. It would also open the possibility to keep
old and new instances in parallel on the heap. Additionally, it is
the only way to solve the problem of cyclic dependencies between
code evolution changes, e.g., when one change requires class A to
be redefined before B, but the other one B to be redefined before A:
While adding the new classes, the type universe is always kept in
a consistent state, because we build a separate side branch for the
new classes. Therefore, the old version of a class will not affect the
loading and verification of the new version of another class.

The Java HotSpot™ VM maintains a system dictionary to look
up classes based on their name and class loader. We replace the
entry for the old class with the entry for the new class immediately
after loading the new class. The pre-calculated order in which we
redefine classes ensures that the side universe is created correctly.
When we load class A in the example of Figure 3, the lookup for
class C returns C’, because class C was redefined before A. The VM
copies the value of static fields of the old class to the static fields
the new class if both name and signature match. We do not execute
the static class initializer of the new class. Figure 4 shows the state



of the universe after building the side universe for the new class
versions.

We keep the different versions of the same class connected in
a doubly linked list. This helps navigating through the versions
during garbage collection. The system dictionary, however, always
contains just a reference to the latest version of a class.

Side Universe

Figure 4. The new state of the type universe after code evolution.

3.5 Garbage Collector Adjustments

The core part of the redefinition algorithm is implemented as a
modification of the mark-and-compact garbage collection algo-
rithm. This algorithm calculates a forward pointer for each live
heap object, which points to the address of the object after the heap
compaction. In the following heap traversal, all references are ad-
justed to point to this newly calculated address instead of the ref-
erenced object itself. In the final compaction phase, the objects are
moved to their new addresses.

Changing references of the old class to references of the new
class can be done during the pointer adjustment phase. Addition-
ally, updating the instances is similar to the operation performed in
the compaction phase. Therefore, implementing code evolution as
a modification of the garbage collector leads to code reuse and high
performance for updating the object instances. The approach also
makes sure that we do not need any indirections or additional data
structures to enable code evolution. The following two subsections
contain descriptions of the two major modifications.

3.5.1 Swapping Pointers.

When updating a class C to C’ we must ensure that all instances
of class C are updated to be instances of class C’. The instance
of an object on the heap contains a reference to its class. The Java
HotSpot™ VM does not keep track of the instances of a given class,
therefore a heap traversal is necessary to find all existing instances.
Additionally, other parts of the system (e.g., native code) can have
references to the old class that need to be updated too.

Figure 5 shows the steps performed by the garbage collector as
well as our modifications. Assume that the initial heap contains an
object x of class A as well as a new version of class A denoted by
A’ . First, the collector computes the addresses of all alive objects
after compaction and installs a forward pointer into every object
that points to the new address. In the pointer adjustment phase, the
pointer fields and the class pointers of every object are modified to
point to the new addresses after compaction. We intercept this step
to ensure that pointers to the old class are adjusted to the destination
address of the new class. This ensures that after the compaction
phase, every previous reference to the old class is converted to a
reference to the new class.
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Figure 5. Swapping pointers during garbage collection.

3.5.2 Updating Instances.

For updating instances, we need a strategy how to initialize the
fields of the new instance. We have a simple algorithm that matches
fields if their name and type are the same. For the matching fields,
we copy the values from the old instance to the new instance. All
other fields are initialized with 0, null, or false.

With this approach, we can efficiently encode the memory op-
erations necessary for an instance update (filling an area with zero
or copying bytes from the old version of the object). The informa-
tion is calculated once per class and temporarily attached to the
class meta object. The modified garbage collector reads the infor-
mation and performs the memory copy or clear operations for each
instance. This makes instance updates faster compared to other ap-
proaches that work with custom transformation methods for con-
verting between the old and new version of object instances. We
believe that the programmer wants to provide as little additional
input as possible during debugging and so the lost flexibility com-
pared to transformation methods is balanced by the ease of use.

As the update from the old to the new version of an instance is
carried out during the compaction phase of the garbage collector,
we do not need any additional memory for co-existence of old
and new instances. The old version of an instance is deprecated
immediately after the new version has been created and filled with
values.

We adjusted the forward pointer calculation algorithm in order
to consider the new object sizes. An additional modification of the
garbage collector is necessary to support increasing object sizes. In
this case, the instances are not necessarily always copied to lower
addresses, which is a necessary condition for the compaction phase
of a mark-and-compact garbage collector. Therefore, every instance
that would be copied to a higher memory address must first be
rescued to a side buffer. Otherwise the garbage would overwrite
objects that are not yet copied and destroy their field values. After
all instances have been either copied or rescued, the side buffer is
processed and used to initialize the new versions of the rescued
instances. To reduce the number of objects that need to be copied
to a side buffer, our forward pointer calculation algorithm places
objects that are copied to the side buffer automatically at the very
end of the heap. This makes space for other objects to increase their
size while still being copied to lower addresses.

In Figure 6, the size of x is increased and therefore the object x
at its destination address overlaps other objects such as y and over-
write their contents before they are copied. Our modified forward



pointer algorithm detects that x is an instance that needs to be res-
cued and therefore places it at the end of the heap. This makes free
space for the destination addresses of the instances y and z such
that they need not be rescued. The optimization to place rescued
objects at the end of the heap significantly reduces the number of
rescued objects and therefore the necessary size of the side buffer.
In the compaction phase, the object x is copied to the side buffer,
objects y and z are processed normally. Afterwards, the new ver-
sion of x is constructed based on the data of the old version in the
side buffer.

x] L] [2]

Initial Heap

Normal Forward Pointers

Modified Forward Pointers

Copy

Side Buffer:

Final Heap

Figure 6. Increasing object size during garbage collection.

3.6 State Invalidation

The changes performed by code evolution violate several invariants
in the VM. The Java HotSpot™ VM was not developed with code
evolution in mind and makes assumptions that no longer hold,
e.g., that a field offset never changes. In this section we outline
different subsystems of the VM that need changes in order to
prevent unexpected failures due to broken assumptions.

3.6.1 Compiled Code.

Machine code generated by the just-in-time compiler before code
evolution needs to be checked for validity. The most obvious poten-
tially invalid information are virtual method table indexes and field
offsets. Additionally, assumptions about the class hierarchy (e.g.,
whether a class is a leaf class) or calls (e.g., whether a call can be
statically bound) become invalid.

The Java HotSpot™ VM has a built-in mechanism to discard the
optimized machine code of a method, called deoptimization [24]. If
there is an activation of the method on the stack, the stack frame is
converted to an interpreter frame and execution is continued in the
interpreter. Additionally, the machine code is made non entrant by
guarding the entry point with a jump to the interpreter. We can use
it to deoptimize all compiled methods to make sure that no machine
code produced with wrong assumptions is executed. Analyzing the
assumptions made for compiled methods could reduce the amount
of machine code that has to be invalidated. However, the evalua-
tion section shows that the time necessary to recompile frequently
executed methods is low.
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3.6.2 Constant Pool Cache.

The Java HotSpot™ VM maintains a cached version of the constant
pool for a class. This significantly increases the execution speed
of the interpreter compared to working with the original constant
pool entries stored in the Java class files. The original entries only
contain symbolic references to fields, methods, and classes, while
the cached entries contain direct references to metadata objects.
The entries relevant to code evolution are field entries (the offset of
a field is cached) and method entries (for a statically bound call a
pointer to the method meta object, for a dynamically bound call the
virtual method table index is cached). We iterate over the constant
pool cache entries and clear those entries that are possibly affected
by code evolution (i.e., that correspond to members of a redefined
class). When the interpreter reaches a cleared entry, it is resolved
again. The lookup in the system dictionary automatically returns
the new version of the class and therefore the entry is reinitialized
with the correct field offset or method destination information.

3.6.3 Class Pointer Values.

Several data structures in the Java HotSpot™ VM depend on the ac-
tual addresses of the class meta objects, e.g., a hash table mapping
from classes to JDWP objects. We need to make sure that these data
structures are reinitialized after code evolution. While class objects
may also be moved during a normal garbage collection run, our
pointer swapping potentially also changes the order of two class
objects on the heap. The just-in-time compiler uses a binary search
array for compiler interface objects that depends on the order of the
class objects and therefore must be resorted after a code evolution
step.

4. Binary Incompatible Changes

Changes are binary incompatible if they may break old code. This
section describes how we currently handle the two classes of binary
incompatible changes that we introduced in Section 2. In Section 7
we discuss different solutions that we want to explore as future
work.

4.1 Deleted Fields and Methods

As long as only method bodies are swapped or fields and methods
are added to classes, the old code can execute normally. It does
neither call new methods nor access new fields. However, when a
field or method is deleted, old code is possibly no longer valid. In
our system, old code may still be executed when old methods are
on the stack, so it can happen that old code accesses a deleted field
or tries to call a deleted method.

Figure 7 shows an example for this case. The program is paused
in method foo between the calls to print and bar. Method foo
is redefined to a new version foo’ while method bar is deleted.
Subsequent calls to method foo immediately target the new code,
but the old activation of foo continues to execute in the old code.
Therefore, it reaches the call to the deleted method bar.

The new version of foo is correct because it no longer calls
bar. It is possible to develop heuristics for translating from the
stack values and bytecode position in the old method to new stack
values and a new bytecode position in the new code. In the general
case, however, it is impossible to find a match that is intuitive for
developers.

In our current implementation, the old method continues execu-
tion in the interpreter. When it reaches the bytecode for the call
to bar, the reference to bar needs to be resolved (because we
cleared the constant pool cache during the redefinition step, see
Section 3.6). The resolution fails to find the method and throws a
NoSuchMethodException.



N N

A Redefine A
foo() foo’()
bar()
void foo() { void foo’ () {
print (“hello”); i print (“hello”) ;
bar () ; » Point of print (“world”) ;
) ’ Redefinition ) !

Figure 7. Deleting a method using dynamic code evolution.

4.2 Type Narrowing

When the set of implemented interfaces or the set of all super-
classes of a class increases, old code can execute as normal. It does
not use instances of the class as instances of their added interfaces
or supertypes, but executes as before. On the contrary, when the set
is narrowed, old code is possibly no longer valid.

Figure 8 gives an example for this case. Class B is redefined to
no longer extend class A but directly inherit from Object. Now,
instances of B must no longer be treated as instances of A. There
could already be variables of type A referencing instances of B as
shown in the code listing. After code evolution, the values of such
variables become invalid, because B is no longer a subtype of A. In
the listing of Figure 8, the call a.foo() no longer makes sense,
because B does neither declare nor inherit a method foo.

Object Object
AN AN
A Redefine E A
foo() foo()
A a = new B(); .
2.£00() ; » Point of
L Redefinition

Figure 8. Type hierarchy change using dynamic code evolution.

The current version of our system correctly performs the code
evolution step, but the call to foo leads to termination of the VM.
We believe that this is an acceptable solution when code evolution
is used in the context of debugging. We discuss possible different
solutions in Section 7.

5. Evaluation

We evaluate our implementation by looking at it from three sides:
First, we discuss our support for different levels of code evolution.
Second, we show that our modified VM produces equal benchmark
results than the unmodified baseline. After performing a code evo-
lution step the original peak performance is reached again. Finally,
we present timing results for micro benchmarks to discuss the per-
formance characteristics of our garbage collector modifications.
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5.1 Functional Evaluation

Our implementation supports any possible modifications to a set
classes. When the changes are binary compatible, the code is guar-
anteed to execute as expected. Binary incompatible changes are
performed, but depending on the program state (e.g., which meth-
ods are currently active), they may lead to exceptions being thrown
(e.g., when a deleted field or method is accessed by old code) or to
VM termination (e.g., when the dynamic type of a variable does no
longer match its static type). Such exceptions, however, are rare,
because deleting methods and fields is less common than adding
them, and even if members are deleted, it is unlikely that a method
that uses them is active just when the program is redefined. In all
cases, except when removing a super type, the continued execution
of the Java program is fully compliant with standard Java seman-
tics. Table 1 gives an overview of the supported changes classified
as discussed in Section 2.

Method Possible problems after resume
Swap Method Body

Add Method

Remove Method NoSuchMethodError
Add Field

Remove Field NoSuchFieldError

Add Supertype

Remove Supertype can lead to VM termination

Table 1. Supported code evolution changes.

When debugging an application, possible problems after resum-
ing the program are more acceptable than when updating a server
application. The worst case scenario is that the developer needs to
restart the application. Without code evolution, this would be nec-
essary anyway. The semantics of the problematic instructions are
not clear as the Java standard was not designed with code evolution
in mind. Therefore, we believe that throwing an exception or termi-
nating the VM is an acceptable behavior and leads to less confusion
compared to trying to hide and absorb the problem.

Since version 1.4 of Java, the JPDA (Java Platform Debug-
ger Architecture) defines commands for class redefinition. A VM
specifies three flags to inform the debugger about the code evo-
lution capabilities: canRedefineClasses if class redefinition is
possible at all, canAddMethod if methods can be added to classes,
and canUnrestrictedlyRedefineClasses if arbitrary changes
to classes are possible. To the best of our knowledge, our modi-
fied version of the Java HotSpot™ VM is the first VM that can
return true for all three flags. Based on the considerations in Sec-
tion 2 about the implementation complexity of changes in the VM,
we propose a more fine grained distinction between different levels
of code evolution. The step between adding methods and allowing
arbitrary changes is too coarse grained.

It is difficult to measure the usage characteristics of code evo-
lution as it heavily depends on the application domain and also on
the developer behavior. Gustavsson [20] published a case study in
which the updates to a web server between different versions are
examined. The result is that 37% of the modifications only rede-
fine method bodies, 16% only add or remove methods, 33% are
arbitrary code evolution changes, and 14% are changes that cannot
be performed, e.g., because of code that never becomes inactive or
a need to change things outside the VM. Our implementation can
therefore increase the percentage of possible changes in this case
study from 37% to 86%.



5.2 Effects on Normal Execution

We use two benchmarks selected from the DaCapo benchmark
suite [4] with different characteristics regarding the warm-up phase.
We show that our modifications to the VM have no effects on nor-
mal program execution. Additionally, after a code evolution step,
the application reaches the peak performance again. We measure
the times of 24 subsequent benchmark runs within the same VM.
A garbage collection between two subsequent runs is performed in
order to reduce the noise introduced by the garbage collector. In
our modified VM, we redefine a single class between the 8th and
9th and between the 16th and 17th run, causing the VM to discard
previously compiled machine code as described in Section 3.6.

Our implementation is currently based on an early access devel-
opment build of the Java HotSpot™ VM for Java 7 (build 1.7.0-ca-
b36). The baseline run is performed by the unmodified version of
the Java HotSpot™ VM. We use the same command line flags for
both VMs. All performance measurements were performed on an
Intel Core™?2 Quad CPU with 2.40 GHz per core and 8 GByte
memory. The operating system is a 32-bit version of Windows
Vista.

The heap size is specified with 1 GByte and the client compiler
is used as the just-in-time compiler. Additionally, we use the fol-
lowing command line flag:

-Xrunjdwp:transport=dt_socket,
server=y,address=4000, suspend=n

This starts a JDWP agent for receiving JDWP commands. The
agent is used for debugging the Java program running in the VM.
Later, we can connect to this agent and send the commands for
triggering code evolution.

We executed the test setup 20 times and calculated the mean.
Figure 9 shows the results for the unmodified reference VM without
code evolution (dotted line) and our modified VM (solid line) when
executing two DaCapo benchmarks.
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Figure 9. Executing 24 runs of the bloat (top) and the chart
(bottom) benchmark. The dotted line represents an unmodified
reference VM, the continuous line our code evolution VM.

The performance characteristics after a code evolution step are
similar to the warm-up phase. The first run after the code evolu-
tion is significantly slower. This is because the VM needs some
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time to recompile the frequently executed methods again. In the
second run, the performance difference is hardly measurable and
subsequent runs do not show any difference. As the profiling infor-
mation is reused, the first run after code evolution is faster than the
first run overall. For the chart benchmark, the slowdown of the
first run compared to the peak performance is about 15%, but the
slowdown of the first run after code evolution is only about 3%.

5.3 Micro Benchmarks

To measure the performance of instance updates and our garbage
collector adjustments, we use three micro benchmarks in which
we increase, decrease, or reorder the fields of a class and update
all instances of this class to their new version. We compare the
performance of this updating garbage collection to the performance
of a normal garbage collection run. Table 2 describes the different
class versions used for the benchmarks. It has three int fields and
three Object fields resulting in a total object size (including 8 bytes
object header) of 32 bytes. The three benchmark configurations are:

Increase Decrease Reorder
class C’ { class C’ { class C’ {
int i1; int i1; int i3;
int i2; int i2; int i1;
int i3; int i3; int i2;
Object oil; Object oil; Object 03;
Object 02; } Object ol;
Object o03; Object 02;
Object o4; }

}

40 bytes 24 bytes 32 bytes

Table 2. The three redefined versions of class C

Increase: An object field is added to the class resulting in an
increased instance size of 40 bytes (because the size of an object
is rounded upto 8 bytes). Therefore, the changed objects need
25% more heap area.

Decrease: Two object fields are removed resulting in a decreased
instance size of 24 bytes. Therefore, the changed objects need
25% less heap area.

Reorder: All fields of the object are reordered to be in a different
position than before. The size of the heap area of updated
objects remains unchanged.

We create a total of 4,000,000 objects, resulting in an approxi-
mate size in memory of 128 MByte. For our benchmarks, we create
fractions between 0% and 100% of the objects as instances of the
redefined class. The rest of the objects are created as instances of
another class with the same fields, but this class is kept unmodified.
The baseline is a full garbage collection without code evolution.
As there are no dead objects on the heap, this garbage collection
run only marks all objects, but does not need to copy memory in
the compaction phase. We execute each configuration 10 times and
report the mean of the runs. Figure 10 shows the results.

The slowdown of the code evolution garbage collection run
when no objects are affected is about 35%. This includes issuing the
JDWP command, loading the new classes, and also the additional
work needed during garbage collection for swapping the pointers
of the old and new class.

Increasing the size of all objects on the heap needs about three
times more time than the no-load garbage collection run. About
20% of the objects need to be copied to a rescue buffer, because one
object (32 bytes) makes room for four objects to increase their size
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Figure 10. Micro benchmark results for changing the fields of a
class compared against a garbage collection run.

by 8 bytes each. The performance of this benchmark is improved
when there are dead objects at the beginning of the heap. The dead
objects provide space for instances to increase their size and lead
to less objects being copied to the rescue buffer.

Reordering the fields of all objects (and therefore copying the
objects field by field instead of as a whole) is a likewise costly
scenario. No objects are dead and therefore the instances must be
updated in place. We need to make a copy of each object and then
copy the field values one-by-one. This is about three times slower
than a normal garbage collection run.

Redefining a class such that all object sizes decrease needs
about twice the time of a normal garbage collection run. In contrast
to the increased size, we do not need a rescue buffer. In the com-
paction phase, the objects are copied to their new location skipping
deleted fields.

6. Related Work
6.1 General Discussions

Several classifications of runtime changes of programs have been
published [20, 38]. Ketfi et al. outline the adaptation of component-
based applications [25]. Ebraert et al. present a general discussions
on the problems and pitfalls of software evolution [11] and examine
dynamic runtime changes from the point of view of the user [10].

Kramer and Magee investigate the problem of how to design
applications to allow a consistent state transfer between new and
old programs [27, 28]. Vandewoude et al. extend their work and
introduce the notion of tranquillity [45]. Runtime evolution in the
context of aspect-oriented programming is discussed by Gustavs-
son et al. [21].

6.2 Procedural Languages

Early work on dynamic code evolution was done by Fabry [12].
The dynamic code aspect is achieved by jump indirection to pro-
cedures. Data conversion routines can be specified and the old and
new version of a module can execute in parallel. Lee and Cook
implemented a dynamic modification system for the StarMod lan-
guage, which is an extension of Modula-2. Their system is called
DYMOS [6]. It includes a command interpreter that can perform
update actions based on certain conditions, e.g., when certain pro-
cedures are inactive.

Frieder and Segal developed a procedural dynamic updating
system called PODUS [13, 40]. They require a binding table for
methods that is updated accordingly. The concept of semantic de-
pendency between methods is introduced.

Gupta implemented a hot code replacement mechanism for C
programs on a Sun workstation based on state transfer [17, 18].
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The system supports adding and deleting of functions. For adding
global data, extra pointers must be declared in advance. Interpro-
cedures are installed in case the return value or parameters of a
method change. Those interprocedures map between a call from a
method of the old program version to a new method of the new ver-
sion. Gupta also developed a formal framework for program evo-
lution [19]. Different formalizations of dynamic software updates
were published by Bierman et al. [3] and Stoyle et al. [42].

Hicks et al. present a dynamic modification system for C-like
languages [22]. They apply patches to the running program that
are mostly automatically generated and can contain verification
code. The patches contain the new code as well as the code needed
to do the state transformation from the old to the new program.
Neamtiu et al. extend this work to support the update of procedures
with long-running loops and the ability to transform data of local
variables [31].

In contrast to the work described in this subsection, our algo-
rithm targets the challenges of code evolution for object-oriented
languages. Also, we can leverage the advantages of dynamic com-
pilation in a virtual machine and do not need to insert hooks into the
statically compiled program. The modification of the garbage col-
lector gives our algorithm maximum flexibility when performing
instance updates.

6.3 Object-Oriented Languages

Hjalmtysson et al. [23] present an approach for dynamic classes
in C++. They use the C++ template mechanism and proxy classes
to realize the dynamic code evolution aspect. There has to be an
interface definition for every dynamic class and it is only possible
to change the implementation behind this interface. Therefore, it is
not possible to add or remove any public members of a class and it
is also not possible to change the class hierarchy.

The Common Lisp Object System (CLOS) [14, 41] includes the
possibility to redefine a class. They allow the definition of trans-
former methods that update the instances from the old to the new
version. A conceptional difference to our approach is that in CLOS
the classes can only be redefined one-by-one, while we atomically
redefine a set of classes. In the former case, the programmer is re-
sponsible for performing the redefinitions in the correct order. Ad-
ditionally, our approach can deal with static typing and also with
methods being defined as class members. This is not necessary for
a class redefinition algorithm for the Lisp language. The class re-
definition command for Java is designed for debugger use, while
the method for redefining a class in Lisp can be called from user
code. We believe that parts of our algorithm (e.g., the garbage col-
lection modifications) can be used for efficiently implementing the
CLOS class redefinition mechanism.

6.4 Java

There are various approaches of dynamic code evolution for Java
based on proxy objects and bytecode rewriting [35, 37, 39, 44].
The main advantage of this approach is that it requires no change
of the runtime system and can therefore be applied to any Java VM.
Disadvantages are the performance penalty introduced by the indi-
rection and the limitations of flexibility, e.g., changes of the class
hierarchy are not supported. Additionally, support for triggering the
code evolution from within development environments is not avail-
able or requires special plugins. Furthermore, the reflection facili-
ties of the VM are affected (e.g. stack traces are obscure because of
generated proxy methods). Gregersen et al. [16] advocate the idea
of having a dynamic-update-enabled virtual machine and outline its
advantages.

The project JDrums [1] is an implementation of a dynamic Java
VM based on JDK 1.2. Its main limitations are that the just-in-time



compiler must be disabled, active methods cannot be updated, and
superclasses cannot be changed.

Malabarba et al. [30] present an implementation of code evo-
lution based on JDK 1.2. They require that only the interpreter is
used and cannot handle code evolution in the context of just-in-time
compilation. In case of instance changes, they perform a global up-
date using a mark-and-sweep algorithm during which all old ver-
sion objects are converted to new version objects. In contrast to our
solution, their modifications to version 1.2 of the JDK impose a
significant performance penalty on normal program execution. Ad-
ditionally, they allow only binary compatible changes and their VM
uses object handles instead of direct object references.

Subramanian et al. [43] implemented code evolution for the
Jikes RVM. They support adding and removing methods and fields,
but do not support changes to the class hierarchy like we do. A spe-
cial tool is used to generate update specification files. A transforma-
tion method is executed every time an object is converted between
two versions. In contrast to our algorithm, their implementation is
not focused on code evolution for debugging and can therefore nei-
ther perform an update at an arbitrary point nor be used from within
standard Java development environments.

Dimitriev et al. [9] present a class evolution algorithm for the
persistent object system for the Java programming language called
PJama [2]. They introduce transformer methods for updating the
stored objects. While some principles of class evolution also apply
when updating the schema of an object-oriented data store, our
main contribution is to perform dynamic class evolution and update
heap objects while the user application is running.

The work most closely related to ours was done in attempt
to apply PJama principles to runtime evolution of Java applica-
tions by Dmitriev [7, 8]. His implementation is part of the Java
HotSpot™ VM since JDK 1.4. While instance and schema changes
are discussed in the thesis, the actual implementation is only capa-
ble of swapping method bodies. It does change the original class
metadata object and uses a constant pool merging algorithm to
make sure that the new and the old methods can work with the
constant pool associated with the old class. Our approach of us-
ing a side universe (see Section 3.4) requires less code and is the
key design decision that enables us doing more complex changes
to classes. Also, we do not need a custom classloader for load-
ing the new class versions for validating the changes. Our code is
based on the current implementation of swapping method bodies
in the Java HotSpot™ VM and significantly enhances it to allow
arbitrary changes, including changes to the instance format and the
class hierarchy.

7. Future Work

While the current focus of our implementation lies on debugging,
we plan to extend it to the use case of updating server applications.
Compared to debugging, the security requirements are higher, but
the update may be delayed until a more suitable point in time. We
want to extend the redefinition command in such a way that a safe
update request can be made. This request is only performed if the
problems introduced by binary incompatible changes of the rede-
fined classes that we describe in Section 4 cannot occur. For deleted
methods and fields, this means that we have to make sure that they
are not accessed in the subsequent execution of the program. We
need a reachability analysis starting from all redefined methods that
are currently active. In case of hierarchy changes, where class A was
formerly a superclass of B, we need to guarantee that no variable of
static type A references an instance of type B. In order to check this,
we plan to do a stack walk for all active threads as well as a garbage
collection run to make sure that all fields will still reference objects
of valid types after the update. In Java, the static type of a local
variable is not encoded in the bytecodes and only temporarily cal-
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culated by the verifier, therefore we need to modify the verifier to
cache this information.

8. Conclusions

We presented a technique for dynamic code evolution in Java and
described its implementation for the Java HotSpot™ VM. We al-
low arbitrary modifications to Java classes including changes to the
class hierarchy. The update can be performed at any point during
program execution, and our VM works with standard Java develop-
ment environments. Old and new code may co-exist in the VM, and
therefore our approach allows redefining methods that are currently
active. We discussed the problems introduced by binary incompat-
ible changes, our current solutions, as well as future plans to deal
with them.

We showed that a production-quality VM can provide code evo-
Iution without losing performance during normal program execu-
tion. Our algorithm needs no additional indirections and works with
the interpreter as well as with both just-in-time compilers of the
Java HotSpot™ VM. The code evolution step is combined with a
modified garbage collection run and has similar performance char-
acteristics. The focus of our VM modifications lies on improving
debugging productivity.

Our approach is integrated in the latest development version of
a high-performance VM. Only few modifications were necessary,
and they were limited to specific components although the VM
was not designed with code evolution in mind. The implementa-
tion is part of a larger effort to extend the Java HotSpot™ VM
with first-class support for languages other than Java (especially
dynamic languages), called the Da Vinci Machine Project or Multi-
Language Virtual Machine Project (MLVM) [33]. The source code
and binaries of our modified virtual machine are available from
http://ssw.jku.at/dcevm.
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