
JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Str. 69

4040 Linz, Austria

www.jku.at

DVR 0093696

Author

Marks Osipovs

01428789

Submission

Institute of Systems

Software

Thesis Supervisor

DI Dr. Markus Weninger

September 2022New Exam Question

Types for the Online

Examination System

Xaminer

Bachelor’s Thesis

to attain the academic degree of

Bachelor of Science

in the Bachelor’s Program

Informatik

Bachelor's Thesis

New Exam Question Types for the Online Exam System Xaminer

Student: Marks Osipovs

Advisor: Dipl.-Ing. Dr. Markus Weninger, BSc

Start date: March 2022

The exam system Xaminer is used by the Institute for System Software and other institutes to

provide online exams for students. To improve the experience for both lecturers and students, the

system is constantly being improved and extended. Especially (1) fill-in-the-blanks questions and (2)

drag-and-drop questions are currently missing.

The goal of this thesis is to introduce these question types to the system. The student has to develop

convenient editing features to allow lecturers to easily define fill-in-the-blanks and drag-and-drop

questions. Fill-in-the-blank questions should be defined by the lecturer by providing a reference solution

to a question and marking certain parts as this answer as “blank parts” which then have to be filled in by

the exam taker.

Example:

class Student {

 // TODO define suitable fields

 ##BLANK_START##

 private final int age;

 private final String name;

 ##BLANK_END##

 …

}

Such a question should then be presented the exam taker with a text field that has to be filled out.

For drag-and-drop questions, the lecturer should be able to select a source image on which certain areas

can be marked as “answer areas” with a respective reference solution. All available answers are then

presented to the exam taker, who is then responsible for dragging all answer to their correct answer area.

Modalities:
The progress of the project should be discussed at least once per month with the advisor. A time schedule and a
milestone plan must be set up within the first 3 weeks and discussed with the advisor and the supervisors. It
should be continuously refined and monitored to make sure that the thesis will be completed in time. The final
version of the thesis must be submitted not later than 31.09.2022.

Dipl.-Ing. Dr.

Markus Weninger, BSc

Institute for System Software

P +43-732-2468-4361

F +43-732-2468-4345

markus.weninger@jku.at

Abstract

Despite ongoing development, the area of online examination is still somewhat underutilized
in the field of academic teaching. In this thesis, we help increase the usability of the online
examination platform Xaminer by adding two new question types. Gap text questions should
consist of a text with fillable blanks. Similarly, gap image questions should contain an image
with blanks. Students have to fill the blanks during the exam to answer the questions.

First, we determine the system requirements and usability requirements for each question
type. Then, we provide an in-depth insight into our implementation. Finally, we evaluate the
user experience of the new question types by analyzing typical workflows and provide several
ideas on how they can be improved in the future.

Kurzfassung

Trotz stetiger Verbesserungen ist das Gebiet der Online-Prüfungen im Bereich der akademis-
chen Lehre unterrepräsentiert. In dieser Arbeit helfen wir die Benutzerfreundlichkeit der Online-
Prüfungsplatform Xaminer zu verbessern, indem wir zwei neue Fragetypen hinzufügen. Lückentext-
Fragen sollen aus einem Text mit ausfüllbaren Blankofeldern bestehen. Ebenso sollen Lückenbild-
Fragen ein Bild mit Blankofeldern beinhalten. Studenten müssen die Blankofelder während der
Prüfung ausfüllen, um die Fragen zu beantworten.

Zuerst bestimmen wir die System- und die Benutzerfreundlichkeitsanforderungen für je-
den Fragetypen. Danach geben wir einen ausführlichen Einblick in unsere Implementierung.
Schlussendlich werten wir die Benutzerfreundlichkeit der neuen Fragetypen aus, indem wir die
typischen Arbeitsläufe analysieren, und bieten einige Verbesserungsvorschläge für die Zukunft
an.

i

Table of Content

Contents

Abstract i

Kurzfassung i

1 Introduction 2

2 Background 4
2.1 System overview . 4
2.2 Technology stack . 6

3 Gap Text Questions 8
3.1 Approach . 8
3.2 Implementation . 9

3.2.1 Block Editor . 9
3.2.2 Gap tags . 11
3.2.3 Block Visualizer . 13

4 Gap Image Questions 16
4.1 Approach . 16
4.2 Implementation . 17

4.2.1 Block Editor . 17
4.2.2 Block Visualizer . 20

5 Evaluation of the user experience 24
5.1 Gap Text Questions . 24
5.2 Gap Image Questions . 27

6 Future Work 30
6.1 Gap Text Questions . 30
6.2 Gap Image Questions . 31

7 Conclusion 32

Literature 34

ii

1 Introduction

Academia has always been a driving force behind the development of the internet – it is no
coincidence that the World Wide Web was created in 1989 specifically at CERN. It started as
a document management system that would allow users from anywhere in the world to access
and modify data. The rise of personal computers and smartphones combined with the increasing
internet speeds have made the internet irreplaceable in many aspects of everyday life. And
yet, to this day there are areas where this technology is still not widely adopted. Following
the outbreak of the COVID-19 pandemic, one of such areas was revealed to be the field of
examination in academic institutions. Handwritten exams are one excellent example for the lack
of digitalization.

Several online platforms that allow students to take their exams over the internet already
exist. The most prominent one in Austria is Moodle [9]. However, these platforms do not
target specific topics, courses, or faculties and thus offer only general question types. Therefore,
they are ill-suited for specialized fields of science, such as the field of computer science. For
example, standard open-ended freewriting questions must be used for coding assignments on
Moodle. They lack important quality-of-life programming features such as syntax highlighting
or automatic code indentation, negatively impacting the students’ ability to perform during the
examination.

To address this, the Institute of Software Systems at the Johannes Kepler University Linz
developed the Xaminer platform in early 2020. Using this Web application, lecturers can create
exams online by writing their own questions digitally with the help of several question types.
Students can take these exams online while being supervised via video over a conference call.
Since its inception, several new features and improvements have been added to the platform as
a part of an ongoing development process. Yet, Xaminer’s functionality still remains limited
in some areas. At the time of writing, it supports only a small set of standard question types,
such as open-ended freewriting questions, as well as single-choice and multiple-choice questions.
Additionally, due to the platform being developed and tested at a Computer Science institute,
it supports code questions specifically designed for programming tasks that provide the much
needed quality-of-life features.

In this thesis, we extend Xaminer’s functionality by adding support for two new exam question
types. A Gap Text Question (GTQ) allows exam authors to provide a text and mark parts of
it as fillable blanks (called gaps). Students have to fill the gaps during an exam with correct
answers. In a similar fashion, a Gap Image Question (GIQ) contains an image with fillable gaps,
with additional answer options that are provided by the exam authors during exam creation.
Students have to fill a gap by choosing the correct option.

Their inclusion enables Xaminer to be operated in a variety of new ways, allowing its usage
to spread to new faculties and lectures.

2

2 Background

In this section, we discuss the status quo of the Xaminer system and its underlying technology
stack1.

2.1 System overview

Figure 1: An exam with a text block and a single choice question block, as seen during exam
creation.

First, we take a look at how an exam is created and processed by the current system. The
Xaminer platform already provides a user interface to simplify exam creation. Authorized users
have access to an administrative part of the Web application where they can create and edit
their exams, as well as manage students and supervisors. Each exam consists of one or multiple
blocks that can be deliberately added or removed by the exam author. Each block represents
one question of a certain question type. Their contents and user interface vary from each other,
as showcased in Figure 1. For example, we can use a Text block to display information to

1Set of technologies used to build and execute an application.

4

the students, but it cannot be interacted with. A Multiple-Choice Question block contains a
description of the question and additionally includes a checkbox for each possible answer. Many
blocks for the various tasks that can frequently be found in typical university exams are already
available as a part of the system, i.e., blocks for open-ended freewriting tasks, for coding problems,
for single-choice questions, for the multiple-choice questions, and for image questions.

When exam authors add a new block to the exam, it is split into two parts by Xaminer.
On the left side of the Web page, one can find the Block Editor, where lecturers can modify a
question by interacting with the user interface. The right side of the screen contains the Block
Visualizer, which renders the question as it would be visible to the students during the exam.
Additionally, a preview of the entire exam from the students’ perspective can be viewed using
the "Full exam preview" button (see bottom of Figure 1).

Figure 2: An exam with a single choice question block and a multiple choice question block.
"Vienna" has been marked as the correct answer to the single choice question. "Paris" and
"Rome" are marked as the correct answers to the multiple choice question.

Now, let us take a look at the implementation of the blocks. A base Block Editor consists
of a single text field that is implemented by a textarea HTML element. Exam authors can use
the text field to provide the question description. The Text block 1 in Figure 1 showcases this
base Block Editor design. All other Block Editors are built upon it, thus, they also all include a

5

textarea HTML element. Additional standard user interface elements can be provided when re-
quired by the other question types, such as radioboxes for single-choice questions and checkboxes
for multiple-choice questions. Furthermore, form inputs or sliders to modify various settings of
a block can be included. Figure 2 shows an example usage of radioboxes and checkboxes in two
different blocks.

The students are not authorized to access the Block Editors and only interact with the Block
Visualizers during an exam. When they access an exam, the user interface of the visualizer is
slightly altered. During exam creation, the question title and description are located above the
area that the students can interact with. During the exam process, the area is now located to
the left of it, as can be seen in Figure 3.

Figure 3: 1 A single choice question rendered during the exam creation (exam author view).
2 A single choice question rendered during the exam (student view).

2.2 Technology stack

The underlying technologies that power the application can be separated into two groups –
the ones for the frontend and the ones for the backend2. For the frontend, Xaminer uses the
TypeScript [7] programming language. Additionally, using Vue [13] as its model-view-viewmodel
frontend framework allows us to keep the code base clean by splitting it into Vue components.
A Vue component is a logical module that encapsulates custom UI elements and programming
logic. It can be reused throughout the application. UI elements such as buttons, dropdowns, form
inputs, sliders, or menus are provided by HTML and styled using the BootstrapVue [1] framework.
The backend is powered by a Spring Boot [10] application written in the Kotlin [4] programming
language and uses a MongoDB [8] database to store the exams, i.e., student submissions.

The Block Visualizer then accesses the configuration to render the exam. However, it would
be very inefficient to communicate every change from a Block Editor to a Block Visualizer via
the database. To solve this problem, the Block Visualizer fetches the configuration from the
database exactly once, when the Vue component is loaded. From there on, the Block Visualizer
listens for changes in the Block Editor, and updates itself accordingly, as illustrated in Figure 4.

2Frontend refers to parts of the app commonly exposed to and accessible by the user, as opposed to the
backend, which is hidden and works in the background.

6

modi es exam

Exam author Block Editor Block Visualizer

Database

updates in real-time answer exam

Students

fetches once, when
loaded

saves on-demand

Figure 4: Block Editor - Block Visualizer - Database model.

To add Gap Text Questions and Gap Image Questions to the existing Xaminer platform, we
need to create a new block for each question. The new Block Editors must provide additional user
interface elements on top of the ones already present in Xaminer, to allow for quick and intuitive
creation of exam questions. The new Block Visualizers must be reusable, i.e., we should be able
to use them for both exam creation and the examination process itself. This will ensure that
the exam questions appear and behave the same way for both lecturers and students, asserting
a consistent experience. Therefore, the Block Visualizers must comply with our Block Editor -
Block Visualizer - Database model (see Figure 4). Additionally, the visualizers should have the
option to record students’ answers and expose them to the rest of the app, to store the answers
in the database as part of a submission.

7

3 Gap Text Questions

In this section, we discuss the design process and the implementation of Gap Text Questions.

3.1 Approach

In this section, we determine the system requirements and usability requirements for the Gap
Text Questions and discuss our thought process when designing them.

Requirements definition. The first step to design the new Gap Text Question question type
was to design the user interface of the Block Editor. We started by determining what would be
required for the exam author to create the question with the desired functionality, and what UI
elements we would have to include to make the process effortless.

A text field has to be present to specify a text that describes the assignment, just as with
other Xaminer questions. Additionally, we require a separate text field to provide the text with
the reference solution, which we refer to as the template text. The lecturers need a way to mark
parts of the template text to be identified as gaps, i.e., those parts that later have to be filled in
by the students. Two kinds of gaps are required:

1. Inline Gaps can be located in one line of text and can have text to the left and right of
them.

2. Multiline Gaps that stretch several lines and can only have text above and below them.

A schematic showcasing how the Gap Text Question could appear to students during an exam
can be seen in Figure 5.

Figure 5: A mockup Gap Text Question. An Inline Gap and a Multiline Gap are specified in a
paragraph of text.

A text field for the description is already included as a part of the base Block Editor. The
most straightforward way to provide the template text was to provide another, separate textarea
element. In order to mark the gaps of the template text, we looked at features of markup
languages such as HTML [11] or Markdown [2]. They allow programmers to provide specific tags
within the contents of a document. Information enclosed by these tags is treated differently from
the rest of the text by the text processors. The exact approach varies based on the type of tag
that encapsulates the information within. For example, text surrounded by two asterisks, such

8

as this **bold text**, is rendered by Markdown as bold text. As we can observe, the tags
themselves are not visible to the end user. By utilizing this mechanic, we could specify where in
our template text the gaps would start and end.

SVG as a mean of visualization. With the Block Editor layout figured out, the next problem
we had to solve was the Block Visualizer. First, (1) it must be able to process and visualize the
two kinds of gaps. Additionally, it would be ideal if the students are not limited in their workflows
during the exam process. Everyday features that are expected of modern text editors should be
allowed. Thus, students should be able to: (2) copy and paste text, (3) use keyboard shortcuts
such as ctrl + V , ctrl + Z , and others to modify the text, and (4) right click a text selection
to bring up a context menu that provides means of editing the text.

A straightforward solution to render the template text is to use Scalable Vector Graph-
ics (SVGs). Despite originally being designed for vector graphics, they allow for inclusion of
other HTML elements. Some elements are supported natively, for example, the text element for
the inclusion of text in graphics. Elements from other XML namespaces (such as HTML) must
be included by importing them using a foreignObject element and wrapping them in it. In our
case, we are using two elements from the (X)HTML namespace. input elements display a small
inline box, i.e., a rectangular text field that is placed on the same line as the surrounding text.
Using it, users can freely provide an input text, which makes it suitable to be used for Inline
Gaps.

As input elements do not support multiple lines of text, we use textarea elements for
the Multiline Gaps. Additionally, textarea elements can be resized arbitrarily, allowing us to
accommodate inputs of any length.

SVGs use a combination of a coordinate system and dedicated width and height values for
placement of elements and drawing of objects. This means that we can deliberately place and
resize our input and textarea elements by moving and resizing either the elements themselves
or their parent foreignObject element.

Finally, we determined that solutions provided by students might be longer than the solution
that was intended by the exam author. It is thus necessary to include a mechanism to gracefully
handle these overlong answers.

3.2 Implementation

In this section, we discuss the details of the implementation of Gap Text Questions and the
layout of their user interface.

3.2.1 Block Editor

Implementing the Block Editor for Gap Text Questions was simplified using other Xaminer
Block Editors as a template. An example showing the GTQ Block Editor 1 and the GTQ Block
Visualizer 2 can be seen in Figure 6. The textarea element for the question description 3 is
already included as a part of every base Block Editor. Additionally, we added a second textarea
element to our Block Editor to provide the template text 4 . Further controls for the scaling
of the x-axis 5 , the scaling of the y-axis 6 , and for creating gaps in the template text 7 are
implemented using BootstrapVue’s standard user interface elements.

9

F
ig

ur
e

6:
1

B
lo

ck
E

di
to

r
an

d
2

B
lo

ck
V

is
ua

liz
er

of
a

G
ap

T
ex

t
Q

ue
st

io
n

w
it

h
th

e
de

fa
ul

t
te

m
pl

at
e

te
xt

.
3

Q
ue

st
io

n
de

sc
ri

pt
io

n
te

xt
ar

ea
el

em
en

t.
4

T
em

pl
at

e
te

xt
te

xt
ar

ea
el

em
en

t.
5

x-
ax

is
-s

ca
lin

g
fa

ct
or

co
nt

ro
ls

.
6

y-
ax

is
-s

ca
lin

g
fa

ct
or

co
nt

ro
ls

.
7

T
og

gl
e

ga
p

bu
tt

on
.

10

3.2.2 Gap tags

After that, we had to decide on a character sequence by which gaps could be marked within
the template text. Xaminer is developed by the Institute of Software Systems and thus, at the
moment of writing, is primarily used in the field of Computer Science. Therefore, we needed
to find a character sequence for the opening gap that would not interfere with text or program
code that could be commonly found in a programming task. For that goal, we analyzed the
programming languages that are taught at the Johannes Kepler University of Linz. We settled
on the character sequence !# to denote the beginning of a gap (Opening Tag) and the character
sequence #! to signify its ending (Closing Tag). The correct solution for the gap is then placed
between the two tags: !#correct solution#!.

To the best of our knowledge, these sequences are not used to denote inline comments or
comment blocks in most of the common programming languages, as outlined in Table 1. Fur-
thermore, the # character is not used for any mathematical or logical operations in the vast
majority of the popular programming languages. Thus, it would be very unlikely to find it di-
rectly before or after an exclamation mark, which is used as either a mathematical operator for
the factorial operation or as a logical operator for negation. However, several notable exceptions
exist, which we discuss further in detail.

Programming
language

Single line
comment

Block comment
start

Block comment
end

ArangoDB
Query Language

// /* */

Assembly # Not available Not available
Bash # Not available Not available
C Not available /* */
C++ // /* */
C# // /* */
Cypher // Not available Not available
Haskell – {- -}
Java // /* */
JavaScript // /* */
Kotlin // /* */
MATLAB % %{ }%
Prolog % or %! or %% /* */
Python # Not available Not available
R # Not available Not available
Rust // /* */
Scala // /* */
SQL – /* */
VHDL – Not available Not available
Wolfram Language Not available (* *)

Table 1: List of programming languages, query languages, and hardware description languages
taught at JKU Linz with their respective comment indicators.

11

Assembly language and Python language. The character ! is unused in these two lan-
guages, meaning that the character sequence !# would result in a syntax error and thus does
not appear in program code. Therefore, we can use !# as our Opening Tag. The Closing Tag
#! is a valid character sequence and would denote a single line comment. However, inserting a
whitespace character between the single line comment indicator # and the ! character solves the
conflict.

Bash language and R language. The ! character is used for the negation operation in
these two programming languages. However, the operation requires a variable to be specified
immediately after the ! character. As # character cannot be used for variable names in the two
languages, the character sequence !# can not appear in program code. Thus, we can use it as
our Opening Tag. The Closing Tag conflict can be solved in the same way as the Closing Gap
conflict with the Assembly language and the Python language.

Wolfram Language. Both sequences can be found in the Wolfram Language, which is used
in the symbolic computational software Mathematica. There, the # character is a shorthand
operator of the Slot expression3 that is used to identify the first argument of a pure function.
Arbitrary operations – including mathematical ones – can be performed upon it. Consider the
code in Listing 1:

In[1]:= Map[3!#&, {1, 2, 3, 4}]
Out [1]:= {6, 12, 18, 24}

In[2]:= Map[#!&, {1, 2, 3, 4}]
Out [2]:= {1, 2, 6, 24}

Listing 1: Two Wolfram Language/Mathematica functions. In In[1], we apply the function
3! ∗ x to every element x of a list. In In[2], we apply the factorial operation to every element of
a list.

However, as every expression in Mathematica can be written using its full name instead of
using just its symbol, we can rewrite both functions to avoid conflict. The expression 3!#& can
be altered to 3!*#&, and the expression #!& can be altered to Factorial[#]&. Nonetheless, it
will be up to exam authors to check their code for compatibility with Gap Text Questions.

Exam authors can provide the sequences !# and #! manually by typing the corresponding
characters in the template text. Alternatively, they can select a portion of the text – the selection
can span multiple lines – and press the "Toggle gap" button in the Block Editor toolbar (see 7
in Figure 6). The system will then subsequently insert the tags for the user at the beginning and
the end of the selection. If the selected text passage is already a valid gap (i.e., it starts and ends
with the correct tags), then the system will instead remove the existing tags instead of adding a
new gap.

3Numbers, variables, functions, graphics and other objects are represented in Mathematica as symbolic expres-
sions.

12

3.2.3 Block Visualizer

The next step is to render the template text in a Block Visualizer. Since its SVG visualization
is quite different to existing Block Visualizers, we had to write several new helper functions.
Further, we implemented it in its own dedicated Vue component called Gap Text Question
Visualizer (GTQ Visualizer). This allows us to reuse it to render the template text during
(1) the exam creation, (2) the exam preview, and (3) the exam process.

Text processing. Since we are using SVGs with a coordinate system, we needed to create a
visualizer which can read the template text word for word and create corresponding text, input,
and textarea elements. Furthermore, the elements need to have correct x and y coordinates.
In SVGs, the horizontal axis is called the x-axis, and the vertical axis is called the y-axis. After
prototyping several designs, we settled on a solution that was inspired by parsers. Code parsers
are designed to systematically iterate through program code and to convert it into a different
representation. First, we implemented a text scanner similar to those used in LL-parsers4. It
can iterate over the template text character by character and automatically detect four kinds of
tokens: (1) a Whitespace, (2) a Word (represented in the SVG by a text SVG element), (3) an
InlineGap (represented by an input HTML element) and (4) a MultilineGap (represented by a
textarea HTML element). This allows us to view the entire template text as an array of tokens.
Using Vue, we can then easily iterate over this array when creating the SVG code. This allows us
to dynamically create the corresponding SVG elements for every token in the array and supply
them with the correct coordinates, width and height.

Any whitespaces found in the template text are represented by Whitespace tokens. Code
parsers usually skip whitespaces as they are useless for computers and only help to make program
code easier to read. However, we must keep track of them in our task, as whitespaces can be used
to denote the indentation of a line, and thus affect the coordinate system of the GTQ Visualizer.
In our implementation, Whitespace tokens are not rendered by the GTQ Visualizer. Instead, as
soon as the GTQ Visualizer reads such a token, it moves forward along the x-axis, indenting the
next token by the width of one character.

A word is considered to be a sequence of characters that is connected together, i.e., not
separated by whitespaces or gaps. They are represented by Word tokens.

InlineGap and MultilineGap tokens represent the Inline Gaps and Multiline Gaps, respec-
tively. These tokens additionally have a unique identifier and a correct answer.

When reading the template text, as soon as the parser detects the beginning of a gap, it
creates an InlineGap token and starts to keep track of the number of processed characters until
it reads the ending sequence. If the parser finds a newline character while it is still processing
an InlineGap token, it automatically converts the token to a MultilineGap token.

InlineGap, MultilineGap and SVG dimensions. Computing the length of the correct
answer of an InlineGap allows us to automatically compute the width of the corresponding input
element by multiplying the number of read characters with the character width. This way, we
have enough space to accommodate the solution of this gap. The height of an InlineGap, as
suggested by the name, is always strictly one line. It therefore corresponds to the default line
height.

4Left-to-right, leftmost derivation top-down parsers.

13

On the contrary, textarea elements of MultilineGap tokens always span from their x-
coordinate to the rightmost edge of the image, making them fill the entire width of the SVG
minus their starting indentation. The height is calculated based on the number of lines of the
MultilineGap token. Under normal circumstances, HTML textarea elements can be resized by
the user using the mouse. As both the height and the width of the SVG in the Block Visualizer
are fixed with respect to the dimensions computed from the template text, this behavior has
been disabled.

The SVG is resized automatically based on the parameters of the provided template text,
such as its number of lines and line length. Its height is computed by multiplying the number
of read lines with the line height (22 pixels by default). The width is similarly dynamic. To
compute it, we first determine the longest line of the template text by calculating the number of
characters in a line while taking into the account the widths of the inline input elements. The
width of the SVG then equals the length of the longest line multiplied by the default font size
(16 pixels, which equals a monospace font size of 12pt).

Overlong answer handling. However, after implementing and evaluating this concept, we
discovered a potential source of problems for students when solving the Gap Text Questions.
As different students can provide different solutions to the same question, their lengths may
vary from the length of the correct solution that was provided by the exam author. In the field
of programming, a simple example of this is variable naming: the exam author might specify
dimensions of a hypothetical object using the letters w and h, where a student might name the
variables width and height. In such a case, the solution given by the student will be longer
than the space provided by the input element.

To address this problem, we added an x-axis-scaling parameter to the question configuration.
It affects the width of input elements of all InlineGap tokens in a particular block. Its default
value is set to 1.5, meaning that the width of an input element will be 1.5 times the width of the
specified solution, e.g., 15 characters instead of 10. As we have outlined before, the total width of
the SVG depends on the width of the inputs in the longest line of the template text, therefore, it
is directly affected by the x-axis-scaling factor. Exam authors can change the x-axis-scaling to a
different value using the form input in a Block Editor’s toolbar (see 5 in Figure 6). MultilineGap
tokens and their corresponding textarea elements are not affected by the x-axis-scaling, as they
already span the entire width of the SVG.

A similar issue is present for MultilineGap tokens, where a solution may span more lines than
originally intended. Therefore, we introduced an additional y-axis-scaling parameter (see 6 in
Figure 6) that affects the height of all textarea elements of a block. It functions in the same
way as x-axis-scaling.

Simplified MultilineGap notation. Furthermore, it is sometimes easier for exam authors
to specify a MultilineGap without providing a sample solution. In that case, we would have
no line breaks, so the parser would treat the gap as an InlineGap token. The Visualizer would
not render it either, as without a solution the width of the input element is 0. Therefore, we
expanded the functionality of the opening gap tag by providing support for the special syntax
!x#y#!. This sequence is automatically converted to a MultilineGap token with x number of
lines. The correct answer y is optional and is skipped during parsing, not influencing its height.

14

Storing exam answers. Finally, the students’ solutions must be stored in the database. Using
Vue’s component events, we added event handling after a value of either an input element or
a textarea element has been modified by the student. The IDs of the elements, as well as
their values are saved as a part of the current exam instance. They can later be stored in
the database and are further made accessible for grading using the existing functionality of the
Xaminer framework.

15

4 Gap Image Questions

In this section, we discuss the design process and the implementation of Gap Image Questions.

4.1 Approach

In this section, we determine the system requirements and usability requirements for the Gap
Image Questions and discuss our thought process when designing them.

As with Gap Text Questions, determining the system requirements was imperative to create a
functional and easy to understand user interface. After observing the common ways Gap Image
Questions are used in classic paper exams, and evaluating how this functionality is implemented
in other online platforms such as Moodle, we arrived at the following list of requirements:

1. Background image: the exam author should have the ability to upload an image to serve
as the question’s background.

2. "Gaps" or "blanks": there must be a way to specify where in the image the gaps are
located, i.e., those locations the students have to assign their answers to.

3. "Answer tiles": it must be possible for the exam author to provide possible answers the
students can choose from to assign to the gaps.

4. A system for assigning answer tiles to gaps. In offline paper exams, a common way to solve
an assignment is to first pick out an answer from a list of possible answer tiles. Students
then write the answer in a gap in the image, and cross out the corresponding tile. On a
digital platform, a more fluid experience is expected.

An mockup of a Gap Image Question showcasing the first three requirements can be seen in
Figure 7. It depicts a typical Computer Science exam question where students are tasked with
filling missing values in a binary search tree. The background image depicts the mostly complete
binary search tree with several existing values (denoted by ■). Students must select values from
possible a list of possible answers (denoted by ■) and place them in the gaps (denoted by ■).

Following a discussion with our supervisor, we initially decided to reduce the complexity of
the task. First, we determined that handling database access and modifying the database schema
was not within the scope of this bachelor thesis. Therefore, we decided to host background images
on dedicated servers and to access them by loading them via their URLs. This enables us to
store the URL of the image as a text string, as opposed to having to store the image itself. Doing
so, we are be able to reuse the existing database CRUD5 operations. Second, we wanted to avoid
the complexity of having to develop a full user interface with image drag and drop functionality.
In this original approach, lecturers are able to place gaps on the background image by simply
clicking on it. The positions of the gaps are final, as they are be immovable. The students filled
the gaps by first clicking on an answer, and then clicking on a gap.

The immediately apparent way to implement the functionality of this approach was to once
again utilize SVGs, as they are designed for graphics and images. However, while performing
preliminary research and prototyping the user interface before the start of the implementation

5Create, read, update, delete.

16

Figure 7: A mockup Gap Image Question. Three gaps are marked in the image. Three answers
are located below the background image.

we discovered that it was proving to be impossible to design an intuitive user interface that
was based on the mouse click workflow. The students must solve the exam in a limited time
frame and are therefore subjected to stress. Thus, it is important to have a UI that immediately
conveys its features and functionality to them without needlessly distracting students from the
exam.

After prototyping and testing several UI mockups, we were not able to create a UI that
functioned in accordance with our expectations. Therefore, we decided to look for an external
library that (1) enabled an intuitive image editing workflow and (2) offered simplified event
handling compared to the native SVG event handling. We settled on Konva [6], a state-of-
the-art JavaScript library that specializes in 2D graphics for HTML5 using the canvas HTML
element. It has several native features for image editing that are commonly found in desktop
image editing software, e.g., layers and transformation boxes. Furthermore, it has full support
for mouse and keyboard event handling. Finally, Konva supports Vue out-of-the-box and can
thus be easily integrated into our technology stack.

Following that, we were able to enhance our original approach by developing a prototype
user interface that was intuitive to use. Gap creation and answer location remained the same
compared to our original approach. However, the gaps now can be interacted with by the exam
authors, and answers are movable. This allows for an intuitive and fast workflow during exams.

4.2 Implementation

In this section, we discuss the details of the implementation of Gap Image Questions and the
layout of their user interface.

4.2.1 Block Editor

As with other exam creation blocks within Xaminer, the user interface of this component is also
split into two parts. The Block Editor can be seen in Figure 8. As always, the existing framework
provides a base Block Editor 1 with a text field for the question description 2 . Additionally,
we added a new button to load a background image 3 . When clicked, it displays a popover

17

where exam authors can provide the background image URL 4 . Due to the large number of
modifications required for a Konva-powered image editor, we extracted the rest of the Block
Editor functionality into a separate Vue component named Gap Image Question Editor (GIQ
Editor) 5 . It contains a Konva stage with two layers 6 , as well as other UI controls to modify,
insert, and remove the gaps (7 through 11). Their detailed functionality is explained later in
this section. The GIQ Editor is only shown after a background image is successfully loaded from
a URL. The image is then subsequently placed into its dedicated layer of the stage.

Figure 8: Block Editor of the Gap Image Question.

Gap representation. To represent the gaps, we introduced the concept of slots. An example
question with two slots can be seen in Figure 9. One slot, with the assigned correct answer "5"
is located in the left subtree of the binary tree. The second slot, to which no correct answer is
assigned (as indicated by the "-" character), is the leftmost leaf of the binary tree.

A slot consists of a Konva node (called slot node) and a corresponding TypeScript object
(called slot object). The nodes are Konva elements that natively support event handling and can
be interacted with by the user, however, they only exist in the DOM6. A slot object contains
the information that describes a slot node, such as its placement on the canvas grid via x and

6Document Object Model : a cross-platform and language-independent interface which operates on an HTML
or an XML document by viewing it as a tree of objects.

18

y coordinates, as well as an optional correct answer that is associated with the slot. The slot
objects are stored in a TypeScript array. When a slot node is updated by an exam author – for
example, when new slots are added or the position of existing ones is changed – the corresponding
object is updated. This allows us to store the configuration of the question in the database.

Figure 9: Gap Image Question Editor with a loaded background image and two slots.

A new slot node can be created at the x = 20 and y = 20 grid coordinates by pressing the
"Add" button in the toolbar (see 10 in Figure 8). Alternatively, the exam author can click
anywhere on the image to create a new slot node at the coordinates of the mouse click. A
tooltip appears when the mouse is hovering over the "Add" button and provides a hint to this
functionality. GIQ Editor creates all slots on the second layer of the image. The nodes can be
moved freely within the canvas by dragging them with a mouse. Slots can be deleted by selecting
them and either by clicking the "Remove" button (see 11 in Figure 8) or by pressing the
key.

Slot design. All slots of a block are uniform, i.e., they have the same height and width. This
is done to prevent cheating, as students otherwise might be able to figure out the correct answers
by just looking at the shapes of the slots. For the sake of a consistent design, the font size of all
correct answers in the slot nodes is uniform as well. Exam authors can change these parameters
using form inputs for the font size (see 8 in Figure 8) and for the width/height of slots (see 9
in Figure 8) in the GIQ Editor toolbar. Additionally, lecturers can alter the size of all slots by
selecting any slot node with the mouse and transforming it by dragging the points on its frame.
A selected node can be seen in Figure 10. While Konva supports the rotation of objects, we
disabled this functionality in our implementation, as it is not required for our task. The slot
settings are stored in the database as a part of the question’s configuration, and are unique for
each Gap Image Question block.

Additionally, the exam author can assign a correct answer to any slot. To add or modify it,
they need to first select the slot node and then change the value in the respective form input in

19

Figure 10: Gap Image Question with two slots. The slot with the correct answer "1" assigned
to it is selected.

the toolbar (see 7 in Figure 8). By default, no correct answer is provided, which is represented
by the GIQ Editor with a "-" character.

11

1 22

1 23

14

1 35

Figure 11: Slot ID behavior.

Slot IDs. Upon creation, each slot receives an integer ID which is unique within the exam
block. It is never reused, even if the slot was deleted. This behaviour is visualized in the
example in Figure 11: First, we create two new slots in steps 1 and 2 . Then, the second slot
is deleted in step 3 , leaving only the first slot (step 4). As seen in 5 , if we then add another
slot, it is assigned the ID 3. This is done to reduce the complexity of ID management, and we
should never run out of new IDs for slots as there can be over 9 ∗ 1024 of them per block (the
largest possible integer value in TypeScript).

4.2.2 Block Visualizer

To visualize Gap Image Questions, we introduced a new Vue component named Gap Image
Question Visualizer (GIQ Visualizer), which can be seen in Figure 12. We can use it for both
the exam edit view as well as running exams, as it is designed in compliance with our Editor-
Database-Visualizer model (see Figure 4).

20

Figure 12: Gap Image Question Visualizer showing a Gap Image Question with two gaps that
are represented by the two slots and the two tiles.

When the component is loaded, the GIQ Visualizer creates a new Konva stage with three
layers. One layer is reserved for the background image, just as in the GIQ Editor. The second
layer is reserved for a splitter line that separates the background image from the area where the
answers are located. The third layer is reserved for the solutions of the questions and the slots.
The display of the GIQ Visualizer follows the same logic as the display of the GIQ Editor: the
component is only rendered after a background image is loaded from a URL.

Gap representation. When the component is rendered, the GIQ Visualizer fetches the list
of slot objects and subsequently processes it. First, it creates one slot node for each slot object.
The slot nodes in the GIQ Visualizer are functionally similar to the ones in the GIQ Editor.
However, the correct answers associated with them are hidden from the students and the nodes
are displayed empty instead, as shown in Figure 12.

Answer representation. Second, the GIQ Visualizer creates a tile for each slot object. A
tile represents an answer to the Gap Image Question and is the only element of the question
that students can interact with during an exam. The implementation of tiles is similar to the

21

implementation of slots: tiles are represented by a Konva node (called tile node) and a TypeScript
object (called tile object) pair. Each tile has a unique ID that is created from the corresponding
slot ID, and an answer that is created from the correct answer of the corresponding slot. We
also reuse the slot configuration (width, height, and font size), and thus the look of tiles is the
same as the look of the slots.

The tile nodes are placed in one or several rows below the image (see Figure 12). The
number of rows and tile nodes per row is determined dynamically based on the width of the
background image and the width of the tiles themselves. Most importantly, the order of the
tiles is shuffled every time that the component is loaded. We use a custom implementation of
the Durstenfeld shuffling [3], an improvement upon the Fisher-Yates shuffle algorithm that was
popularized [12] by Donald E. Knuth in his 1969 book "The art of computer programming", as
well as its subsequent editions [5]. The algorithm is given in Listing 2. This makes it impossible
for students to guess the the correct answers by studying the order of the tile nodes.

shuffle <T> (array: T[]) {
for (let i = 0; i < array . length ; i ++) {

const j = Math.floor(Math.random () * (i + 1));

[array[i], array[j]] = [array[j], array[i]]
}

return array
}

Listing 2: Our TypeScript implementation of the Durstenfeld shuffling algorithm.

User interaction and UX. Just as exam authors can drag a slot node during the exam
creation, students can drag tile nodes to any point of the Konva canvas using the mouse. At
the end of the tile node transformation, the new coordinates of the tile are updated in the
corresponding tile object.

Furthermore, if at the end of the transformation more than 30% of the tile node’s area
overlap a slot node, we say that the tile overlaps a slot. In such a case, the GIQ Visualizer
will automatically align the tile node perfectly with the slot node. To the student, the tile node
appears as if it would "snap" into the slot node. This is essential for user experience, as it
provides students with a clear feedback that their answer was registered by the system. If a
tile node snaps to slot node, we say that the tile attaches itself to the slot or that the two are
attached. The GIQ Visualizer keeps track of attachments of tiles to slots, as they represent the
students’ solution to the Gap Image Question.

To enable the "snapping" behavior, we first find the slot node that is closest to the tile node
that was moved by the student. Then, we compute the overlap of the two nodes, and the system
takes one of the following actions:

22

1. If the slot S and tile T overlap, and the slot S has no tile attached to it: The tile node T

attaches itself to the slot S.

2. If the slot S and tile T1 overlap, and the slot S has a tile T2 attached to it: The GIQ
Visualizer first detaches the tile T2 from the slot S and returns it to its original position
below the image. After that, the GIQ Visualizer attaches the tile T1 to the slot S.

3. If the slot S and tile T do not overlap: The GIQ Visualizer returns the tile T to its original
position below the background image.

After a tile is attached to a slot, an event that updates the block’s answers is fired. The
answers are stored as an array of TypeScript objects, where each answer object contains the
slot ID, the tile ID, the answer represented by the tile and the correct answer assigned to the
slot. In a similar fashion to Gap Text Questions, Xaminer stores the results in its database upon
submission by the student.

23

5 Evaluation of the user experience

In this section, we review the new question types and evaluate their user interfaces based on a
typical workflow.

5.1 Gap Text Questions

Question Creation. Exam authors can add new Gap Text Questions to an exam by selecting
the respective entry from the list of options in the "block types" dropdown menu (see Figure 13).

Figure 13: Dropdown menu with the list of all block types that can be added to an exam. Gap
Text Question block is highlighted.

After the question type is selected, a Block Editor and a Block Visualizer appear on the
screen, as can be seen in Figure 14. The first textarea element of the Block Editor is present
in the base Block Editor, thus, exam authors will automatically be aware of its its purpose to
provide the question description. Additionally, a second textarea element for the template text
is displayed. A default template text is always provided by the platform when the question is
added to an exam. This helps convey the purpose of the textarea element.

The default template text can be seen in detail in Listing 3. An Inline Gap, a Multiline
Gap, and a Multiline Gap with the special !x#y#! notation are present and provide a hands-on
example on how exam authors can specify the gaps. Comments detailing further specification of
the template text are also included.

We determined that there are two potential workflows to provide the template text. First,
exam authors can start writing the text and can manually open and close the gap tags by typing
the character sequences. This allows for a continuous workflow without requiring exam authors
to lift their hands from the keyboard. Second, they can copy an already existing text and
paste it into the template text textarea element. Exam authors can then insert the opening
and the closing tags by selecting a text passage with the mouse and marking it as a gap by
clicking the "Toggle gap" button. The second approach provides a workflow that solely relies
on interactions with the mouse. Both workflows enable a smooth experience for exam authors,
allowing them to edit the template text without switching the input devices. This helps to
increase the productivity.

24

F
ig

ur
e

14
:

A
G

ap
T
ex

t
Q

ue
st

io
n

w
it

h
th

e
de

fa
ul

t
te

m
pl

at
e

te
xt

.

25

class Demo {
// inline input area
public !# static #! void main (String [] args) {

// multiline input area
// Write Hello and World on separate lines
!# System . out . println (" Hello ");
System . out . println (" World "); #!

// manually provide multiline input area height
// by putting a number in the opening tag
// example : multiline input area with the height of 4 lines
!4 # #!

}
}

Listing 3: Default template text.

However, the current approach is best suited strictly for programming tasks, and quickly
reveals its limitations when it comes to freeform text. A standard text paragraph typically
consists of a single line which wraps when the edge of the text editor is reached. This allows the
text to remain within the bounds. In prose text, a manual line break is generally only present
between paragraphs, in contrast to program code where each statement is typically written on
a separate line. If we provide a long single-line text as a template text, the Gap Text Question
Visualizer will create an SVG image that is potentially wider than the viewport7, while having
a height of one line.

Figure 15: 1 The first solution does not exceed the provided horizontal space in an InlineGap,
the second one does. 2 The first solution does not exceed the provided vertical space in a
MultilineGap, the second one does.

Exam process. While taking an exam, the students can fill the gaps in any order. Students
can expect that the space for their answers should always be sufficient, and a student answer
exceeding the provided space could indicate a potentially wrong answer.

7Area of webpage visible to the user.

26

Should the length of their answer in an input element outgrow the space that was provided by
the exam author, parts of it will automatically be hidden by the HTML element (see Figure 15).
The students are then required to use the keyboard arrow keys to navigate and edit their input.

The same limitation applies to the textarea elements, albeit with regard to the text’s height
as opposed to its width. Should a student’s solution exceed the length of the desired solution of
the exam author, a scroll bar will appear on the side of the textarea element. The scroll bar
and the arrow keys allow students to navigate their solutions (see Figure 15).

5.2 Gap Image Questions

Question Creation. The option to create a new Gap Image Question can be found among
the other question options, similarly to Gap Text Questions (see Figure 16). When the Gap
Image Question’s Block Editor is shown, a part of its user interface is hidden until a background
image is provided. At this point, the "Background image" button is the only visible part of the
user interface aside from the question description textarea element. Its prominent color and
the lack of other UI elements help to convey to the exam author that it must be interacted with
in order to proceed with the question creation.

Figure 16: Dropdown menu with the list of all block types that can be added to an exam. Gap
Image Question block is highlighted.

After the background image is loaded, the rest of the user interface becomes accessible (see
Figure 17). Exam authors with previous experience of using an image editing software will find
familiar functionality in the Gap Image Question Editor. They can select, move, and resize the
slots using a standard user interface. The toolbar functionality is explained using labels and
captions that describe each of the UI elements. Using a tooltip that appears when the mouse is
hovering over the "Add" button, exam authors are made aware that they can add gaps to the
background image by clicking anywhere in the canvas.

Exam process. The user interface that students interact with during the examination process
is straightforward and familiar, as they only need drag & drop to place the tiles onto the slots.
This workflow is intuitive and can be found in both other examination platforms as well as
computer operating systems in general. This means that platform operators do not need extra
trainings for the students.

27

F
ig

ur
e

17
:

A
G

ap
Im

ag
e

Q
ue

st
io

n
w

it
h

a
bi

na
ry

se
ar

ch
tr

ee
lo

ad
ed

as
a

ba
ck

gr
ou

nd
im

ag
e.

28

6 Future Work

In this section, we outline possible improvements to the new question types.

During the later stages of development and the evaluation of the questions, it became apparent
that several improvements to the two question types can be pursued in future works.

6.1 Gap Text Questions

Handling long lines. Our current approach relies on exam authors to provide line breaks for
the Gap Text Question Visualizer to display the text on a new line. Should they wish to provide
a long text without a line break (e.g., a paragraph from a book), the created SVG image will
likely exceed the width of the viewport. In order to avoid that, we could introduce a maximum
SVG width setting. It would cause the GTQ Visualizer to move the text to a new line despite the
parser not reading a line break. This would allow the Gap Text Questions to be more versatile.
One good example for such lectures are language beginner courses, where paragraphs of prose
text with some words replaced by gaps can be commonly found.

Code highlighting. Our text parser in the Gap Text Questions is built similarly to the parsers
that are utilized in code compilers. It would thus be possible to implement their content-
awareness features to enable syntax highlighting. Each word in the text is already viewed as
a token of a certain type; therefore, it could be compared against an existing dictionary of key-
words of a programming language – keywords such as "public" or "if" or "for". They could
then subsequently be marked as such by introducing several new keyword tokens. The GTQ
Visualizer then would be able to recognize a keyword tokens and highlight them according to a
predefined color scheme.

Alternatively, code highlighting could be enabled using the functionality of the code high-
lighting system that is already used by Xaminer’s Code Question question type. This system
could further be used for simple syntax checking of keywords in gaps. Typos (for example, pblic
instead of public) would not be recognized as valid keywords, and the lack of code highlighting
for the keyword would hint at a typo.

Code highlighting could allow students to understand the provided code more quickly. It
would also eliminate a potential source of unnecessary errors by making students aware of typos.

Custom font size and line height. Currently, we compute the dimensions of the SVG image
using the default values for the font size and the line height. We could implement a setting to
modify the two parameters. It would require the addition of two new control elements to the
Gap Text Question Block Editor toolbar. Furthermore, we would need to store the parameters
in the database as a part of the question’s configuration. This would give exam authors more
options to control the look of the question and slightly improve the accessibility of the user
interface by allowing exam authors to make the text larger. However, as the Gap Text Question
Visualizer relies upon native HTML elements such as svg, text, and foreignObject, the user
interface already supports scaling to some degree using the Web browsers’ zoom in/zoom out
functionality.

30

6.2 Gap Image Questions

Uploading of background images. Currently, the background images must be hosted on a
separate web server. In the future, it should be possible to store images directly in Xaminer’s
database as a part of an exam configuration. In order to do so, we would have to modify the
"Background image" button to invoke the operating system’s file dialog to select an image.
Subsequently, we would have to upload it to the database. Furthermore, this would require the
creation of several functions to handle database access.

Adding this feature would remove the need to rely on third-party servers. Furthermore, it
would make the platform more reliable, as right now the Gap Image Questions component is
vulnerable to the server that is hosting the image being inaccessible or the image file being
deleted.

Quality-of-life improvements to slot creation. We have determined several possible im-
provements to slot design:

1. To position a slot, exam authors currently must select it with the mouse and drag it to the
desired position. While this is the fastest and most intuitive approach, it is also imprecise,
as it is impossible to create a pixel-perfect alignment of slots. We could remediate this
by adding two more form inputs to the Gap Image Questions Editor toolbar, which would
display the x and y coordinates of the current selection on the grid. Exam authors would
then be able to select a slot and set its exact position by providing the exact values for the
coordinates.

2. Additionally, it would be beneficial to include support for arrow keys as an alternative way
to move slots.

3. Furthermore, we could improve the efficiency of exam authors by allowing them to select
several slot nodes simultaneously, as they would be able to move them all at once.

4. Finally, a slot axis-snapping mechanism could be implemented. It would automatically
snap the selected slot to the closest x or y coordinate that other slots reside at, in a way
similar to how image editing software programs function. This would allow for faster and
preciser slot placement in rows and columns, as exam authors would not need to select
several slots and manually provide coordinates for each of them.

31

7 Conclusion

The introduction of two new question types greatly increases the versatility of the Xaminer
platform. It also simplifies exam creation and students’ workflow during an exam.

Gap Text Questions allow lecturers to save a lot of time when designing the exam, as they can
provide a succinct template text instead of being required to write a long question description.
At the same time, the new question type gives students more time during exams, as they are
not required to read these long question descriptions. Finally, it removes a source of possible
misunderstandings between the exam authors and students.

Gap Image Questions allow Xaminer to target new lectures and exam types. Exam authors
can now create questions that could not easily be answered just with text.

Overall, our changes provide lecturers with more flexibility in terms of question design. At
the same time, students are enabled to better demonstrate their knowledge during exams by the
new intuitive question types.

32

List of Tables

1 List of programming languages, query languages, and hardware description lan-
guages taught at JKU Linz with their respective comment indicators. 11

List of Figures

1 An exam with a text block and a single choice question block, as seen during exam
creation. 4

2 An exam with a single choice question block and a multiple choice question block.
"Vienna" has been marked as the correct answer to the single choice question.
"Paris" and "Rome" are marked as the correct answers to the multiple choice
question. 5

3 1 A single choice question rendered during the exam creation (exam author view).
2 A single choice question rendered during the exam (student view). 6

4 Block Editor - Block Visualizer - Database model. 7
5 A mockup Gap Text Question. An Inline Gap and a Multiline Gap are specified

in a paragraph of text. 8
6 1 Block Editor and 2 Block Visualizer of a Gap Text Question with the de-

fault template text. 3 Question description textarea element. 4 Template
text textarea element. 5 x-axis-scaling factor controls. 6 y-axis-scaling factor
controls. 7 Toggle gap button. 10

7 A mockup Gap Image Question. Three gaps are marked in the image. Three
answers are located below the background image. 17

8 Block Editor of the Gap Image Question. 18
9 Gap Image Question Editor with a loaded background image and two slots. . . . 19
10 Gap Image Question with two slots. The slot with the correct answer "1" assigned

to it is selected. 20
11 Slot ID behavior. 20
12 Gap Image Question Visualizer showing a Gap Image Question with two gaps that

are represented by the two slots and the two tiles. 21
13 Dropdown menu with the list of all block types that can be added to an exam.

Gap Text Question block is highlighted. 24
14 A Gap Text Question with the default template text. 25
15 1 The first solution does not exceed the provided horizontal space in an InlineGap,

the second one does. 2 The first solution does not exceed the provided vertical
space in a MultilineGap, the second one does. 26

16 Dropdown menu with the list of all block types that can be added to an exam.
Gap Image Question block is highlighted. 27

17 A Gap Image Question with a binary search tree loaded as a background image. 28

34

Listings

1 Two Wolfram Language/Mathematica functions. In In[1], we apply the function
3! ∗ x to every element x of a list. In In[2], we apply the factorial operation to
every element of a list. 12

2 Our TypeScript implementation of the Durstenfeld shuffling algorithm. 22
3 Default template text. 26

35

References

[1] BootstrapVue. https://bootstrap-vue.org/. Accessed: 2022-07-22.

[2] Daring Fireball. Daring fireball: Markdown. https://daringfireball.net/projects/
markdown/, 17-Dec-2004. Accessed: 2022-07-22.

[3] R. Durstenfeld. Algorithm 235: Random permutation. Communications of the ACM,
7(7):420, 1964.

[4] JetBrains s.r.o. Kotlin programming language. https://kotlinlang.org/. Accessed:
2022-07-22.

[5] D. E. Knuth. The art of computer programming. Addison Wesley series in computer science
and information processing. Addison-Wesley, Reading, Mass., 2. ed., 3. print edition, 1977.

[6] Konva.js. Konva.js - JavaScript 2d canvas library. https://konvajs.org/, 2015. Accessed:
2022-07-22.

[7] Microsoft Corporation. TypeScript: JavaScript with syntax for types. https://www.
typescriptlang.org/, 24-Jun-22. Accessed: 2022-07-22.

[8] MongoDB. MongoDB: The developer data platform | MongoDB. https://www.mongodb.
com/, 11-Feb-2009. Accessed: 2022-07-22.

[9] Moodle HQ. Moodle - open-source learning platform | Moodle.org. https://moodle.org/.
Accessed: 2022-07-22.

[10] VMware, Inc. Spring Boot | Spring.io. https://spring.io/projects/spring-boot/, 01-
Apr-14. Accessed: 2022-09-27.

[11] Web Hypertext Application Technology Working Group. HTML standard. https://html.
spec.whatwg.org/. Accessed: 2022-07-22.

[12] M. Yadav, V. Shokeen, and P. K. Singhal. Testing of Durstenfeld’s algorithm based optimal
random interleavers in OFDM-IDMA systems. In 2017 3rd International Conference on
Advances in Computing,Communication & Automation (ICACCA) (Fall), pages 1–4. IEEE,
9/15/2017 - 9/16/2017.

[13] E. You. Vue.js - the progressive JavaScript framework | Vue.js. https://vuejs.org/.
Accessed: 2022-07-22.

36

https://bootstrap-vue.org/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://kotlinlang.org/
https://konvajs.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.mongodb.com/
https://www.mongodb.com/
https://moodle.org/
https://spring.io/projects/spring-boot/
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://vuejs.org/

	Abstract
	Kurzfassung
	Introduction
	Background
	System overview
	Technology stack

	Gap Text Questions
	Approach
	Implementation
	Block Editor
	Gap tags
	Block Visualizer

	Gap Image Questions
	Approach
	Implementation
	Block Editor
	Block Visualizer

	Evaluation of the user experience
	Gap Text Questions
	Gap Image Questions

	Future Work
	Gap Text Questions
	Gap Image Questions

	Conclusion
	Literature

