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Kurzfassung

Annotationen fügen Quellcode-Entitäten wie Klassen oder Funktionen Metadaten hinzu,
die später von so genannten Annotationsprozessoren verarbeitet werden können, um z.B.
den Quellcode des annotierten Programms zu verändern. Während Annotations Verarbei-
tung in Java ausreichend erforscht ist, fehlt der Kotlin-Community noch eine umfassende
Zusammenfassung. Daher fassen wir in diesem Paper die wichtigsten in Kotlin verfüg-
baren Ansätze zusammen: (1) Verarbeitung von Annotationen zur Kompilierzeit mittels
(a) Kotlin Annotation Processing Tool (KAPT), (b) Kotlin Symbolic Processing (KSP) oder
(c) Eines benutzerdefinierten Kotlin Compiler Plugins; sowie (2) Änderung von Code zur
Ladezeit mittels eines Agenten oder eines benutzerdefinierten “class loader”. Wir stellen
Proof-of-Concept-Implementierungen zur Verfügung, diskutieren Vor- und Nachteile
und konzentrieren uns insbesondere darauf, wie gut jeder Ansatz die Modifikation des
annotierten Quellcodes unterstützt. Dies soll Entwicklern und Forschern helfen, besser zu
entscheiden, wann sie welchen Ansatz verwenden sollten.
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Abstract

Annotations add metadata to source code entities such as classes or functions, which
later can be processed by so-called annotation processors to, for example, modify the
annotated program’s source code. While annotation processing has been well-explored
in Java, the Kotlin community still lacks a comprehensive summary. Thus, in this paper,
we summarize the main approaches available in Kotlin: (1) Compile-time annotation
processing using (a) Kotlin Annotation Processing Tool (KAPT), (b) Kotlin Symbolic
Processing (KSP), or (c) writing a custom Kotlin Compiler plugin; as well as (2) load-time
code modification using an agent or a custom class loader. We provide proof-of-concept
implementations, discuss advantages and disadvantages, and specifically focus on how
well each approach supports modifying the annotated source code. This should help
developers and researchers to better decide when to use which approach.
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1 Introduction

Various programming languages allow developers to provide additional metadata in the
form of annotations. Frameworks such as JPA [1], Spring [2] or Kotless [3] heavily make
use of this feature. There is a wide array of other application areas for annotations [4, 5],
including testing [6, 7], GUI programming [8] or non-nullability annotating [9]

According to Yu et al. [10] Java code with annotations tends to be less error-prone, yet they
also mention that better tutorials and dedicated training would help novice developers [...] to
more use annotations. We want to tackle this lack of literature: While DBLP [11] currently
lists 74 papers with the words Java and Annotation in their title, not a single one has a
title containing Kotlin and Annotation. Even though this is just a rudimentary metric, a
thorough web search confirmed our initial assumption: there is clearly a lack of guidance
when it comes to developing annotation processors in Kotlin.

In this work-in-progress paper, we summarize Kotlin’s existing approaches for annotation
processing. We highlight their advantages and disadvantages and discuss how they can
be used to modify the annotated source code. Based on the experience we gained while
implementing a simple yet realistic annotation-based post-condition checking system, we
provide a guideline on when to use which approach. Thus, our contributions are:

• an overview on how to process annotations in Kotlin, specifically at compile time
using the Kotlin Annotation Processing Tool (KAPT) (section 4.1), Kotlin Symbolic
Processing (KSP) (section 4.2), or a custom Kotlin compiler plugin (section 4.3); or at
load time using an agent or a custom class loader (chapter 5).

– This includes an example use case (chapter 3) implemented as a compiler plugin
(compile-time modification) and an agent (load-time modification), see https:

//github.com/Daniel-Pfeffer/Annotations-Source-Code-Modification

• a thorough discussion of the advantages and disadvantages of each approach, as
well as a guideline on when to use which approach (chapter 6)
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2 Background

As all discussed approaches revolve around annotation processing and the programming
language Kotlin, this section provides an overview of the relevant background.

2.1 Java Annotations and Their Processing

Annotations in Java have become an integral part of the language since they were intro-
duced in Java 1.5 in 2004 as part of Java Specification Request (JSR) 175 [12]. They add
metadata information primarily to indicate that an annotated element should be processed
in a special way by development tools, deployment tools, or run-time libraries.

Annotations are either processed (1) at run time or (2) at compile time using the Annotation
Processing API [13], an API that enables developers to plug custom annotation processors
into javac (before Java 1.6, the Annotation Processing Tool (apt) [12, 14] was used for this
task).

While annotation processors are typically tasked with writing new files or reporting error
messages [15], also modifying the underlying source code is possible: (1) Load-time-based
approaches (such as [16]) typically rely on a Java agent or a custom class loader to modify
the annotated entities when they are loaded, while (2) annotation processors might go
against their design philosophy and use the (quite complex) Compiler Tree API [17] to
modify the compiled Abstract Syntax Tree (AST) as a workaround [18].
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2 Background

2.2 Kotlin

Kotlin is a modern, statically typed language developed by JetBrains. It was initially
targeted to run on the Java Virtual Machine (JVM), enabling developers to write and run
Kotlin code alongside existing Java code (or any other JVM-based language), and has
since developed into a multiplatform language [19]. This allows Kotlin source to target
Android, iOS, desktop, web, and native at the same time with only a minor target-specific
source code.
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3 Invariants Framework

In this section, we present an example that we used to test the various annotation process-
ing approaches regarding their applicability for source code modification. In this example,
a Holds annotation (see Listing 3.1) can be attached to properties or function parameters
to define a condition that must hold at any time. Annotated entities should automatically
be verified at all necessary locations, for example when a new value is assigned. Imagine
we have an Account class that represents a bank account, we would be able to write code
as shown in Listing 3.2, using verfiers as the one shown in Listing 3.3.

To achieve this, an annotation processor first has to find all annotated properties and
parameters. For each annotated property, the processor then has to add verification code

• on initialization (which might lead to a new init block, as shown in Listing 3.2 1 ).

• after every value write (as shown in Listing 3.2 3 ). Writes can be found as calls
to the property’s setter function (which, together with a property’s getter function,
form the property’s property accessors [20]).

For each annotated parameter, the relevant check has to be performed at the beginning of
the function (as shown in Listing 3.2 2 )

@Target(PROPERTY, VALUE_PARAMETER)
@Retention(AnnotationRetention.RUNTIME)
annotation class Holds(val verifier: KClass<out Verification<*>>)

Listing 3.1: Holds annotation that can be attached to properties and function parameters.

class Account(@Holds(PositiveOrZero::class) var balance: Int) {
// (1) init { PositiveOrZero.verify(balance) }
fun withdraw(@Holds(Positive::class) amount: Int) {
// (2) Positive.verify(amount)
this.balance −= amount
// (3) PositiveOrZero.verify(balance)

4



3 Invariants Framework

} /* ... */
}

Listing 3.2: Using an annotation-based verification system, we do not need to call the verfication
code (see comments) manually, as they are generated automatically by the annotation
processor at the correct locations.

object PositiveOrZero : Verification<Int>{
override fun verify(toVerify: Int) {
if (toVerify < 0) { /* handle unsuccessful verification */ }
}
}

Listing 3.3: Verifier to ensure a given integer is positive or 0.
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4 Compile-time Annotation Processing

In this section, we present three annotation processing techniques that run as part of the
compilation process, namely the Kotlin Annotation Processing Tool (KAPT), Kotlin Symbolic
Processing (KSP), as well as custom Kotlin compiler plugins.

4.1 Kotlin Annotation Processing Tool

The Kotlin Annotation Processing Tool (KAPT) was the first annotation processing tool
developed by JetBrains [21]. It enables using existing Java annotation processors with
Kotlin. This means that by using KAPT, an annotation processor written for Java can be
used for Kotlin without modifications.

Example Due to the following limitations, we deliberately do not provide an example on
how to develop further KAPT processors to not encourage bad practices. Also, Jetbrains
suggests using KSP instead [21].

Limitation #1: Performance To use existing annotation processors defined for Java
source code, KAPT has to generate Java stubs from Kotlin files. As stub generation is
expensive, it has a significant impact on the compile time. According to an article by Uber
regarding their performance of Kotlin Builds [22], Kotlin with KAPT adds an overhead of
around 95 percent compared to compiling Kotlin without KAPT. In contrast, they state
that Java with apt has an overhead of around 5 percent.

Limitation #2: Multi-Platform Kotlin Since KAPT is exclusive to the JVM platform, it
cannot be used when targeting other platforms such as Kotlin’s native backend.

6



4 Compile-time Annotation Processing

Limitation #3: Kotlin Features Not Available Language features specific to Kotlin
without a direct equivalent in Java are not directly accessible from within the annotation
processors. This includes information about explicit nullability, primary constructors,
properties, and so on. [23]

Limitation #4: Maintenance Mode Furthermore, since October 2021, KAPT has been
in maintenance mode, meaning no new functionality will be introduced. How that will
affect future performance improvements is not further discussed, but probably not to be
expected.

Limitation #5: Complex Code Modification Since Java annotation processors (and thus
also KAPT) are encouraged to not modify the code being compiled, only workarounds
based on the complex Compiler Tree API exist [24].

4.2 Kotlin Symbolic Processing

The Kotlin Symbolic Processing (KSP) API — an abstraction of the more advanced kotlinc com-
piler plugin API that will be explained in section 4.3 – simplifies developing lightweight
compiler plugins. It was developed to offer a powerful metaprogramming tool similar to
KAPT, whilst being Kotlin idiomatic and integrated into the Kotlin compilation process.
Thus, the existing problems with KAPT, especially the performance issues, are mitigated.
For instance, JetBrains claims that KSP can run up to 2 times faster than KAPT. [25]

In contrast to one of KAPT’s limitations — being tied to the JVM — KSP addresses all of
Kotlin’s targets, therefore being suitable for multiplatform projects.

Example A KSP processor has to implement the interface SymbolProcessor and pro-
vides, in its most basic form, a function process(resolver: Resolver) that will be called
when the processor is run. The resolver can be used to obtain information about all source
files, which in turn might be processed one-by-one, often using a KSVisitor. The visitor
interface contains around 25 functions in the style of visitXYZ(xyz: KSXYZDeclaration)

that can be overridden to perform certain operations when one of the respective code
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4 Compile-time Annotation Processing

elements is encountered. With a focus on annotation processing, the resolver also pro-
vides a function getSymbolsWithAnnotation(...) which can be used to easily obtain all
elements annotated with a certain annotation. We can then, similar to reflection, query
information about every annotated element (for example whether it is a property or a
function parameter). A CodeGenerator instance can be used to create new code, typically
through the help of a code generation framework such as KotlinPoet [26].

Limitation #1: Fine-grained Analysis KSP lacks the possibility to examine expression-
level instructions. [27]

Limitation #2: Source-code Modification With KSP, it is not possible to modify source
code. [27] This is further enforced by not even providing an AST-modification-based
workaround, as available in Java annotation processors.

4.3 Compiler Plugins

As a final compile-time approach, we present custom Kotlin compiler plugins. First, we
discuss how Kotlin’s new K2 compiler is structured, using a frontend and backend design
philosophy, each with its own intermediate representation. Following, we show that one
can inject custom plugins at different compilation phases and present which kind of plugin
we used to implement our example use case.

4.3.1 The K2 Kotlin Compiler

Kotlin’s new K2 compiler aims primarily to accelerate the development of new language
features by unifying certain tasks across all Kotlin Multiplatform targets. It also brings
general performance improvements and should provide an official API for compiler
plugins. As there was no need for different targets when Kotlin’s first compiler was
developed (since the only target was the JVM), when new targets were introduced (such as
the JavaScript target), an entirely new backend had to be developed that builds the target
code completely from scratch based on the syntax tree and its semantic information. With
the new K2 compiler, that changed: A new frontend intermediate representation (FIR) has
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4 Compile-time Annotation Processing

been introduced, and all backends now rely on a common intermediate representation
(IR). In a common backend, the K2 compiler performs general work (and optimizations)
needed for every target based on this IR. Only entirely target-specific functionality has to
be added to the target-specific backends.

Compiler Frontend The compiler frontend is split into four phases, each with different
sub-phases, as shown in the top half of Figure 4.1. The parsing phase executes the Lexical
Analysis to generate tokens which are then used for the Syntax Analysis, after which an
Abstract Syntax Tree (AST) is created. Then, a Semantic Analyzer is invoked on the AST, after
which the Program Structure Interface (PSI) alongside a BindingContext, i.e., a lookup table
for semantic information, is created. In the intermediary code generation phase, this PSI is
transformed to the FIR, which combines the traditional PSI and the BindingContext. The
FIR is used in the resolution phase to perform Code Analysis, a last stage to report different
diagnostics on the FIR and to modify the FIR according to frontend plugins. After the last
code analysis stage reports success, the FIR is passed to the compiler backend. [28]

Compiler Backend The new common compiler backend (see bottom half of Figure 4.1)
receives the FIR as input and converts it, using optional compiler plugins, to the Inter-
mediate Representation (IR). After the IR generation, the compiler backend invokes the
common optimization phase. This optimized IR is then passed to a target-specific backend
(for example the JVM backend), which transforms the optimized IR to the target-specific
code (for example Java bytecode). Since most of the work now happens in the common
compiler backend, the target-specific backends become smaller and therefore faster to
adapt to new language features.

Plugins The K2 compiler offers native support to attach multiple plugins at the dif-
ferent phases in the compile process, ranging from frontend analysis to backend IR
generation (suitable phases for compiler plugins are marked with a plus symbol (+) in
Figure 4.1). Some of these plugin-able extensions only affect one target, for example,
the SyntheticJavaResolveExtension [29] plugin is JVM-backend-specific and generates
synthetic constructs only relevant there, but not in, for example, JavaScript. Nevertheless,
most plugins operate on either the FIR or the IR, therefore being general. f A compiler
plugin can, in turn, consist of multiple compiler plugins, and each plugin can be attached

9



4 Compile-time Annotation Processing

Compiler Backend
Common Backend

IR
Generator

IR
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FIR PSI

Parsing phase
AST

Figure 4.1: Simplified overview of Kotlin’s K2 compiler compilation process.

to a different stage in the compilation process. For example, the prominent Jetpack Com-
pose [30] compiler plugin registers multiple plugins to facilitate complex user interface
creation. Two other well-known compiler plugins that change the default behavior of
Kotlin are the NoArg-Plugin [31], which generates an additional zero-argument default
constructor, and the AllOpen-Plugin [32], which automatically defines all classes as open
(classes in Kotlin are final by default and have to be explicitly marked as open to be able
to inherit from them).
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4 Compile-time Annotation Processing

4.3.2 Example

For the reference implementation of our example use case (cf. chapter 3), we decided to
develop a common backend plugin that attaches to the IR Generation step (see Figure 4.1).
This way, our plugin is not target-specific and thus can also be used with targets besides
the JVM. To transform the IR, the processor has to implement the IrGenerationExtension
interface. Similar to KSP, a visitor can be used to traverse all nodes in the IR tree from
top to bottom. In contrast to KSP, when a compiler plugin visits an IR node, it is able to
modify the underlying code.

The visitor visits the following functions for our use case: (A) visitClassNew,
(B) visitFunctionAccess, (C) visitConstructor, (D) visitFunctionNew and
(E) visitAnonymousInitializerNew. Each function is discussed in its respective para-

graph.

visitClassNew This function is called when a class is visited for the first time, therefore,
being new. Here we simply add an anonymous initializer if none should exist.

visitFunctionAccess This function is called when a function access expression, i.e., a
function call, is encountered. If the called function is the setter of a property annotated with
our @Holds annotation, we have to insert verification code, as is shown in Listing 4.1. At
1 we generate (and finally return) a new IR block, which in turn contains two function

calls. The first function call 2 is the original call to the setter, i.e., the new value is
written to the property. The generateVerificationFunctionCall function 3 generates
the IR code for calling the respective verification function. For this, we pass the property,
based on which the function checks if the element is annotated and verify-able. The
second parameter of the generateVerificationFunctionCall function 4 generates a
function call to the getter of the property to serve as an argument for the verification
function call. In addition, we also have to give context, who calls the function 5 ,
otherwise an incorrect function may be called, which in this case is the same receiver as
the original expression. What basically happens in generateVerificationFunctionCall

is that based on the annotation information @Hold(XY::class) it generates IR code that,
simply speaking, executes XY().verify(property). As an optimization, we cache the
verifier objects such that only one of each is allocated. The unary plus symbol in front of 2

11



4 Compile-time Annotation Processing

and 3 is part of Kotlin’s compiler plugin DSL and simply adds the two IrExpressions

to the body of the enclosing IrBlock.

Listing 4.1: A simplified version of how we generate verification calls after a property write.

return DeclarationIrBuilder(context, expression.symbol).irBlock { // (1)
+super.visitFunctionAccess(expression) // (2)
+generateVerificationFunctionCall( // (3)

property, /* (4) */irCall(property.getter!!).also {
it.dispatchReceiver = expression.dispatchReceiver // (5)

}
)

}

visitConstructor This function is called when a constructor is encountered. As Kotlin
allows for properties being declared in the primary constructor [33], and we allow an-
notations to affect function parameter, the annotation defaulting [34] assumes that the
annotation is suited for the function parameter instead of the class property, therefore we
have to correct the behavior wherever applicable, to simplify the behavior in subsequent
IR code generation.

visitFunctionNew This function is called when a function is first declared in the IR. For
each function, we iterate the list of parameters, and if a parameter is annotated with our
Holds annotation, the verification code is added at the beginning of the function’s body.

visitAnonymousInitializerNew This function is called when a new anonymous initial-
izer, init, is encountered. For the init block, for every annotated property of the parent
class, a verification function call is generated and added to the statements of the init

call.

It is noteworthy to mention that as the visitor visits top to bottom in the IR tree, all functions
are visited after the class and after the primary constructor invocation. Therefore, it is
possible to correct, for example, the annotation use-site target defaulting of Kotlin without
a problem.

12



4 Compile-time Annotation Processing

But as the rest of the visitation order depends on the order of declaration in the source
code, no IR transformations should depend on previous transformations that can be on
the same IR level.

Once all IR nodes were visited, the compiler simply passes the modified IR to another IR
Generation compiler plugin or, if no such plugin exists, to the IR Optimization phase.

A simplified example If we assume the following source code snippet

Listing 4.2: Original source code using our compiler plugin

data class BankAccountView(@Holds(IsPositive::class) val amount: Int, val holder: String) {
fun canWithdraw(@Holds(IsPositive::class) withdrawAmount: Int): Boolean =

amount >= withdrawAmount
}

the Kotlin compiler first generates an IR tree, simplified in Figure 4.2.

Class
(BankAccountView)

property
(amount)

annotations

Holds(...)

constructorproperty
(holder)

1

33function
    (canWithdraw)

4

value_parameter
(withdrawAmount)

annotations

Holds(...)

block_body

body

2

Figure 4.2: Simplified IR Tree before our compiler plugin—an example
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4 Compile-time Annotation Processing

Our compiler plugin then begins traversing the tree with visitClassNew 1 , where the
plugin creates a new empty anonymous initializer if none should exist.
Afterwards, the compiler plugin visits visitConstructor 2 . For the simplied example,
we assume the properties 3 already received the correct annotation, therefore nothing
happens in visitConstructor. Next, the compiler plugin visits visitFunctionNew 4 .
Here the plugin adds the verification code to the function body, which is shown in
Figure 4.3 B and appends the original function body after the verification statement.
Lastly, the compiler plugin visits visitAnonymousInitializerNew, which was created in
1 . There the compiler plugin generates the verification code for the amount property 3 ,

as shown in Figure 4.3 A .

After the compiler plugin has finished with the visitAnonymousInitializerNew function,
the modified IR tree, as shown simplified in Figure 4.3 is passed along the compiler
pipeline, therefore either to another compiler plugin or to the IR optimization phase.

Class
(BankAccountView)

property
(amount)

annotations

Holds(...)

constructorproperty
(holder)

function
    (canWithdraw)

value_parameter
(withdrawAmount)

annotations

Holds(...)

block_body

bodycall (verify)

anonymous
initializer

call (verify)

...

A

B

Figure 4.3: Simplified IR Tree after our compiler plugin—an example

4.3.3 Limitations

While compiler plugins are the most powerful and versatile approach for annotation-based
source code modification, they are not without limitations.

14



4 Compile-time Annotation Processing

Limitation #1: Lack of Documentation Currently, the main resources for custom
compiler plugin development are videos by JetBrains employees (for example [35]), written
tutorials by third parties (e.g., [36, 37]), and examples on GitHub (for example [38, 39]).

Limitation #2: Kotlin-specific To the best of our knowledge, Kotlin compiler plugins
can only process Kotlin code, thus, for example, Java code cannot be processed with
compiler plugins.

Limitation #3: Order of Plugin Execution Multiple compiler plugins might affect each
other when executing in a different order, i.e., different code could be generated if plugin
A runs before plugin B or after plugin B.

4.3.4 Usage

Using a Kotlin compiler plugin is, when defined correctly, relatively easy as long as a
Gradle plugin is provided. Otherwise, the plugin has to be manually configured and
attached to the Kotlin compiler. With the added Gradle plugin, the implemented plugin
can be added to any Gradle or Maven dependency script, therefore integrating directly
with the build system. Thus, the compiler plugin simply has to be added to the plugin
section of a Gradle project file and the complete initialization and appending to the
compiler is done by Gradle, as shown in Listing 4.3.

Listing 4.3: Example of a Kotlin compiler plugin dependency added to a gradle build script

plugins {
kotlin("jvm") version "1.8.20"
application
id("social.xperience.invariants") version "1.0"

}

dependencies {
implementation("social.xperience:invariants-annotation:1.0")

}

If no such plugin is provided, or the project is not using Gradle, the compiler plugin has to
be added to the compiler manually. This can be done by directly appending the compiler
plugin to the CLI call of the Kotlin compiler as can be seen in Listing 5.2.

15



4 Compile-time Annotation Processing

Listing 4.4: Example of a Kotlin compiler plugin dependency added to the CLI

k o t l i n c t e s t . kt −include −runtime −d −Xplugin=pathToPlugin . j a r
t e s t . j a r

The main difference between applying compiler plugins via Gradle or manually is that it’s
easier to deal with complex compiler plugins due to the added configuration options. This
is especially helpful when working with more complicated setups, such as multiplatform
projects.

16



5 Load-time Annotation Processing

This section presents the two dominating ways of modifying code at load time: Java agents
and custom class loaders.

5.1 Java Agents

Java agents leverage the Java Instrumentation API to modify classes at load time or run
time. This modification is performed on the bytecode level, often utilizing Java bytecode
manipulation libraries such as Javassist [40, 41] or ASM [42].

5.1.1 Example

Java agents use a so-called transformer to modify a class’s bytecode. A transformer must
implement the ClassFileTransformer interface, which defines a byte[] transform(...)

method. This method receives, besides other parameters, the name and the bytecode
(as byte[]) of the class currently being transformed, and it must return the modified
bytecode.

Our transformer utilizes Javassist, where the class currently being transformed is rep-
resented as a CtClass [43] object. It provides methods such as getDeclaredFields and
getDeclaredMethods, which we use to find annotated properties and annotated function
parameters. Javassist enables developers to add new bytecode by just providing the new
source code as a simple string (compared to, for example, complex IR nodes as is the case
with compiler plugins). This means that for a given annotated property with its setter
method s, one can simply write s.insertAfter(str), where str might contain the code
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5 Load-time Annotation Processing

string "verifierObj. verify(this.propName);". Therefore, the creation of the verifi-
cation logic is compared to the compiler plugin approach easier, but due to the lacking
compile time information finding where to add the verification logic is significantly more
time-consuming. For instance, when checking if a given Kotlin property has an annotation,
there are multiple ways where the annotation can be found, depending on the annotation’s
use-site target. With our implementation, there are four use-site targets that the annotation
can reside in. These are as follows, for a primary constructor argument, for a Java field
directly, for the getter of the respective java field, or there can be a custom function that
provides the annotation, which is the default case for Kotlin properties. Therefore, to check
if a Kotlin property was annotated, the Java Agent has to validate all these use-site targets
to be sure that there exists an annotation for a given Java field. This is further complicated
by the mentioned lack of compile time information as there exists, for example, no clear
link between Java fields and their respective setter/getter except for the name of the
respective setter/getter which is shown in Listing 5.1.

Listing 5.1: How to find either the annotated getter or the Kotlin generated annotation getter
function

private fun CtField.getPropertyAnnotation(annotation: KClass<*>): Annotation? {
return declaringClass.declaredBehaviors.firstOrNull { behaviour −> // (1)

behaviour.name.startsWith("get${name.capitalized}")/*(2)*/
&& behaviour.hasAnnotation(annotation.java) /*(3)*/

}?.getAnnotation(annotation.java) as Annotation? // (4)

In 1 we query through every existing declared behavior, i.e., all existing constructors
and methods including private behavior, which sub-sequentially is 2 checked if it is
the getter for the field or for the annotation and 3 if it is annotated with a specific
annotation. If such a behavior is found 4 we return the annotation.

Unlike the compiler plugin approach, the Java agent approach, modifies the already
existing setter instead of injecting the verification procedure calls directly at the source of
the modification. Additionally, unlike the compiler plugin, instead of having one global
cache for all verification objects, each class must have its own cache of used verification
objects. As at no point during bytecode modification, it is for certain that no additional
changes may happen, therefore, a global verification cache would never be able to be
loaded without major performance drawback by repeatedly recompiling the verification
cache.
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5 Load-time Annotation Processing

5.2 Custom Class Loader

It is possible to achieve a similar effect by writing a custom class loader. In the custom
class loader’s findClass function, the class’s byte code might be modified similarly as it
would be using a Java agent (e.g., using a library such as Javassist). Thus, it is possible
to check a class for the existence of certain annotations within it and, if so, modify the
required code parts while loading that class.

Using the Java property java.system.class.loader one can change the system class
loader to a specific class loader. Providing a custom system class loader allows us to
automatically handle the loading (and modifying) of every class that might be annotated
with our annotation(s).

5.3 Limitations

Limitation #1: Startup Time : Since the modifications happen at load time, this ap-
proach can slow down the startup of the application. Depending on the use case, this
might be negligible, for example for long-running processes, or a real concern, for example
for Android applications that rely on fast startup for high user experience.

In a minimal test setup (5 classes, 14 annotations), we noticed a startup time of about
40ms compared to a startup time of 10ms using a Custom compiler plugin. Nevertheless,
we want to mention we did not implement any test cases that focus specifically on
performance, neither did we focus on implementing the most performing agent.

Limitation #2: JVM-specific Since the presented load-time approaches are JVM-specific,
they cannot be used to modify code generated by other backends.

Limitation #3 (agent-specific): Order of agent execution Similar to the compiler
plugin approach, multiple agents might change the bytecode in different ways depending
on their order of execution.
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5 Load-time Annotation Processing

Limitation #4 (class-loader-specific): Multiple class loaders A class is not loaded by
multiple class loaders but only by a single one. It is thus not possible for multiple class
loaders to modify the same class.

5.3.1 Usage

Using a Java agent or class loader is straightforward as the agent or the class loader is just a
jar file passed to the JVM using the respective -javaagent/-Djava.system.class.loader
command line argument, as shown in

Listing 5.2: Example of a Java agent or class loader added to the JVM using the CLI

j ava −javaagent=pathToAgent . j a r t e s t . j a r
java −Djava . system . c l a s s . loader=pathToLoader . j a r t e s t . j a r
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6 Discussion

As we have shown, each approach has its set of limitations. As the approaches differ
greatly in the way they are implemented, it is hardly possible to switch from one to another
one during development without heavy refactoring. Therefore, Table 6.1 reiterates the ad-
vantages and disadvantages of each approach, we discuss certain performance considerations,
and we present a set of guidelines to aid in the decision-making process on when to use
which approach.

Table 6.1: Advantages and disadvantages of Kotlin’s different annotation processing techniques.
Advantages Disadvantages

KAPT
(maintenance
mode)

+ Can reuse
Java processors

- Slow
- No multiplatform
- Not Kotlin-idiomatic
- Complicated code mod.

KSP
+ Kotlin-idiomatic
+ Fast
+ Multiplatform

- No expr.-level analysis
- No code modification

Compiler
Plugins

+ Same as KSP but
more versatile
(compilation phases, ...)

- Most complex approach
- Lack of documentation

Load-time
Approaches

+ Easy to implement
+ Good tool support
(Javassist [40],
ASM [42], ...)

- Slower startup
- No multiplatform
- Not Kotlin-idiomatic

Performance To preliminarily evaluate how much overhead our custom compiler plugin
and Java agent introduce (which have not been specifically implemented with high
performance in mind), we developed a dummy application that simulates server-side
business logic. It contains 23 classes, including verification procedures, with an overall
number of 6 methods that perform dummy business logic. Within these, we annotated 25
fields and parameters with our Holds annotation.
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Table 6.2: KAPT and KSP: Taken from related work. Plugin: We performed 2000 compilations
(1000x without plugin (off ), 1000x with plugin (on)). On average, our plugin increased
the compile time by about 6%. Agent: We ran the application 2000 times (1000x with
manually added verification code, 1000x with agent). On average, our agent increased
the run time by 385 ms.

Run Time

KAPT (compile time) Uber: 95% overhead compared
to pure Kotlin only [22]

KSP (compile time) JetBrains: up to 2 times
faster than kapt [25]

Compiler Plugin
(compile time in ms)
95% conf. interval

off: [542, 544] (avg. 543ms)
on: [575, 578] (avg. 576ms, +6.08%)

Java Agent
(run time in ms)
95% conf. interval

off: [268, 268] (avg. 268ms)
on: [652, 653] (avg. 653ms, +385ms)

Table 6.2 shows our results, as well as some statements regarding KAPT and KSP from
other sources (since we do not have implementations for these approaches).

Guideline We suggest suitable Kotlin annotation processing approaches based on the
following guidelines, also depicted in Figure 6.1:

• No need to modify source code: KSP (high performance; well-documented, de-facto
standard for annotation processing in Kotlin)

• Need to modify source code:

– Startup time relevant: Custom Kotlin compiler plugin (versatile, powerful capa-
bilities; yet complex and documentation nearly non-existent)

– Startup time not critical (JVM-backend only): Load-time-based approach using
a custom class loader or an agent (easier to implement; helpful libraries and
examples available)
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Startup time relevant?

Multiplatform support needed?

Need to modify code?

KSP

Load-time-based
approach Custom compiler plugin

Custom compiler plugin

no yes

no

Ino yes

yes

Figure 6.1: Decision tree for when to use which annotation processing technique in Kotlin.

6.1 Related Work

In the following, we present various related work that modifies source code based on
annotations as well as resources for developing processors in KAPT, KSP as well as Kotlin
compiler plugins.

Annotation-based Source Code Modification Spoon [44, 45] is a Java library to analyze,
rewrite, transform, and transpile Java source code that utilizes compile-time annotation
processing. Likewise, Project Lombok [18] leverages Java annotations to automatically
generate boilerplate code such as getter and setter functions during compilation. The
Java Persistence API (JPA) [46] as well as other jakarta packages use annotation processing
for various tasks, including annotating ORM entities [46] to dependency injection [47].
Birillo et al. [48] present Reflekt, a tool to replace run-time reflection with compile-time
reflection to improve performance. It relies on a Kotlin compiler plugin to modify the
code being compiled.
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KAPT, KSP and Kotlin Compiler Plugin Development Most introductory works that
teach KAPT, KSP, and especially compiler plugins are distributed as videos [35], written
tutorials [36, 37], or as plain code examples on GitHub [38, 39]. Most articles present a
single, small example, without (many) references or resources to follow upon. In our
experience, we achieved the best results by looking at existing projects such as MapStruct
(a KAPT / Java Annotation Processer) [49], Google’s KSP examples [50], or the AllOpen [51]
and NoArg [52] compiler plugin.

Using Kotlin’s Techniques to Extend Existing Work For Java, ample work presents
approaches that either create new files or modify existing code. Such approaches could
also be introduced in Kotlin: Those that create new files could be implemented with KSP,
while approaches that want to hook deeper into the compilation process, for example to
modify the bytecode produced by the compiler, could use a custom compiler plugin. In
the following, we present a few selected examples.

Pattern-Based Structural Expressions (PBSE) [53, 54] are a way to automatically add
annotations to various code entities of a yet unannotated Java codebase (besides other
languages). Using PBSE’s DSL, one can define a PBSE file that describes which code
entities (for example which methods) should become annotated with which annotations.
This description has similarities to a pointcut description in AspectJ’s aspected-oriented
programming approach [55, 56]. For example, one can define that every public method
whose name starts with test should become annotated with JUnit’s @Test annotation [57].
In simple terms, the tool takes a PBSE file (describing which annotations should be added
where) alongside the (unannotated) Java source code to generate files that contain the
annotated Java source code. PBSE files enable developers to use the same descriptions
across multiple applications, and by exchanging the PBSE file one might switch to another
framework without heavy refactoring. Since the existing code is not modified but only
new code is generated (basically using string concatenation), a PBSE tool could be re-
implemented in Kotlin using KSP. Since it would be enough to include the annotations
in the bytecode during compilation without creating annotated Java source code at all,
one could even develop a custom compiler plugin that completely hides the annotation
process from the user.

Song and Tilevich [58] present a similar DSL to describe metadata invariants. These must
hold for all matching source code entities, otherwise the developer is warned about the
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non-conforming code locations. For example, one could define that all methods whose
name starts with test must have the annotation @Test attached to them. They also present
algorithms that, based on a given codebase with annotated entities, can derive possible
invariant candidates. To analyze the codebase (either for inferring or checking), they walk
the classes’ abstract syntax trees using JDT [59]. Both, KSP or a custom Kotlin compiler
plugin, could be used to perform the same tasks since no code has to be modified or
generated and both techniques are able to inspect the syntax tree.

Tansey and Tilevich [60] present an approach that automatically upgrades source code
according to a set of when-then transformation rules (which might be user-defined or auto-
matically inferred from code examples). For example, they used their tool to upgrade a
large codebase to a newer version of JUnit that used (different) annotations. Song et al. [61]
extended this approach to also be able to upgrade legacy programs that were initially
configured using XML but changed to an annotation-based configuration [60]. These
transformations are purely text-based, thus KSP in combination with a code generation
framework such as CodePoet could provide an excellent foundation to recreate these tools
in Kotlin.

6.2 Limitations and Future Work

Even though being a work-in-progress paper, the paper strives to provide a comprehensive
overview of annotation-based source code modification in Kotlin. To provide others with
templates to develop their own code-modifying annotation processors, we host reference
implementations for the, in our opinion, most flexible approaches: (1) a custom compiler-
plugin and (2) an instrumenting agent. In the future, we might also provide reference
implementations for the other presented approaches: KAPT (is in maintenance mode),
KSP (no source code modification possible), and using a custom class loader (quite similar
to an agent).

As we have discussed, the complexity of compiler plugin development and the lack of
documentation makes it hard to even get started. Existing introductory compiler plug-
ins [51, 52] are, generally speaking, often too simple, while more comprehensive compiler
plugins[62, 63] are lacking explanations. One framework that claims to make plugin
development easier, ARROW Meta [64], unfortunately has no working documentation
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available. Thus, in the future, we want to extend and document our existing compiler
plugin example in even more detail. With it, we want to provide a comprehensive resource
for others wanting to learn about compiler plugin development and all of its phases.

To identify the needs of the Kotlin community in more detail, we also plan to perform
a study on how annotations in Kotlin are currently used “in the wild”, for example by
mining repositories on GitHub [65, 66]. This might provide insights into which aspects of
annotation-oriented development are most relevant to the community.

6.3 Conclusion

Due to a lack of existing work, we presented how annotations can be used to modify
Kotlin source code. We explored three different compile-time approaches, namely using
(1) Kotlin’s Annotation Processing Tool (KAPT), (2) Kotlin’s Symbolic Processing (KSP) or
(3) custom Kotlin compiler plugins, as well as two different load-time approaches, namely
using (1) an instrumenting Java agent or (2) a custom class loader. We highlighted the
limitations of each of these approaches, especially that KAPT is already in maintenance
mode and not actively developed anymore, as well as KSP’s constraint of only being able
to generate additional source code files but not to being able to modify existing one.

We provide a reference annotation processor implementation for both, a custom Kotlin
compiler plugin as well as a Java agent. These reference implementations, as well as our
discussion on when to use which approach, will hopefully help developers and researchers
to easier get started with annotation-based source code modification in Kotlin and might
spark ideas on how to improve existing annotation processing tools and frameworks.
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