

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Str. 69

4040 Linz, Austria

www.jku.at

DVR 0093696

Author

Simon Primetzhofer

Submission

Institute for System

Software

Thesis Supervisor

DI Dr. Markus Weninger BSc

External Thesis Supervisor

DI Thomas Reichenberger

March 2023

Typinator:

Windows

Application for

Automatic Text

Expansion

Bachelor’s Thesis

to confer the academic degree of

Bachelor of Science

in the Bachelor’s Program

Informatik

Bachelor's Thesis

Typinator: Windows Application for Automatic Text Expansion

Student: Simon Primetzhofer

Advisor: Dipl.-Ing. Dr. Markus Weninger, BSc

 Ergonis Supervisor: Dipl.-Ing. Thomas Reichenberger, BSc

Start date: March 2022

The company ergonis distributes the Mac application “Typinator", a tool that enables users to define

abbreviations together with a corresponding text expansion. These text expansions are then

automatically applied system-wide while typing. Due to platform restrictions, the tool is not available on

Windows or Linux.

The goal of this bachelor thesis is the technical evaluation and development of a prototype, porting

Typinator to Windows. Following questions must be investigated as part of this thesis, and suitable

solutions must be implemented:

• Evaluation of technologies and methods for making Typinator available as a Windows application

o Investigation of technological limits and possibilities in Windows

o Evaluate which of Typinators current features are possible in Windows and if there are

any limitations within different groups of applications (Browsers, Systray Applications,

Native Windows Applications, …)

• Develop and use a shared code-base with other platform-specific versions of Typinator for

commonly used tasks and features

• Implementation of text expansion in the Windows environment based on a set of pre-defined

abbreviations.

• (nice to have): Prototype of a management view that offers the functionality of defining and

managing abbreviations

Modalities:

The progress of the project should be discussed at least every two weeks with the ergonis supervisor and at least
once per month with the advisor. A time schedule and a milestone plan must be set up within the first 3 weeks and
discussed with the advisor and the supervisors. It should be continuously refined and monitored to make sure that
the thesis will be completed in time. The final version of the thesis must be submitted not later than 28.08.2022.

Dipl.-Ing. Dr.

Markus Weninger, BSc

Institute for System Software

P +43-732-2468-4361

F +43-732-2468-4345

markus.weninger@jku.at

Abstract

While working with keyboards on computers, one might come across recurring patterns of text
or common mistakes which take a considerable amount of time to either type or fix. Due to
the fact that many modern jobs shift towards being office-related, these problems become more
relevant to a vast amount of people that try to be as efficient as possible. Not only do they want
to save their precious time, they also like to conveniently handle their tasks.

Thus, Typinator for Windows provides a low-threshold entrance into office workflow optimiza-
tion by analyzing keyboard inputs, checking whether they correspond to predefined abbreviations
in a database and, in case, inserting their corresponding expansions, i.e., long versions, inside
the active text area.

One way of using this mechanism is setting up a dictionary of repeatedly misspelled words
and having them corrected automatically while typing. Other ways to use auto-expanded abbre-
viations are to expand them to predefined text templates, Unicode characters such as emojis or
even images.

Typinator for Windows is an easy-to-handle background application which does not interfere
with the user’s actions by operating at high performance. Through displaying a system tray icon
only, the application ensures being a lightweight extension to every Windows computer.

Kurzfassung

Bei der Tastaturarbeit am Computer begegnet man oftmals wiederkehrenden Textmustern oder
häufig auftretenden Tippfehlern, was zu einem nicht zu vernachlässigenden zeitlichen Aufwand
führt, um diese zu tippen oder zu beheben. Da sich viele moderne Arbeitsplätze in Richtung
Büroarbeit verlagern, werden diese Probleme für viele Menschen, die so effizient wie möglich sein
wollen, immer relevanter. Diese wollen nicht nur ihre kostbare Zeit sparen, sondern auch ihre
Aufgaben auf praktische Weise erledigen.

Deshalb bietet Typinator für Windows einen niederschwelligen Einstieg in die Optimierung
von Arbeitsabläufen im Büro, indem es Tastatureingaben analysiert, prüft, ob sie mit vordefinierten
Abkürzungen in einer Datenbank übereinstimmen und, falls dies der Fall ist, die entsprechenden
Erweiterungen, d.h. die Langversionen, in den aktiven Textbereich einfügt.

Ein Weg, diesen Mechanismus zu nutzen, besteht darin, ein Wörterbuch mit wiederholt falsch
geschriebenen Wörtern anzulegen und diese während der Eingabe automatisch korrigieren zu
lassen. Andere Möglichkeiten, um automatisch erweiterte Abkürzungen zu verwenden, bestehen
darin, diese zu vordefinierten Textvorlagen, Unicode-Zeichen wie Emojis oder sogar Bildern zu
erweitern.

Typinator für Windows ist eine einfach zu handhabende Hintergrundanwendung, die den
Benutzer durch ihre hohe Performanz nicht bei seinen Aktionen blockiert. Da die Anwendung
ausschließlich als System-Tray Icon angezeigt wird, stellt sie eine leichtgewichtige Erweiterung
für jeden Windows-Computer dar.

i

Table of Content

Contents

Abstract i

Kurzfassung i

1 Introduction 1

2 Background 3
2.1 History of Typinator . 3
2.2 Abbreviations and Text Expansions . 4
2.3 Reasons for Developing a Windows-specific Typinator Version 5

3 Approach 8
3.1 Architecture . 8
3.2 Data Storage and Synchronisation . 9
3.3 Inner Workflow . 10

4 Implementation 12
4.1 .NET as Software Platform . 12
4.2 P/Invoke - Calling DLL Functions . 13

4.2.1 Utilizing User32.dll . 13
4.2.2 Utilizing Typinator Core . 14

4.3 Collecting Keystrokes . 15
4.3.1 Keycodes and Processing . 15
4.3.2 Get Key State Asynchronously . 16

4.4 Evaluating Keyboard Inputs . 16
4.5 Expansion Mechanism . 17

4.5.1 Removing Input . 17
4.5.2 Preserving Clipboard Data . 18
4.5.3 Expanding by Clipboard . 19
4.5.4 Expanding by Simulating Keypresses . 20

5 Evaluation / Usage 23
5.1 System Tray Icon and Context Menu . 23
5.2 Software Development Workflow . 24
5.3 Sales Workflow . 25

6 Related Work 26
6.1 Competing Products . 26

7 Conclusion 27

Literature 29

ii

1 Introduction

Productivity tools are helping to increase working efficiency and making one’s life easier. For
instance, time planners, to-do lists, various communication tools and many more applications
fall under this category and accomplish said goal. But most important, a vast amount of office
workers experience typing repetitive text or using recurring text templates to some extent which
in the end leads to a mentionable time consumption.

For overcoming these problems, various tools exist and one of them is Typinator. It supports
people using keyboards by managing a set of abbreviations that map to user-specified text
templates, images and code snippets which can be inserted at the cursors’ current position after
the given abbreviation has been typed. Unfortunately, Typinator is only available for MacOS
until now and thus excludes the majority of computer operators from using it at all. As shown
in Figure 1, most desktop computers and laptops nowadays run Microsoft Windows as their
operating system and as a result most likely could profit from Typinator as well.

Figure 1: Current desktop PC market share1.

The main contribution of this thesis is a working implementation of Typinator for Windows
providing some base functionalities of the original product. Additionally, a system-agnostic
library named Typinator Core is being developed (not part of this thesis) and integrated into
Typinator for Windows. It is responsible for executing background tasks that are not dependent
on the operating system. Due to the fact that Typinator Core is being developed at Ergonis,
this thesis only considers operating-system-specific operations such as listening to keystrokes and
inserting texts and images at cursor’s current position.
All of this results in the opportunity for the product’s original developers at Ergonis to open
Typinator to the Windows market and thus a broader spectrum of new potential users and
customers.

1https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-202107-202207-bar

1

https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-202107-202207-bar

2 Background

This section describes the most important knowledge and history about the base product Typ-
inator, how it manages abbreviations and text expansions and reasons for developing a Windows-
specific Typinator version.

2.1 History of Typinator

Ergonis is a company which is specialized in providing productivity tools for their customers.
Moreover, due to their technical know-how in combination with research knowledge at first hand,
they were able to create easy-to-use but still powerful tools such as:

• KeyCue

- Exclusively for MacOS.

- Create custom shortcuts to open frequently used applications, files, folders and more.

• PopChar

- For Windows and MacOS.

- Provides a window for finding and typing single special characters.

- Search for characters in thousands of different fonts.

- View font details.

- Check out how text fragments look like in certain fonts.

• Typinator

- Exclusively for MacOS.

- Inserts texts and images (called expansions) at the cursor’s position when certain
abbreviations have been typed.

- Complex features such as executing scripts and calculations are supported.

The company Ergonis publicly released the first version of Typinator in June 2005. Back
then, only a small set of functions was available which were continuously extended over time.
Some major milestones with their most important features [2] are are illustrated in the following
list:

• June 2005 - Release of Typinator 1.0

• June 2007 - Typinator 2.0

- Manage abbreviations in sets.

∗ Group abbreviations and expansions by usage type (e.g. Work and Private).
∗ Identify related abbreviations and expansions and administrate them as a whole.

- Import and export sets from and to files.

- Inserting current clipboard content within expansions.

3

• April 2008 - Typinator 3.0

- Dockless application only visible by a status bar menu item.

• May 2010 - Typinator 4.0

- Globally enable and disable given sets.

• January 2012 - Typinator 5.0

- Support for script execution (e.g., PHP, Perl, Python, Ruby, AppleScript, JavaScript
and many more) within expansions.

- Inclusion of text file contents within expansions.

- Date and time calculations.

• June 2014 - Typinator 6.0

- Support of regular expression to define abbreviations for flexible patterns.

• November 2016 - Typinator 7.0

- Subscriptions: Add sets from remote sources with automated updates.

- Publish sets for other Typinator users to subscribe to.

• June 2019 - Typinator 8.0

- Statistics mode showing frequently used abbreviations.

- Use special keys (e.g., CTRL and ALT) in abbreviations.

2.2 Abbreviations and Text Expansions

Managing and recognizing abbreviations is a key part of Typinator. In general, abbreviations
are of textual form and are solely recognized by typed keystrokes. In addition, they may also
contain special keys which can trigger different kinds of expansions which must not be solely text.
Abbreviations are replaced by text expansions that can be one of the following (summarized
from [2]):

• Text

• Images

• Results from script executions (e.g., JavaScript or Python code)

4

Abbreviations and expansions are logically grouped in sets. A set has a unique name, may con-
tain arbitrary many abbreviation-expansion pairs with a prefix and/or suffix and options such as
a rank or an enabled-flag. A practical example of how abbreviations and expansions are managed
in sets is visualized in Table 1. Further, basic expansions of type text and image, as they are
supported by Typinator for Windows, are shown in Table 2. For completeness, more complex
expansions like execution of PHP, Perl, Python, Ruby, AppleScript or JavaScript [3] scripts are
shown in Table 2 (line 5) but are only featured in the MacOS version and thus not described in
more detail.

Rank Set name Prefix Abbreviation Expansion Enabled
1. private private- tel 07262 98769 true
2. work jku- tel 0664 12345 true

Table 1: A person might use Typinator for private and work purposes and thus manage a
separate set for each. In this example, the work set and private set both contain an abbreviation
tel with a corresponding phone number as expansion. By typing tel on the keyboard without any
further options, Typinator runs into a conflict. First, Typinator checks if the set is enabled or
disabled. Second, sets are searched through by in ascending order of their rank. Hereby, the set
private immediately delivers a result and the private phone number gets expanded. To explicitly
expand the work phone number, the user would have to type jku-tel which indicates that the set
with the prefix jku- shall be used.

Abbreviation Expansion
1. name␣ Max Mustermann
2. tel␣ 06641234567890
3. emoji␣ ⌣̈

4. logo␣
5. { /my/script.js }␣ 21.5 °C

Table 2: Textual abbreviations can have different expansion types. On the left hand side we see
abbreviations (only textual) and on the right hand side their corresponding expansion (three of
type text, whereby the third one is a single Unicode character, an image and the execution result
of a script file).

2.3 Reasons for Developing a Windows-specific Typinator Version

Even though it would, in general, be possible to run Objective-C code (the language the MacOS
version is written in) on Windows, Typinator heavily relies on native MacOS system calls. Thus,
the existing code base is not suitable for Windows due to the OS-specific hooks which cannot be
reused as-is. Nevertheless, storage and handling of the data does not depend on the operating

5

system and therefore has been extracted into an operating-system-independent library (Typinator
Core) in parallel with this thesis.

As a consequence of the necessity to reimplement Typinator for Windows, the usage of
User32.dll from the Win32 API comes at hand. Basically, this dynamic link library (or
short DLL) provides, besides many other features, useful functions for listening to the keyboard
and simulating keystrokes. But most important, it is globally available in the operating system
and thus, no external dependency is required. To sum up, Typinator for Windows would not
be feasible without Win32 and it makes Typinator for Windows usable on all current Windows
computers.

The programming language of choice for implementing Typinator for Windows is C# since
it fits well into the Windows ecosystem and makes it easy to work with Win32 through built in
features (i.e., P/Invoke).

6

3 Approach

This section discusses and illustrates conceptual considerations of Typinator for Windows. First,
the composition of the whole Typinator environment is explained. Following, a brief overview is
given of how Typinator for Windows in combination with Typinator Core stores data and handles
synchronisation between multiple devices. Last, a typical flow from recognizing abbreviations to
applying expansions is shown in detail.

3.1 Architecture

TypinatorCore

Typinator for
Windows

(this thesis)
Typinator for MacOS

Management UI

SQLite

Cloud storage

External part

Typinator for iOS

Figure 2: This figure shows the overall architecture of internal and external software parts in
the Typinator environment. Typinator Core is the main interface between all other components
and is directly used by each platform-specific Typinator implementation (i.e., Typinator for
Windows, Typinator for MacOS and Typinator for iOS. The cloud storage is a third-party tool,
e.g., Dropbox, OneDrive or iCloud, and is used via the internet.

Typinator Core is a completely newly developed library to ensure code sharing between all
supported platforms in order to bundle system-agnostic features into a central unit. Such features
are for instance:

• Data synchronisation

• Set storage and retrieval

• Efficient search algorithm for abbreviations in sets

Evidently, Typinator Core is the heart of the whole environment as can be seen in Figure 2.
First of all, it is responsible for communicating with a local database that synchronises all sets

8

over a cloud storage provider of the end user’s choice. Furthermore, Typinator Core is crucial for
the different frontends such as the platform-specific Typinator implementations and the Man-
agement UI. Thus, Typinator Core is provided as DLL and can be integrated in most common
programming languages with ease which achieves the target of being platform-independent.

3.2 Data Storage and Synchronisation

Since Typinator is built for working with different data types, e.g., texts and images, and possibly
large amounts of data, sophisticated storage mechanisms are put in place. All of Typinator ’s set
data is stored inside an SQLite database which is managed by Typinator Core. But Typinator
Core has to distinguish between two cases: (1) local sets and (2) synchronised sets. Local sets are
only kept on the current machine and are excluded from synchronisation to other devices. Con-
trary to that, synchronised sets are shared via a cloud storage provider as can be seen in Figure 3.

Cloud storage

Typinator Core Typinator Core

Device 1 Device 2

Local DB Sync DB Sync DB Local DB

Typinator Setup

Figure 3: This figure shows a Typinator setup with two distinct Typinator for Windows applica-
tions that are only connected via the owner’s personal cloud storage space. Since every Typinator
for Windows installation comes with Typinator Core as central unit, Typinator Core manages
a Local DB and a Sync DB per device. All sets which are inside the Sync DB are synchronised
via a cloud storage provider and are therefore available on Device 1 and Device 2 at the same
time. Local sets are solely stored in the Local DB which is not part of synchronisation.

9

3.3 Inner Workflow
K

ey
lo

gg
in

g

Collect keystrokes

no separation character

separation character
encountered

Reset input buffer

D
at

a
ev

al
ua

tio
n

Search for
abbreviation in DB

found?

no

yes, short text
yes, long text or image

Ex
pa

ns
io

n
m

ec
ha

ni
sm Simulate every

keypress individually

Move image to
clipboard Move text to clipboard

Preserve clipboard
content

image long text

Simulate CTRL + V

Figure 4: Inner workflow from keystroke recognition over searching in the database to expanding
different kinds of results.

Collecting keystrokes is the entry point to a text expansion, as can be seen in Figure 4.
As long as no separation character, i.e., whitespace, tab or return, is encountered, all alpha-
numerical characters are appended to an input buffer. In contrast, special characters such as
CTRL and ALT are ignored intentionally since they do not contribute to an abbreviation.

Once a separation character is recognized, a search for the entered abbreviation in the
database is performed by passing the input buffer content to Typinator Core. In case the ab-

10

breviation is found in a set, the corresponding expansion gets passed back to the caller. There,
Typinator for Windows has to distinguish between three different cases: (1) short texts with less
than or equal 50 characters, (2) long texts with more than 50 characters and (3) images. The
different expansion types determine if either the clipboard must be used or the keystrokes are
simulated separately due to performance reasons.

By simulating every keypress individually, we can save some time with regards to
performance. Through empirical evaluation, Ergonis found out that especially for short texts
with less than 50 characters, typing the characters sequentially is faster than using the clipboard.

Preserving the clipboard content is only relevant if the expansion is a long text or an im-
age. Since the user might already have content inside the clipboard when Typinator wants to use
it, its contents must be temporarily kept in-memory during this short period of time. Afterwards,
it must be restored such that the user does not even notice that the clipboard was used internally.

Moving an image or text to the clipboard is conceptually the same but requires some
different parameters when calling Win32 API functions (e.g., for data format). After moving the
desired content to the clipboard, simulating CTRL + V is performed to tell the operation
system to paste the newly added text or image to the cursor’s current position. This logic is
very much similar to physically pressing CTRL and V simultaneously.

Last but not least, resetting the input buffer must be performed in order to restart the
whole process and being able to listen to new inputs again.

11

4 Implementation

While Section 3 discussed the composition of Typinator for Windows and how it functions in
principle, this section describes the actual realization and which technologies were used for said
purpose.

First, we have a look at the used frameworks and necessary technologies and why they are
suitable for implementing Typinator for Windows.

Second, we dive into P/Invoke which provides classes and attributes for calling DLL functions.
This is especially useful for communicating with the operating system.

Last, the core features of Typinator for Windows are discussed: collecting keystrokes, evalu-
ating keyboard inputs and the expansion mechanism.

4.1 .NET as Software Platform

When it comes to working with the Windows operating system, .NET comes hand in hand. C#
provides an easy-to-handle interface for using DLLs and is thus ideal for working with unmanaged
code. Furthermore, .NET is preinstalled on Windows and updates do not have to be managed
by the user manually which makes maintenance easier than with other frameworks.

Although Typinator for Windows does not have a user interface, it is built with Windows
Presentation Foundation (WPF). Typinator for Windows relies on another important WPF
feature instead: the system tray. Additionally, WPF’s lifecycle hooks and classes are quite useful
for creating applications such as Typinator for Windows.

Yet, using the system tray from aWPF context requires imports of the the System.Windows.Forms
namespace. Nevertheless, the classes ContextMenuStrip and NotifyIcon can be nicely inte-
grated without any further ado. Only bundling the Windows Forms DLL must be ensured
when building Typinator for Windows. We could have also created Typinator for Windows as a
Windows Forms application but WPF is definitely the state of the art nowadays.

12

4.2 P/Invoke - Calling DLL Functions

Platform invoke, or short P/Invoke, is a technology designed to enable working with unmanaged
libraries from within managed code. All required C# attributes and classes are inside the
namespaces System and System.Runtime.InteropServices[4].

Typinator for Windows
C#

Managed code Unmanaged code

Typinator Core
C++P/Invoke

Figure 5: Simplified overview of the functional principle of P/Invoke in the context of Typinator
for Windows

As can be seen in Figure 5, P/Invoke is a bridge between managed code of a .NET language
(e.g., C#, Visual Basic or F#) and some unmanaged libraries. With regards to this thesis,
P/Invoke is used for utilizing User32.dll of the Win32 API and Typinator Core.

4.2.1 Utilizing User32.dll

1 [DllImport("user32.dll", SetLastError = true)]
2 internal static extern uint SendInput(uint nInputs , Input[] pInputs , int cbSize);
3
4 [DllImport("user32.dll", SetLastError = true)]
5 internal static extern int GetAsyncKeyState(Int32 i);
6
7 [DllImport("user32.dll")]
8 internal static extern IntPtr GetForegroundWindow ();

Listing 1: Used functions of the Win32 API for writing to the keyboard, collecting keystrokes
and checking the active window.

The function SendInput is for simulating keystrokes one by one on the keyboard. Since it it
is part of an unmanaged library, we have to supply the number of elements in the pInputs array
as first function parameter. Second, the actual pInputs array is passed in and last, the size of

13

the Input struct as can be seen in Listing 1 (line 2). The Input struct itself consists of an input
type (which always is set to Keyboard for Typinator for Windows) together with the key to be
typed and flags that indicate whether the key should be pressed or released.

Next, by calling GetAsyncKeyState with a certain keycode we receive the state of the key on
the keyboard (line 5). The method’s return value signalizes that the key is either pressed (by a
return value of 32769) or that the key is not pressed (by a return value of 0).

Last but not least, GetForegroundWindow is used for fetching a Pointer to the current active
window. It does not need any function parameters since the operating system is aware of the
currently running application (line 8). The returned IntPtr can be used for determining whether
the user has changed the active window which is relevant for resetting the input buffer. After
every successful expansion or recognition of a whitespace character or in case the user changes
the active window, the input buffer gets cleared as we do not want to carry inputs longer than
we have to. A way how to detect window changes is given in Listing 2.

1 // check if window changed and reset input
2 IntPtr currentWindow = DLLFunctions.GetForegroundWindow ();
3 if (currentWindow != lastActiveWindow) {
4 lastActiveWindow = currentWindow;
5 INPUT_TEXT = "";
6 continue;
7 }

Listing 2: The Win32 API provides a simple feature for getting a pointer to the active window.
By comparing this window reference to the previous one after every keystroke we can reset the
input buffer accordingly in case of a detected change.

4.2.2 Utilizing Typinator Core

1 [DllImport(@"\lib\TypinatorCore.dll", SetLastError = true , CharSet = CharSet.
Unicode)]

2 internal static extern int set_typinator_base_dirs(string local_dir , string
synchronised_dir , string host_uuid);

3
4 [DllImport(@"\lib\TypinatorCore.dll", SetLastError = true)]
5 internal static extern int sync_typinator_model(string input_json , StringBuilder

output_json);

Listing 3: Currently available functions of Typinator Core for setting the synchronised and local
set directories, as well as to modify and fetch available sets.

Typinator Core manages shared and private sets. For this purpose, set_typinator_base_dirs
is called during the initialization phase of Typinator for Windows and receives (1) the absolute
file path of the local/private set directory and (2) the absolute file path of the shared set directory.
Additionally, Typinator for Windows has to provide (3) the host UUID in order to track modi-
fications for version management of sets as shown in Listing 3 (line 2). sync_typinator_model
is capable of updating sets via the parameter input_json and of obtaining all available set data
via output_json (line 5).

14

4.3 Collecting Keystrokes

Recognizing keystrokes is the first step during the expansion lifecycle of Typinator for Windows.
Thus, it is necessary to use the existing operating system function GetAsyncKeyState from
Listing 4 (line 4) in such a way that we can recreate a meaningful input string out of the clicked
keys. This leads us to the need to filter out some special keys and also restricting the range of
keys down to only those which really make sense.

4.3.1 Keycodes and Processing

The range of all possible keycodes is located between 0x0116 and 0xFE16. Since there are less
than 254 keys on a keyboard, not all of the available keycodes are of use which requires filtering
of unused keycodes as shown in Listing 4 (line 2). Filtering is done by iterating over all relevant
keycodes which are situated in the numeric ranges:

• Special keys - 0x0116 to 0x2F16

Only 0x1116 (CTRL) and 0x1216 (ALT) are relevant for Typinator for Windows as it can
be seen in Listing 4 (line 9 to line 14).

• Numbers - 0x3016 to 0x3916

• Letters - 0x4116 to 0x5A16

• Numpad numbers - 0x6016 to 0x6916

All keycodes above 0x6916 have no use for Typinator for Windows and are therefore not
iterated.

1 // Scan over all possible input keys
2 for (int keyCode = 1; keyCode <= MAX_KEY_CODE; keyCode ++) {
3 // Get state of key
4 int keyState = DLLFunctions.GetAsyncKeyState(keyCode);
5 if (keyState == PRESSED_STATE) {
6 char c = (char)keyCode;
7
8 // check if a modifier (CTRL or ALT) was encountered -> ignore next char
9 if (ModifierPreceeding) {

10 ModifierPreceeding = false;
11 continue;
12 }
13 // check if current character is a modifier
14 ModifierPreceeding = c == STRG_KEY_CODE || c == ALT_KEY_CODE;
15
16 // append text while user is typing
17 if (char.IsLetterOrDigit(c)) {
18 INPUT_TEXT += c;
19 }
20 }
21 }

Listing 4: The range of all relevant keycodes is polled sequentially for obtaining the written text
without special keys. These special keys require separate handling since they are not part of an
abbreviation in Typinator for Windows.

15

4.3.2 Get Key State Asynchronously

When looping over the relevant keycodes we have to evaluate their state in order to determine
the written text. As shown in Listing 4, the loop variable is passed to GetAsyncKeyState which
returns an int describing the state of the key (line 4). We can check whether the key was pressed
by comparing the state to the value 32769 being held in the static variable PRESSED_STATE (line
5).

An edge case of the keystroke procedure is handling modifier keys (CTRL and ALT)
because they are certainly not of textual nature and therefore should not end up inside the input
buffer. Thus, we have to check if the last pressed key was such a modifier and skip to the next
one in this case (line 9 to line 11). If no such key is preceding, we finally have to check if the
current key is CTRL or ALT for the next loop iteration (line 14). The last step is to only add
letters or digits to the input buffer by using the function char.IsLetterOrDigit(char c)
(line 17 to line 19).

4.4 Evaluating Keyboard Inputs

The second step of the expansion lifecycle is initiated after filling the input buffer. Typinator for
Windows must decide whether to expand a possible abbreviation at the cursor’s current position
or not. This is performed according to one of two different techniques.

The user can either choose to evaluate whether an existing abbreviation has been typed in
after every whitespace or after every character. Additionally, performance has to be considered
here as well since querying the database after every character can result in a loss of performance,
especially for large sets (e.g., a set with 500 000 abbreviations and expansions which is used by
a real-world client).

Evaluating after whitespaces is thus the default case and initiates the search mechanism
solely after a whitespace character has been encountered. We can check for a whitespace by
calling char.isWhitespace(char c). Nevertheless can the user switch to evaluation after
every character. This is convenient since the user does not have to type a whitespace. Yet,
this can also lead to conflicts. Table 3 shows an exemplary set definition.

Abbreviation Expansion
1. tel 07262 56789
2. tel2 06641234567890

Table 3: Both abbreviations start with the same three characters and will be expanded to a
phone number.

When evaluating the input after every whitespace we do not have any difficulties deciding
which abbreviation to choose from the two available ones. Since the whitespace functions as
separator we can clearly decide whether the user typed tel or tel2 and expand accordingly. Yet, if
we perform character by character evaluation, we cannot trivially decide the abbreviation exactly.
For now, the database is queried after every keystroke and thus, the input tel is recognized and
the corresponding phone number gets expanded. Even if the user wanted to type tel2 it would
not be possible as tel would always be recognized first.

16

4.5 Expansion Mechanism

The next step after evaluating the input and checking whether the user typed an abbreviation
stored in one of the sets is to actually expand the underlying text or image. First, removing the
user’s input (the abbreviation) is performed. Second, in case of expanding via the clipboard, the
clipboard content is preserved. Last, the expansion is done via the clipboard or by simulating
every keypress.

4.5.1 Removing Input

First, the typed abbreviations must be removed from the user’s current editor. Therefore, we
utilize the Win32 API function SendInput and create the required Input objects as shown in List-
ing 5. For signalizing keyboard input, the parameter type must be set to InputType.Keyboard
but could in principle also be InputType.Mouse or InputType.Hardware (line 6 and line 14).
As it can be seen in Listing 5, we have to add two entries to the Input array for every keypress
(line 5 and line 13). wVk stands for the virtual key code of the desired key which is 0x0816 for
DELETE (line 9 and line 17). For the first keypress, we just specify the keycode, for the second
one we also add a flag for releasing the key in dwFlags (line 18). Finally, SendInput takes the
Input array, its amount of elements and the size of the Input struct (line 23).

1 private static void RemoveCharacters(int amount) {
2 // Remove as many characters as stated by amount
3 Input [] removeInput = new Input[amount * 2];
4 for (int i = 0; i < removeInput.Length; i += 2) {
5 removeInput[i] = new Input {
6 type = (int)InputType.Keyboard ,
7 u = new InputUnion {
8 ki = new KeyboardInput {
9 wVk = DELETE_KEY_CODE

10 }
11 }
12 };
13 removeInput[i + 1] = new Input {
14 type = (int)InputType.Keyboard ,
15 u = new InputUnion {
16 ki = new KeyboardInput {
17 wVk = DELETE_KEY_CODE ,
18 dwFlags = (uint)(KeyEventF.KeyUp)
19 }
20 }
21 };
22 }
23 _ = DLLFunctions.SendInput ((uint)removeInput.Length , removeInput , Marshal.

SizeOf(typeof(Input)));
24 }

Listing 5: We create an array of Input which contains as many DELETE keystrokes as the input
has characters. It is crucial that for every keypress we add two elements to the Input array:
One for pressing the key and one for releasing it again. Last, we call the Win32 API function
SendInput which executes the keystrokes.

17

4.5.2 Preserving Clipboard Data

For long texts and images we also have to preserve the current clipboard content. Users expect
the clipboard to still contain the original content they added themselves and not that Typinator
for Windows interferes and creates an inconsistent state.

1 private static void WriteByClipboard(string text) {
2 Thread staThread = new(delegate () {
3 // retrieve whatever is inside the clipboard currently
4 IDataObject originalClipboardContent = Clipboard.GetDataObject ();
5
6 // wrap text expansion as dataobject
7 IDataObject data = new DataObject ();
8 data.SetData(text);
9

10 // move expansion to the clipboard and paste it
11 Clipboard.SetDataObject(text , true);
12 PasteFromClipboard ();
13
14 // timeout in order to avoid race condition when pasting
15 Thread.Sleep(CLIPBOARD_TIMEOUT);
16
17 // move previous content to clipboard
18 Clipboard.SetDataObject(originalClipboardContent , true);
19 });
20 // clipboard must be accessed via STA -thread
21 staThread.SetApartmentState(ApartmentState.STA);
22 staThread.Start();
23 staThread.Join();
24 }

Listing 6: The listing shows the whole expansion process using the clipboard with the
intermediate step of preserving the original clipboard content. It starts a new Thread which
temporarily saves the clipboard content, moves the expansion to the clipboard, triggers a PASTE
operation and finally restores the original clipboard content.

The reason for executing the preserving step (line 4) and expansion step (line 11 and line
12) in a separate Thread, as shown in Listing 6, is due to restrictions of WPF. It enforces
that the Clipboard class can only be accessed from a Single-Threaded Apartment Thread (STA
Thread) which is normally the main thread of a WPF application. Since collecting keystrokes
and the expansion mechanism themselves run in a separate asynchronous Task, we thus start an
additional Thread using the ApartmentState.STA state (line 2, line 21 and line 22).

18

4.5.3 Expanding by Clipboard

As shown in Listing 6, using the clipboard for expansions is performed in between the preserving
logic. For long texts (> 50 characters), we only have to wrap the input string as IDataObject.
Through empirical evaluation by Ergonis, a threshold of 50 characters has proven suitable. For
images we have to define some additional options as shown in Listing 7. We wrap the image as
IDataObject to bring it into a universal format for the clipboard and also specify the data format
Bitmap. (line 3) The last parameter with value false stands for autoConvert and prohibits the
clipboard from converting the content to another format on retrieval [5].

1 private static void MoveImageToClipboard(string imageUrl) {
2 IDataObject data = new DataObject ();
3 data.SetData(DataFormats.Bitmap , Image.FromFile(imageUrl), false);
4 ...
5 }

Listing 7: Similar to textual expansions, images have to be put into a universal wrapper but
further parameters have to be supplied. The preservation mechanism and expansion mechanism
are the same as shown in Listing 6, except for the data object containing an image.

For pasting the clipboard content we simulate a CTRL + V with the SendInput function,
as shown in Listing 8. First, we press CTRL (line 8) followed by a V (line 16) by setting wVk to
their respective keycodes and then release the keys in reverted order (line 24 and line 33). This
is the way to simulate simultaneous pressing of two keys.

1 public static void PasteFromClipboard () {
2 // Write expansion text
3 Input [] input = {
4 new Input {
5 type = (int)InputType.Keyboard ,
6 u = new InputUnion {
7 ki = new KeyboardInput {
8 wVk = CTRL_KEY_CODE
9 }

10 }
11 },
12 new Input {
13 type = (int)InputType.Keyboard ,
14 u = new InputUnion {
15 ki = new KeyboardInput {
16 wVk = V_KEY_CODE
17 }
18 }
19 },
20 new Input {
21 type = (int)InputType.Keyboard ,
22 u = new InputUnion {
23 ki = new KeyboardInput {
24 wVk = V_KEY_CODE ,
25 dwFlags = (uint)(KeyEventF.KeyUp)
26 }
27 }

19

28 },
29 new Input {
30 type = (int)InputType.Keyboard ,
31 u = new InputUnion {
32 ki = new KeyboardInput {
33 wVk = CTRL_KEY_CODE ,
34 dwFlags = (uint)(KeyEventF.KeyUp)
35 }
36 }
37 }
38 };
39
40 _ = DLLFunctions.SendInput ((uint)input.Length , input , Marshal.SizeOf(typeof(

Input)));
41 }

Listing 8: The PasteFromClipboard method performs a paste operation by simulating
sequentially pressing the CTRL and V keys. The keystrokes are then executes by the Win32
API function SendInput.

4.5.4 Expanding by Simulating Keypresses

For shorter texts (≤ 50 characters), we virtually type each character in order to save some time
by not using the clipboard. This can again be done with SendInput from the Win32 API. The
big difference to our other methods that use SendInput are the options which are supplied in
the KeyboardInput object as shown in Listing 9.
For writing arbitrary unicode characters, we first have to set the parameter wVk, the virtual key
code2, to 0 in order to signalize that the key is not defined in a hardcoded way by a specific virtual
key code (line 13). To be concise, we take char by char of the string text (line 1) and pass it
to the wScan parameter (line 14). By doing so, the SendInput function takes care of typing the
character of wScan. But this only works in combination with adding KeyEventF.Unicode to the
dwFlags parameter (line 28).

1 private static void WriteCharacters(string text) {
2 // Write expansion text
3 List <Input > input = new();
4 foreach (char c in text.ToCharArray ()) {
5 // we have to send KeyDown and KeyUp in order to print multiple characters
6 input.Add(new Input
7 {
8 type = (int)InputType.Keyboard ,
9 u = new InputUnion

10 {
11 ki = new KeyboardInput
12 {
13 wVk = 0,
14 wScan = c,
15 dwFlags = (uint)KeyEventF.Unicode
16 }
17 }

2https://learn.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes

20

https://learn.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes

18 });
19 input.Add(new Input
20 {
21 type = (int)InputType.Keyboard ,
22 u = new InputUnion
23 {
24 ki = new KeyboardInput
25 {
26 wVk = 0,
27 wScan = c,
28 dwFlags = (uint)(KeyEventF.KeyUp | KeyEventF.Unicode)
29 }
30 }
31 });
32 }
33
34 _ = DLLFunctions.SendInput ((uint)input.Count , input.ToArray (), Marshal.SizeOf(

typeof(Input)));
35 }

Listing 9: We iterate over all characters of the expansion and set the following parameters: wVk
is 0 since we specify the character to type by the attribute wScan. For wScan we can directly
pass the char and do not have to know its virtual key code. Last, dwFlags contains a flag for
allowing any Unicode character.

21

5 Evaluation / Usage

This section covers the practical application of Typinator for Windows. First, a brief overview of
the application’s embedding into the Windows system tray is shown. Following, two exemplary
workflows (of a software developer and a sales person) from abbreviation to expansion are worked
through.

5.1 System Tray Icon and Context Menu

Figure 6: The icon of Typinator for Windows is displayed in the system tray. A right click
opens the context menu.

The icon itself only shows the running state of Typinator for Windows but has no effect when
left-clicking on it. Other than that, a right-click opens the menu which allows interaction with
the application, as shown in Figure 6.

1. Pause: Stops the app from listening to keystrokes

(a) Context menu option Pause is changed to Resume.

(b) Toggling between Paused and Running state possible.

2. Evaluate char by char: Check DB for current input after every typed character

(a) Context menu option Evaluate char by char changes to Eval after whitespace.

(b) Toggling between the two evaluation modes possible.

3. Start management view: Starts a local webserver and opens the Management UI

4. Exit: Shutdown the application

23

5.2 Software Development Workflow

Abbreviation Expansion
1. newhtml <!DOCTYPE html><html><head><title>New HTML

page</title><script></script></head><body></body></html>
2. centered <div style="margin: auto; width: 50%"> TODO: enter html </div>

Table 4: A software developer sometimes comes across the problem to create a new HTML
document and to center a div. For not having to research these things in the internet, a Typinator
set has been created which automatically inserts the required code.

First, the software developer opens a code editor, e.g., Visual Studio Code, and enters the
predefined abbreviation newhtml from Table 4 as shown in Figure 7.

Figure 7: This figure shows a HTML page skeleton with the unexpanded abbreviation centered
inside the body tag.

Now, the software developer wants to add a div element which is horizontally centered.
Therefore, the abbreviation centered gets expanded by Typinator for Windows as shown in
Figure 8. Instead of typing 179 characters manually, only 15 characters have to be entered via
the keyboard which results in a decrease of nearly 92%.

Figure 8: After expanding centered, the HTML page contains a centered div element with a
placeholder text.

24

5.3 Sales Workflow

Abbreviation Expansion
1. dc Dear Customer,
2. off1 Thank you for your email. I’m happy to make you a special offer

for a 10% discount which is valid for 15 days.
3. ct Please do not hesitate to contact me if there are any questions left.
4. wbr With best regards,
5. name Max Mustermann
6. job Ergonis Head of Sales

Table 5: The sales person in this scenario works for Ergonis and frequently gets in touch with
potential new customers for the product Typinator for Windows. For that, a new Typinator set
with commonly used phrases has been created.

For replying to the customer, the sales person opens an email client such as Outlook. Typ-
inator for Windows is already running and has a predefined set according to Table 5. The sales
person types the abbreviations as shown in Figure 9 and by entering a whitespace after each,
the abbreviation gets replaced by the corresponding expansion from the predefined set.

Figure 9: This figure shows the abbreviations which the sales person has to enter inside the
mail client. Simultaneously, Typinator for Windows inserts the underlying expansions when
recognizing a whitespace character while the sales person is actively typing.

The resulting email is shown in Figure 10. Instead of typing 243 characters manually, the
sales person only has to enter 18 characters which decreases the typing effort by approximately
93%.

25

Figure 10: All abbreviations have been expanded by Typinator for Windows according to the
predefined set and thus the sales person is able to send the mail to the customer.

6 Related Work

This section covers an overview of competing products on the market and their differences as
well as similarities in comparison to Typinator for Windows.

6.1 Competing Products

Typinator for Windows’ biggest competitor is TextExpander [7]. TextExpander for instance offers
expanding texts and images or sharing sets via a TextExpander user account. Additionally, users
can also invoke scripts written in JavaScript or AppleScript from within expansions [7]. Fur-
thermore, TextExpander is also available for iOS and as Google Chrome extension. An economic
limitation of TextExpander are the monthly costs, which depend on the amount of concurrent
users, due to its subscription-based payment model.

Next, FastKeys [1] is a Windows-only text expansion tool with focus on automating many
different aspects of working with Windows. Users can, besides some other features, (1) expand
abbreviations just as Typinator for Windows, (2) add custom keyboard shortcuts for opening cer-
tain applications, (3) record mouse gestures and execute an action when the movement pattern
is recognized and (4) a clipboard manager which keeps track of the clipboard’s content history.
FastKeys offers three different license types for personal, professional or enterprise customers.
Only lifetime licenses are sold and therefore no recurring payments are required.

Following, aText [6] is a text expansion tool with a simplistic user-interface but underbids
the other competitors by its rather low price of $4.99 for a lifetime license. Feature-wise aText
is alike the other products but for enterprise customers, it might not be an ideal solution since
it is only maintained by a single person.

All in all, it must be said that most text expansion tools meanwhile have a very similar set
of features and thus the main selling point is interoperability among multiple platforms.

26

7 Conclusion

This thesis has shown how a basic version of Typinator for Windows can be implemented with
modern technologies. Nevertheless, we have only considered a core of all available features al-
ready available in MacOS Typinator as otherwise this would have resulted in a scope too big for
a Bachelor’s thesis. At first, introduced underlying concepts such as abbreviations, expansions
and sets and why we have to redevelop Typinator for Windows. Second, we had a closer look at
the Typinator architecture and which components Typinator for Windows interacts with. We
discussed the flow from recognizing an abbreviation by collecting keystrokes to expanding texts
or images.

Next, we saw crucial parts of the implementation for a better understanding of how to utilize
C# and the WPF framework to create Typinator for Windows. Not only does C# perform well
with unmanaged code such as the Typinator Core library, it also makes developing Windows-
specific applications much easier due to its surrounding .NET ecosystem. Additionally, we gained
some insights to working with the Windows operating system for obtaining the currently active
window, recognizing keystrokes, writing to the keyboard and using the global clipboard.

Finally, Typinator for Windows is a big chance for Ergonis to bring an already successful and
profitable MacOS product to many more potential users. It provides an opportunity to open up
to bigger markets and make the Typinator toolset thrive even more.

27

List of Tables

1 A person might use Typinator for private and work purposes and thus manage a
separate set for each. In this example, the work set and private set both contain
an abbreviation tel with a corresponding phone number as expansion. By typing
tel on the keyboard without any further options, Typinator runs into a conflict.
First, Typinator checks if the set is enabled or disabled. Second, sets are searched
through by in ascending order of their rank. Hereby, the set private immediately
delivers a result and the private phone number gets expanded. To explicitly expand
the work phone number, the user would have to type jku-tel which indicates that
the set with the prefix jku- shall be used. 5

2 Textual abbreviations can have different expansion types. On the left hand side
we see abbreviations (only textual) and on the right hand side their corresponding
expansion (three of type text, whereby the third one is a single Unicode character,
an image and the execution result of a script file). 5

3 Both abbreviations start with the same three characters and will be expanded to
a phone number. 16

4 A software developer sometimes comes across the problem to create a new HTML
document and to center a div. For not having to research these things in the
internet, a Typinator set has been created which automatically inserts the required
code. 24

5 The sales person in this scenario works for Ergonis and frequently gets in touch
with potential new customers for the product Typinator for Windows. For that,
a new Typinator set with commonly used phrases has been created. 25

List of Figures

1 Current desktop PC market share3. 1
2 This figure shows the overall architecture of internal and external software parts

in the Typinator environment. Typinator Core is the main interface between
all other components and is directly used by each platform-specific Typinator
implementation (i.e., Typinator for Windows, Typinator for MacOS and Typinator
for iOS. The cloud storage is a third-party tool, e.g., Dropbox, OneDrive or iCloud,
and is used via the internet. 8

3 This figure shows a Typinator setup with two distinct Typinator for Windows
applications that are only connected via the owner’s personal cloud storage space.
Since every Typinator for Windows installation comes with Typinator Core as
central unit, Typinator Core manages a Local DB and a Sync DB per device. All
sets which are inside the Sync DB are synchronised via a cloud storage provider
and are therefore available on Device 1 and Device 2 at the same time. Local sets
are solely stored in the Local DB which is not part of synchronisation. 9

4 Inner workflow from keystroke recognition over searching in the database to ex-
panding different kinds of results. 10

5 Simplified overview of the functional principle of P/Invoke 13

29

6 The icon of Typinator for Windows is displayed in the system tray. A right click
opens the context menu. 23

7 This figure shows a HTML page skeleton with the unexpanded abbreviation cen-
tered inside the body tag. 24

8 After expanding centered, the HTML page contains a centered div element with a
placeholder text. 24

9 This figure shows the abbreviations which the sales person has to enter inside the
mail client. Simultaneously, Typinator for Windows inserts the underlying expan-
sions when recognizing a whitespace character while the sales person is actively
typing. 25

10 All abbreviations have been expanded by Typinator for Windows according to the
predefined set and thus the sales person is able to send the mail to the customer. 26

Listings

1 Used functions of the Win32 API for writing to the keyboard, collecting keystrokes
and checking the active window. 13

2 The Win32 API provides a simple feature for getting a pointer to the active
window. By comparing this window reference to the previous one after every
keystroke we can reset the input buffer accordingly in case of a detected change. 14

3 Currently available functions of Typinator Core for setting the synchronised and
local set directories, as well as to modify and fetch available sets. 14

4 The range of all relevant keycodes is polled sequentially for obtaining the written
text without special keys. These special keys require separate handling since they
are not part of an abbreviation in Typinator for Windows. 15

5 We create an array of Input which contains as many DELETE keystrokes as the
input has characters. It is crucial that for every keypress we add two elements to
the Input array: One for pressing the key and one for releasing it again. Last, we
call the Win32 API function SendInput which executes the keystrokes. 17

6 The listing shows the whole expansion process using the clipboard with the inter-
mediate step of preserving the original clipboard content. It starts a new Thread
which temporarily saves the clipboard content, moves the expansion to the clip-
board, triggers a PASTE operation and finally restores the original clipboard
content. 18

7 Similar to textual expansions, images have to be put into a universal wrapper
but further parameters have to be supplied. The preservation mechanism and
expansion mechanism are the same as shown in Listing 6, except for the data
object containing an image. 19

8 The PasteFromClipboard method performs a paste operation by simulating se-
quentially pressing the CTRL and V keys. The keystrokes are then executes by
the Win32 API function SendInput. 19

30

9 We iterate over all characters of the expansion and set the following parameters:
wVk is 0 since we specify the character to type by the attribute wScan. For wScan
we can directly pass the char and do not have to know its virtual key code. Last,
dwFlags contains a flag for allowing any Unicode character. 20

31

References

[1] F. Automation. Fastkeys features. https://www.fastkeysautomation.com/. [Online; ac-
cessed 08-March-2023].

[2] Ergonis. Typinator 8.14. https://www.ergonis.com/products/typinator/history.html,
2023. [Online; accessed 03-March-2023].

[3] Ergonis. Typinator learning center. https://ergonis.com/typinator/learn, 2023. [Online;
accessed 08-March-2023].

[4] Microsoft. Platform invoke (p/invoke). https://docs.microsoft.com/en-us/dotnet/
standard/native-interop/pinvoke, 2022. [Online; accessed 05-March-2023].

[5] Microsoft. Setdata method. https://learn.microsoft.com/en-us/
dotnet/api/system.windows.idataobject.setdata?view=windowsdesktop-7.0#
system-windows-idataobject-setdata(system-string-system-object-system-boolean),
2023. [Online; accessed 05-March-2023].

[6] T. K. Nam. atext text automation. https://www.trankynam.com/atext/. [Online; accessed
08-March-2023].

[7] I. TextExpander. Textexpander features. https://textexpander.com/features. [Online;
accessed 08-March-2023].

32

https://www.fastkeysautomation.com/
https://www.ergonis.com/products/typinator/history.html
https://ergonis.com/typinator/learn
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://learn.microsoft.com/en-us/dotnet/api/system.windows.idataobject.setdata?view=windowsdesktop-7.0#system-windows-idataobject-setdata(system-string-system-object-system-boolean)
https://learn.microsoft.com/en-us/dotnet/api/system.windows.idataobject.setdata?view=windowsdesktop-7.0#system-windows-idataobject-setdata(system-string-system-object-system-boolean)
https://learn.microsoft.com/en-us/dotnet/api/system.windows.idataobject.setdata?view=windowsdesktop-7.0#system-windows-idataobject-setdata(system-string-system-object-system-boolean)
https://www.trankynam.com/atext/
https://textexpander.com/features

	Abstract
	Kurzfassung
	Introduction
	Background
	History of Typinator
	Abbreviations and Text Expansions
	Reasons for Developing a Windows-specific Typinator Version

	Approach
	Architecture
	Data Storage and Synchronisation
	Inner Workflow

	Implementation
	.NET as Software Platform
	P/Invoke - Calling DLL Functions
	Utilizing User32.dll
	Utilizing Typinator Core

	Collecting Keystrokes
	Keycodes and Processing
	Get Key State Asynchronously

	Evaluating Keyboard Inputs
	Expansion Mechanism
	Removing Input
	Preserving Clipboard Data
	Expanding by Clipboard
	Expanding by Simulating Keypresses

	Evaluation / Usage
	System Tray Icon and Context Menu
	Software Development Workflow
	Sales Workflow

	Related Work
	Competing Products

	Conclusion
	Literature

