The IL Assembly Language Programmers' Reference

Beta 1 Release

 [image: image1.wmf]

Common Language Runtime

[image: image14.bmp]
The IL Assembly Language Programmers’ Reference

Copyright (2000 Microsoft Corporation. All rights reserved.

Last updated: 03 October 2000
This is preliminary documentation and subject to change.

Table of Contents

91
Introduction

91.1
Audience

91.2
Overview

101.2.1
Structure of the Document

111.2.2
Text Style

111.3
The Execution Engine and the .NET Framework

121.4
Validation and Verification

131.5
Common Language Specification

131.6
The .NET SDK IL Tools

141.6.1
The Assembler: ilasm

151.6.2
The Disassembler: ildasm

181.6.3
The Assembly Linker: al

191.6.4
The Stand-alone Verifier: PEVerify

201.6.5
The Debugger: cordbg

201.6.6
Compilers

212
Introductory Examples

212.1
Hello World Example

212.2
Examples

223
General Syntax

223.1
General Syntax Notation

223.2
Terminals

233.3
Identifiers

243.4
Labels and Lists of Labels

253.5
Lists of Hex Bytes

253.6
Floating point numbers

253.7
Source Line Information

263.8
File Names

263.9
Attributes and Metadata

274
Assemblies, Manifests and Modules

274.1
Assemblies, Modules, Types and Namespaces

274.2
IL Assembly Files

284.3
Defining an Assembly

304.3.1
Operational Characteristics of Assemblies

314.3.2
Information about the Assembly

324.3.3
Manifest Resources

334.3.4
Files in the Assembly

334.4
Referencing Assemblies

354.5
Declaring Modules

354.6
Referencing Modules

364.7
Declarations inside a Module or Assembly

364.8
Export Declarations

374.8.1
The .comtype directive

385
Types

385.1
Introduction to Types

405.2
The Type System

415.3
Types

435.3.1
modreq and modopt

435.3.2
pinned

435.3.3
Types in Reflection Emit

435.4
Built-in Types

455.5
Type References, Assemblies and Modules

465.6
Inheritance and Subtyping

475.6.1
Verification of Subtyping

475.6.2
Conformance and Subtyping at Runtime

475.7
Native Data Types

505.8
Marshaling

515.8.1
Marshaling with Reflection

526
Visibility, Accessibility and Hiding

526.1
Visibility

526.2
Hiding

536.3
Accessibility

536.3.1
Family Access

556.3.2
Privatescope Access

567
Class Types

567.1
Namespaces

577.2
Using Classes

587.3
Instantiating Classes

587.4
Defining a Class

587.4.1
Class Head

597.4.2
Built-in Class Attributes

627.5
Body of a Class

637.6
Members of Classes

637.6.1
Static and Instance Fields

647.6.2
Static and Instance Methods

647.6.3
Virtual Methods

667.6.4
Method Implementation Requirements

677.6.5
Instance constructors

687.6.6
Instance Finalizer

697.6.7
Type Initializers

717.7
Nested Classes

727.8
Controlling Layout and Dispatch

727.8.1
Layout Control of Fields

737.8.2
Controlling Virtual Method Dispatch

747.9
Global Fields and Methods

768
Interfaces

768.1
Implementing Interfaces

778.1.1
Implementation Requirements

788.1.2
MethodImpls

788.2
Defining Interfaces

809
Value Types

819.1
Referencing Value Types

819.2
Instantiating Value Types

829.3
Defining Value Types

839.4
Methods of Value Types

849.5
Boxing and Unboxing

869.6
Copy Constructors on Value Types

879.7
Using Value Types for C++ Classes

879.7.1
Representation of a Class as a Value Type

889.7.2
Representation of the VTable

8910
Special Types

8910.1
Arrays

8910.1.1
Vectors

9110.1.2
General Arrays

9510.1.3
Arrays of Arrays

9810.2
Enumerations

9910.3
Pointer Types

10110.3.1
Obtaining and Using an Address

10110.3.2
Unmanaged Pointers

10210.3.3
Managed Pointers

10310.3.4
Transient Pointers

10310.4
Method Pointer Types

10410.5
Delegates

10510.5.1
Declaring Delegates

10610.5.2
Creating Delegates

10710.5.3
Using Delegates

11010.5.4
Multicast Delegates

11110.5.5
Other Methods of Delegates

11211
Methods

11311.1
Method Descriptors

11311.2
Method Signatures

11411.3
Types of methods

11411.3.1
Static Methods

11411.3.2
Instance Methods

11511.3.3
Virtual Methods

11511.4
Method Calls

11611.4.1
Calling Convention

11711.4.2
Call Kinds

11711.4.3
The call Instruction

11811.4.4
The callvirt Instruction

11911.4.5
Indirect Calls

12011.4.6
Tail Calls

12111.4.7
jmp and jmpi

12211.4.8
Calling Instance Constructors

12311.4.9
Calling vararg Methods

12311.5
Defining Methods

12311.5.1
Method Head

12411.5.2
Method Parameters

12611.5.3
Method Body

13011.5.4
Predefined Attributes on Methods

13211.5.5
Implementation Attributes of Methods

13411.5.6
Scope Blocks

13511.5.7
vararg Methods

13611.6
Unmanaged Methods

13611.6.1
Calling Unmanaged Methods

14111.6.2
Managed Native Calling Conventions (x86)

14412
Fields

14412.1
Predefined Attributes of Fields

14512.1.1
Accessibility Information

14612.1.2
Field Contract Attributes

14612.1.3
Interoperation Attributes

14612.1.4
Other Attributes

14612.2
Field Init Metadata

14712.3
Embedding Data in a PE File

14812.3.1
Data Declaration

14912.3.2
Accessing Data

14912.3.3
Unmanaged Thread-local Storage

15012.4
Initialization of Static Data

15012.4.1
Data Known at Link Time

15012.4.2
Data Known at Load Time

15112.4.3
Data Known at Run Time

15213
Properties

15213.1
Declaring properties

15313.1.1
Property Head

15313.1.2
Property Members

15514
Events

15514.1
Implementing Events

15614.2
Observing Events

15714.3
Declaring Events

15714.3.1
Event Head

15714.3.2
Event Members

16115
Exception Handling

16115.1
SEH Blocks

16115.1.1
Protected Blocks

16215.1.2
Handlers

16715.2
Throwing an Exception

16816
Declarative Security

16917
Custom Attributes

17017.1
CLS Conventions: Custom Attribute Usage

17017.2
Attributes Used by the Runtime

17117.2.1
Pseudo Custom Attributes

17117.2.2
Attributes Defined by the CLS

17217.2.3
Custom Attributes for JIT Compiler and Debugger

17217.2.4
Custom Attributes for Reflection

17217.2.5
Custom Attributes for Remoting

17217.2.6
Custom Attributes for Security

17317.2.7
Custom Attributes for TLS

17417.2.8
Custom Attributes for the Assembly Linker

17417.2.9
Attributes Provided for Interoperation with COM

17618
IL Instructions

17618.1
Overview

17818.2
Numeric and Logical Operations

18118.3
Control Flow

18218.3.1
Unconditional Branch Instructions

18218.3.2
Unary Compare-and-Branch and Multi-Way Branch Instructions

18218.3.3
Binary Compare-and-Branch Instructions

18318.3.4
Procedure Call and Related Instructions

18418.3.5
Exception Handling

18418.3.6
Other Control Flow Instructions

18418.4
Moving Data

18618.5
Object Management

18818.6
Annotations

18919
Appendix A: Sample IL Programs

18919.1
Mutually Recursive Program (with tail calls)

19119.2
Using Value Types

19419.3
User Interface Sample

19619.3.1
CountDown.il

20319.3.2
CountDownComponents.il

21619.3.3
Counter.il

22819.3.4
CountDownSecondsLabel.cs

22919.3.5
CountDownErrorLabel.cs

23019.3.6
CountDownErrorLabel.cpp

23119.3.7
compile.bat

23220
Appendix B: List of ILASM Keywords

23621
Appendix C: ILASM Complete Grammar

23621.1
Assembler Grammar

25321.2
Instruction syntax

25321.2.1
Comments

25321.2.2
Labels

25321.2.3
Full Grammar for Instructions

25421.2.4
Instructions with no operand

25521.2.5
Instructions that Refer to Parameters or Local Variables

25621.2.6
Instructions that Take a Single 32-bit Integer Argument

25621.2.7
Instructions that Take a Single 64-bit Integer Argument

25721.2.8
Instructions that Take a Single Floating Point Argument

25721.2.9
Branch instructions

25721.2.10
Instructions that Take a Method as an Argument

25821.2.11
Instructions that Take a Field of a Class as an Argument

25821.2.12
Instructions that Take a Type as an Argument

25921.2.13
Instructions that Take a String as an Argument

25921.2.14
Instructions that Take a Signature as an Argument

25921.2.15
Instructions that Take a Metadata Token as an Argument

26021.2.16
The SSA Φ-Node Instruction

26021.2.17
Switch instruction

26122
Appendix : Values for .subsystem

26223
Appendix : Values for .corflags

26324
Appendix : Values for Hash Algorithm ID

26725
Appendix : Values for .os

26826
Appendix : Values for .processor

26927
Appendix : Default Marshalling : Unmanaged to Managed

27228
Appendix : Default Marshalling : Managed to Unmanaged

27629
Appendix : Index

1
Introduction

Microsoft .NET
 provides a powerful platform for the development of Internet applications that can run on any .NET enabled device. The heart of this platform is a Common Language Runtime (CLR). The Common Language Runtime provides a device and language independent way to express data and behavior of applications. While the Common Language Runtime primarily supports Object Oriented (OO) languages, procedural and functional languages are also supported. Through the Common Language Runtime, languages can interoperate with each other and make use of a built-in garbage collector, security system, exception support, and a powerful framework.

Microsoft IL is the intermediate language XE "Intermediate Language" emitted by all compilers that target the CLR. The CLR converts the device independent IL binaries into native code using IL-to-native code compilers (also incorrectly known as JIT compilers). These compilers can be run in a Just-In-Time XE "Just-In-Time" (JIT) mode, converting methods from IL to native code before a method runs for the first time. They can also be used to convert an entire assembly (see section 4.1) to native code and then saving the native code for future use. While it is possible to interpret IL code, the runtime never interprets IL but always compiles it into native code.

Tools that generate IL can benefit from the many services provided by the runtime, including the support for early and late binding, and the fact that code compiled to IL will run on any platform supported by the CLR. IL is simple and fast to generate, which is essential in RAD (rapid application development) environments, where speed of compilation and ease of debugging are of primary importance. The runtime manages the native code generated from IL so that this code may benefit from features such as cross-language inheritance, code access security, garbage collection, and simplified COM programming.

1.1 Audience

This specification is intended for people interested in generating or analyzing programs that will be executed by the CLR. This includes those who write compilers targeting the CLR, development tools or environments, or program analysis tools.

For further information about the CLR, IL instructions, and metadata, the following specifications may be consulted:

· The Common Type System (CTS) specification
· The IL Instruction Set specification
· The Metadata specification
· The File Format specification
· The Base Class Library specification
(see the .NET Framework SDK documentation)

This document assumes that the reader is familiar with the concept of a DLL (dynamic link library). More information on dynamic link libraries can be found in MSDN.

1.2 Overview

This document focuses on writing programs directly in the IL assembly language, and relies heavily on the syntax of ilasm, the IL assembler shipped with the .NET Framework SDK. In order to understand the process of creating programs in the IL assembly language, it discusses

· Execution: The execution engine, a model of a machine that supports the execution of IL binaries

· Types: The underlying type system and the declarations used to define types

· Instructions: The operations of the IL instruction set

· Deployment: These include assemblies, manifests and modules. Assemblies are the unit of deployment in the CLR.

· Additional Features, such as global methods, global fields, and interoperation with existing unmanaged code.

There are five primary ways to write programs XE "Ways to write programs" that run in the CLR:

· Write them in a programming language that generates the appropriate file format.

· Use the Reflection and ReflectionEmit classes in the .NET SDK Base Class Library to produce an assembly on disk, in memory, or written to a stream.

· Write a compiler or other tool that directly generates the appropriate file format, using the information contained in the File Format and Metadata API specifications.

· Write a program directly in the IL assembly language and convert it to an assembly using the ilasm program (see section 1.6.1).

· Write a program in several separate parts, directly in IL, convert each to a module using ilasm and then combine them into an assembly using the al program (see section 1.6.3).

This document concentrates on the last two mechanisms, using the syntax of ilasm as a means of describing the overall workings of the CLR.

One of the best ways to learn a new assembly language is to examine the output of other tools that produce that language. For that reason, Microsoft supplies a program, called ildasm (see section 1.6.2), that takes an IL binary and produces output that can be used as input to ilasm.

1.2.1 Structure of the Document

This document starts with an introductory sample (section 2) and with an introduction to the grammar (section 3) followed by a discussion of assemblies, modules and manifests (section 4). The document continues with a detailed overview of the type system, including their declaration, definition, and use (sections 5 – 10) followed by a description of their various members (sections 11 – 14). After a description of the members follows the specification of exceptions (section 15), security (section 16), and custom attributes (section 17). Finally, the document concludes with the description of all IL instructions (section 18).

Appendix A (section 19) contains samples that illustrate typical uses of the IL assembly language. Appendix B (20) lists all keywords reserved by ilasm, Appendix C (section 21) specifies the complete grammar of ilasm and Appendix D (section 29) contains the index.

1.2.2 Text Style

The following styles are used throughout the document:

	Category
	Style
	Example

	Body text
	Times New Roman
	This is some text.

	Code embedded in text
	Courier New
	The member func is a function.

	Hyperlinks
	Blue (violet if visited) and underlined
	IL Instruction Set specification

	IL Keywords
	Verdana, bold
	call

	Important facts
	Underlined
	Note: This is not unimportant.

	Sample code
	Courier New, compressed and keywords are bold
	ldstr “Sample code”

	Terms and emphasized text
	Italic
	Types have members.

	Tool and file names
	Arial, italic
	ilasm

1.3 The Execution Engine and the .NET Framework

The execution engine XE "Execution Engine" (EE XE "EE") is responsible for executing PE XE "PE" (portable executable XE "portable executable") files which are managed by the CLR. The EE translates PE files into native code. Further, the EE provides the program with an environment to run in.

The EE is described in detail in the Architecture specification.

The EE provides a number of services to applications including:

· Garbage Collection XE "Garbage Collection"
· Code Management

· Class Loading XE "Class Loading" and JIT compiling XE " Just-In-Time:JIT compiling"
· Thread Support XE "Thread Support"
· Type Checking

· Exception Management

· Security Engine

· Debug Engine XE "Debug Engine"
· COM Interop

The .NET Framework XE ".NET Framework"

 XE "Framework" contains many types, data structures and methods that provide a solid foundation for large scale software development. The .NET Framework supports both Windows style programming, using WinForms, and Web style programming, using WebForms.

1.4 Validation and Verification

Validation XE "Validation" refers to a set of tests that can be performed on a CLR PE file to check that the file format, metadata, and IL are self-consistent. The PEVerify tool XE "Verifier" XE "PEVerify" (part of the .NET SDK) can perform these tests and report any errors. In general, PEVerify is an excellent way to test the correctness of any files generated by compilers, assemblers, or file-to-file transformation tools. It is intended for use by the developers of these tools as a means to test that they are producing acceptable output. Code that does not pass the tests in PEVerify can crash the execution engine and the JIT compilers. Code that contains invalid IL is not safe to run under any circumstances.

Verification XE "Verification" refers to a check of metadata to ensure type safety and a check that the use of certain IL instruction sequences can permit any access to memory outside the program’s logical address. In conjunction with the validation tests, verification ensures that the program cannot access memory or other resources to which it is not granted access. These tests are performed either by the compilation from IL to native code or by the PEVerify tool. Since the tests are sensitive to metadata from other assemblies the fact that a file passes these tests at one point in time does not guarantee that it will always pass these tests. Hence, when an assembly is compiled to native code the result includes version checks.

Verifiable code XE "Verification:Verifiable code" is operationally defined to be code that is accepted by PEVerify.

The following graph makes this relationship clearer (see next paragraph for a description):

[image: image13.bmp]

Figure 1.1: Relationship between valid and verifiable IL. (Figure not drawn to scale)

In the above figure, the outer circle contains all code permitted by the IL syntax. The next circle, which is solid gray, represents all code that is valid IL. The dotted inner circle represents all type safe code. Finally, the innermost circle contains all code that is verifiable.

Note that even if the assembler accepts an IL program, or a program follows the syntax described in this document, the code may still not be valid, because valid code must adhere also to other restrictions presented in this document. Also, the assembler may accept a somewhat more liberal syntax than presented in this document.

Verification is a very stringent test. There are many programs that will pass validation but will fail verification. The CLR cannot guarantee that these programs do not access memory or resources to which they are not granted access. Nonetheless, they may have been correctly constructed so that they do not access these resources. It is thus a matter of trust, rather than mathematical proof, whether it is safe to run these programs. Therefore, the CLR allows an unsafe subset of code, that is code that does not pass verification but is valid IL, to be executed subject to administrative trust controls.

In general, IL is used most often with a type-safe programming language whose compilers emit IL that can be verified, but it is possible to generate IL for unsafe languages, such as C and C++. The IL emitted by the compilers for unsafe languages cannot, in general, be verified, but it will execute as a CLR managed application provided the correct security settings are set.

The use of the assembler guarantees that the file format is valid, although it is possible to create invalid IL. The same applies for the ReflectionEmit functionality. The rules for emitting valid as well as verifiable IL instruction sequences are included in the IL Instruction Set Specification and summarized in chapter 18.

1.5 Common Language Specification

The common language specification XE "Common Language Specification" (CLS XE "CLS") is a collection of rules and restrictions that allow interoperation between languages. Even though the CLR does not require compilers to follow CLS, code that follows the CLS rules is compatible with all other languages that follow the CLS rules.

The term CLS consumer XE "CLS:CLS consumer" refers to languages that can use all functionality provided by CLS compliant languages. This includes creating instances of classes of CLS compliant languages.

A CLS extender XE "CLS:CLS extender" is a language which can be used to derive new classes from existing CLS classes and define new interfaces that comply with the CLS.

A CLS framework XE "CLS:CLS framework" provides services implemented by a set of classes all of which are CLS compliant. The .NET framework is a CLS framework.

Typically a CLS compliant program will be verifiable. In general however, CLS programs may be unverifiable. The complete set of CLS rules can be found in the CTS specification.

1.6 The .NET SDK IL Tools

The .NET SDK includes various tools for the IL. These tools include

· the assembler ilasm
· the disassembler ildasm
· the assembly linker al
· the stand-alone verifier PEVerify
· and the debugger cordbg
In addition Microsoft provides a number of compilers that target the .NET platform. Code produced by them may be disassembled into IL assembly language.

1.6.1 The Assembler: ilasm

The assembler XE "Assembler" ilasm XE "ilasm" takes IL assembly language XE "Intermediate Language:Assembly Language" as input and generates a PE file containing the (binary) IL and required metadata. The IL assembler allows tool developers to concentrate on IL generation without being concerned with emitting IL in the PE file format. The assembler may be used to produce applications or DLLs. Parts of an application may be written directly in IL assembly and integrated into an application written in a higher level programming language.

An alternative to ilasm is the use of Reflection XE "Reflection" and ReflectionEmit XE "ReflectionEmit" to execute programs. This option is usually chosen by scripting languages and is described in considerably more detail in the Base Class Library documentation. This document provides cross-references to that material so that readers can understand what methods in ReflectionEmit produce the effect of various directives and attributes provided in the IL syntax of ilasm.

Although the IL Assembler is helpful in the early stages of generating IL, it has some limitations: it does not emit all possible runtime PE file features, and it cannot produce a COFF file that can be statically linked with other files (as done with an .obj file).

For those who need complete control over the CLR executable file format it is possible to directly generate the contents of the file. For this reason, Microsoft supplies a complete specification of the file format with the exception of the on-disk layout of the CLR metadata. Metadata is written to a file by using the Metadata APIs, which are described elsewhere. As with ReflectionEmit, this document provides cross-references to these APIs so they may be used when ilasm is not sufficient. Note: Microsoft will provide documentation of the on-disk metadata file format in the future.

There is a companion tool, ildasm, that takes a PE file containing IL code and creates a text file suitable as input to the IL Assembler. This ability to “round trip” code can be useful, for example, when compiling code in a programming language which doesn’t support all of the runtime's metadata attributes. The code can be compiled, then the output run through ildasm, and the resulting IL text file can be edited to add the missing attributes. This can then be run through the IL assembler to produce a final runable file.

In order to make this round tripping possible, the assembler does not perform some simple optimizations that are provided by other assemblers: it does not deduce whether to use short or long forms of instructions, but requires the input to be explicit. It does, however, check for out-of-range conditions where this is possible.

1.6.1.1 Usage of ilasm

Usage: ilasm [options] <sourcefile> [options]

Options XE "ilasm:Options" may be passed to ilasm either before or after the source file specification. The following table lists the options accepted by ilasm.

	Option
	Description

	/debug
	include debug information

	/dll
	compile to .dll

	/exe
	compile to .exe (default)

	/listing
	type a formatted list file

	/nologo
	do not output the logo to console

	/out=<targetfile>
	compile to file with specified name (must have extension)

	/owner
	protect the resulting file against disassembling

	/owner=<ownersname>
	protect the resulting file against unauthorized disassembling

(<ownername> will be required to disassemble the file)

<ownername> is an arbitrary string of alphanumeric characters, without spaces (use underscores)

	/quiet
	don't report assembly progress

	/res=<resourcefile>
	link the specified resource file (*.res) into resulting .exe or .dll

You can use either “/” or “-” to specify an option. The option names are case insensitive, and only the first 3 characters are significant.

The default source file extension of IL files is “.il”. If no extension is specified, ilasm will automatically add the extension “.il” to the specified file name.

1.6.2 The Disassembler: ildasm

The .NET SDK diassembler XE "Diassembler" is called ildasm XE "ildasm" .

Usage: ildasm [options] <file_name> [options]

Options XE "ildasm:Options" may be passed to ildasm either before or after the source file specification. The following table lists the options accepted by ildasm.

The following tables show the various options separated by category.

	Options for output redirection:
	Description

	/out=<file name>
	Direct output to file rather than to GUI.

	/text
	Create console window rather than GUI.

	Options for GUI or file/console output (EXE and DLL files only):
	Description

	/bytes
	Show actual bytes (in hex) as instruction comments.

	/linenum
	Include references to original source lines.

	/nobar
	Suppress disassembly progress bar window pop-up.

	/owner=<owner name>
	Set owner name to disassemble a protected PE file.

	/pubonly
	Only disassemble the public items (same as /VIS=PUB).

	/quoteallnames
	Include all names in single quotes.

	/raweh
	Show exception handling clauses in raw form.

	/source
	Show original source lines as comments.

	/tokens
	Show metadata tokens of types and members.

	/visibility=<vis> [<vis>*]
	Only disassemble the items with specified visibility. (see below for <vis>)

The parameter <vis> in the option VISIBILITY may be specified as shown in the following table. More information on visibility and accessibility can be found in chapter 6.

	Parameter
	Description

	asm
	Assembly

	faa
	Family and Assembly

	fam
	Family

	foa
	Family or Assembly

	pri
	Private

	psc
	Privatescope

	pub
	Public

The following options are valid for file/console output only (i.e. /out or /text is specified):

	Options for EXE and DLL files:
	Description

	/all
	Combination of /HEADER, /BYTES, /TOKENS

	/header
	Include file header information in the output.

	/noil
	Suppress IL assembler code output.

	Options for EXE, DLL, OBJ and LIB files:
	Description

	/item=<class>[::<method><sig>]
	Disassembles the specified item only

	Options for LIB files only:
	Description

	/objectfile=<obj_file_name>
	Show metadata of a specific object file in library

You can use either “/” or “-” to specify an option. The option names are case insensitive, and only the first 3 characters are significant. The <vis> parameters are case insensitive, but you must specify their 3 characters – no more, no less.

Example:
ildasm /tok /byt myfile.exe /out=myfile.il

1.6.2.1 The Disassembler for Power Users

For advanced users, the disassembler provides the following additional command line options XE "ildasm:Options" .

Usage: ildasm /ADV [options] <file_name> [options]

Options may be passed to ildasm either before or after the source file specification. The following table lists the options accepted by ildasm. For advanced options, the /ADV option must be used as the first option as shown above.

In addition to the options above, the following additional options are supported:

	Advanced options for EXE and DLL files:
	Description

	/classlist
	Include list of classes defined in the module.

	/stats
	Include statistics on the image.

	Advanced options for EXE,DLL,OBJ and LIB files:
	Description

	/metadata[=<specifier>]
	Show metadata, where <specifier> is shown below.

	Specifier
	Description

	csv
	Show the header sizes in Comma Separated format.

	hex
	Show more things in hex as well as words.

	mdheader
	Show metadata header information and sizes.

	unrex
	Show unresolved externals.

	validate
	Validate the consistency of the metadata.

1.6.2.2 Round Trips

ildasm and ilasm can be used to round trip XE "Round Trip" code. This means that managed code compiled by any compiler can be disassembled, inspected by the user, and then again reassembled. ildasm has a somewhat extended syntax to support this. Those syntax elements are documented in this guide, but are marked “for round trip only”.

ildasm cannot disassemble native code. As a consequence, it is not possible to round trip any program that depends on native code. For example, this applies to Microsoft VC code. The VC linker will automatically add a method called mainCRTStartup to an exe. This method contains native code and is a problem for the disassembler. In order to make it possible to round trip, the linker has to be instructed not to add this method. This can be done by specifying an explicit entry point as in the following example:

cl /CLR <filename> /link entry:main

where main is the main method of the program. This will make it possible to round trip the code, but with the catch that since the CRT startup didn’t run, no CRT method, like printf, can be called. Only managed methods, like WriteLine, may be used.

1.6.3 The Assembly Linker: al

The assembly linker XE "Assembly Linker" al XE "al" has two functions:

· To create an assembly from a module or set of modules

· To install an assembly into the global assembly cache

To do the first task, al creates an assembly manifest (see chapter 4) for a collection of modules and stores it in a specified file, usually of extension “.dll”. The user may choose what information should be integrated into the assembly manifest.

The assembly cache is a special purpose directory. When an assembly is referenced it will be used to find the assembly.

Usage: al [options] [sources]

The following table shows the full list of options XE "al:Options" for al:

	Options:
	Description

	/? or /help
	display usage information

	@<filename>
	read command-line options from the file

	/algid:<id>
	algorithm used to hash files (in hexadecimal)

	/base[address]:<addr>
	set the default base address of the DLL

	/bugreport:<filename>
	create a bug report file

	/comp[any]:<text>
	company name

	/config[uration]:<text>
	configuration string

	/copy[right]:<text>
	copyright message

	/c[ulture]:<text>
	supported culture

	/delay[sign][+|-]
	delay sign this assembly

	/descr[iption]:<text>
	description

	/flags:<flags>
	assembly flags (in hexadecimal)

	/fullpaths
	display files using fully-qualified filenames

	/i[nstall][:<filename>]
	install this assembly into the global assembly cache

	/keyf[ile]:<filename>
	file containing key to sign the assembly

	/keyn[ame]:<text>
	name of CSP-key-container

	/main:<method>
	the fully-qualified method name of the entrypoint

	/nologo
	suppress the display of the startup banner

	/os:<os>.<maj>.<min>
	operating system, major and minor version constants

	/out:<filename>
	file to create for the assembly manifest

	/proc[essor]:<proc>
	processor constant (in hexadecimal)

	/prod[uct]:<text>
	product name

	/productv[ersion]:<text>
	product version

	/title:<text>
	title

	/trade[mark]:<text>
	trademark message

	/t[ype]:lib|exe|win
	create a DLL, console app, or GUI app

	/v[ersion]:<version>
	version (use * to auto-generate remaining numbers)

	/win32icon:<filename>
	use given icon for auto-generated Win32 resource

	/win32res:<filename>
	use given RES or OBJ file for Win32 resource

Either the option '/out' or '/install' must be specified.

	Source
	Description

	<filename>[,<targetfile>]
	add file to assembly

	/embed[resource]:<filename>[,<name>[,Y|N]]
	embed the file as a resource in the assembly

	/link[resource]:<filename>[,<name>[,<targetfile>[,Y|N]]]
	link the file as a resource to the assembly

At least one source input is required.

1.6.4 The Stand-alone Verifier: PEVerify

The stand-alone verifier XE "Verifier" validates and verifies assemblies. It is called PEVerify XE "PEVerify" .

PEVerify sets the Windows environment variable errorlevel to 0 if it succeeded, and to 1 if it did not succeed.

Usage: PEverify <image file> [Options] XE "PEVerify:Options"
	Options:
	Description

	/break=<maxErrorCount>
	Abort verification after <maxErrorCount> errors

	/clock
	Measure and report verification times

	/hresult
	Display error codes in hex format

	/ignore=@<file name>
	Ignore error codes specified in <file name>

	/ignore=<hex.code>[,<hex.code>...]
	Ignore specified error codes

	/il
	Verify only the PE structure and IL

	/md
	Verify only the PE structure and metadata

	/nocls (note: this option will be removed in Beta-2)
	Verify only the PE structure and metadata, w/o CLS compliance

	/quiet
	Display only file and Status. Do not display all errors.

	/unique
	Disregard repeating error codes

PEVerify will return a list of warnings and errors for each problem it encounters. If PEVerify returns one or more errors, the code is not verifiable in the environment in which PEVerify was executed. The code may be verifiable in another environment, and altering the environment may render the code unverifiable.

1.6.5 The Debugger: cordbg

A command line debugger XE "Debugger" is included with the tools. It is called cordbg XE "cordbg" . A description and the usage of the debugger can be found in the cordbg documentation.

The source code of the command line debugger is included with .NET SDK package.

1.6.6 Compilers

There are a number of compilers XE "Compilers" that can be used to create either IL assembly source code or a PE file, which can be inspected by ildasm. The following is a short list of the compilers supplied by Microsoft.

	Language
	Compiler

	C#
	csc

	Visual C++
	cl /CLR

	Visual Basic
	vbc

Note that options passed to these command-line compilers are generally case sensitive. In particular, the /CLR option must be upper case, as shown

2 Introductory Examples

Before diving into the details, it is useful to see an introductory sample program to get a feeling for the IL assembly language. The next section shows the famous Hello World program, this time in the IL assembly language.

2.1 Hello World Example

This section gives a simple example to illustrate the general feel of IL. Below is code that prints the well known “Hello world” salutation. The salutation is written by calling WriteLine, a static method found in the .NET Frameworks class System.Console.

.assembly hello {}
.assembly extern mscorlib {}
.method static public void main() il managed {

.entrypoint

.maxstack 1

ldstr
"Hello World from IL!"

call
void [mscorlib]System.Console::WriteLine(class System.String)

ret

}

The .assembly declaration in the first line declares the assembly name for this program. Assemblies are the deployment unit for executable content for the CLR. The next line contains a reference to an external assembly, namely mscorlib, which defines System.Console. The .method declaration defines the global method main. The body of the method is enclosed in braces. The first line in the body indicates that this method is the entry point for the assembly (.entrypoint), and the second line in the body specifies that method requires at most one stack slot (.maxstack).

The method contains only three instructions. The ldstr instruction pushes the string constant "Hello World from IL!" onto the stack and the call instruction invokes System.Console::WriteLine, passing the string as its only argument (note that string literals in IL are instances of the standard class System.String). As shown, call instructions must include the full signature of the called method. Finally, the last instruction returns (ret) from main.

2.2 Examples

This document contains integrated examples for most features of the CLR. Many sections conclude with an example that show a typical use of the feature. All these examples are written using the IL assembly language. The corresponding code in other languages can be obtained from the appropriate language documentation.

Even though little samples of code make it easier to understand abstract concepts, they do not show how all the features of the runtime fit together to form a working system. As a solution this document provides a number of complete applications in Appendix A: Sample IL Programs. These applications show how the features of the CLR fit together to form a working system.

Many integrated examples come from parts of the samples in the appendix. Sometimes, these pieces were modified to illustrate the particular feature in a better way.

3 General Syntax

This section describes aspects of the IL syntax that are common to many parts of the grammar.

3.1 General Syntax Notation

This document uses a modified form of the BNF syntax notation XE "Syntax:Syntax notation" . The following is a brief summary of this notation.

Bold items are terminals XE "Terminals" . Items placed in angle brackets (e.g. <int64>) are names of syntax classes and must be replaced by actual instances of the class. Items placed in square brackets (e.g. [<float>]) are optional, and any item followed by * can appear zero or more times. The character “|” means that the items on either side of it are acceptable, and in this document each option introduced by a “|” is given on a separate line for easier reading. The options are sorted in alphabetical order (to be more specific: in ASCII order, ignoring “<” for syntax classes, and case-insensitive). If a rule starts with an optional term, the optional term is not considered for sorting purposes.

IL is a case-sensitive XE "Case-sensitive" language. All terminals must be used with the same case as specified in this reference.

Examples:

A grammar such as

<top> ::= <int32> | float <float> | floats [<float> [, <float>]*] | else <QSTRING>

would consider the following all to be legal:

12

float 3

float –4.3e7

floats

floats 2.4

floats 2.4, 3.7

else “Something \t weird”

but all of the following to be illegal:

else 3

3, 4

float 4.3, 2.4

float else

stuff

3.2 Terminals

The basic syntax classes XE "Syntax:Syntax classes" used in the grammar are:

<int32 XE "int32" > is either a decimal number or “0x” followed by a hexadecimal number, and must be represented in 32 bits.

<int64 XE "int64" > is either a decimal number or “0x” followed by a hexadecimal number, and must be represented in 64 bits.

<hexbyte XE "hexbyte" > is a hexadecimal number that fits into one byte.

<QSTRING XE "QSTRING" > is a string surrounded by double quote (″) marks. Within the quoted string the character “\” can be used as an escape character, with “\t” for a tab character, “\n” for a new line character, or followed by three octal digits in order to insert an arbitrary byte into the string. The “+” operator can be used to concatenate string literals. This way, a long string can be broken across multiple lines by using “+” and a new string on each line. An alternative is using “\” as the last character in a line, in which case the line break is not entered into the generated string. Any white characters (space, line feed, carriage return, and tab) between the “\” and the first character on the next line are ignored. See also examples below.

<SQSTRING XE "SQSTRING" > is similar to <QSTRING> with the difference that it is surround by single quote (′) marks instead of double quote marks.

<ID XE "ID" > is a contiguous set of characters which starts with either an alphabetic ASCII character or one of “_”, “$”, “@” or “?” and is followed by any number of alphanumeric characters or any of “_”, “$”, “@”, or “?”. An <ID> is used in only two ways:

· As a label of an IL instruction

· As an <id> which can either be an <ID> or an <SQSTRING>, so that special characters can be included.

Example:

The following examples shows breaking of strings:

ldstr
"Hello " + "World " +

"from IL!"

and

ldstr
"Hello World\

 \040from IL!"

become both “Hello World from IL!”.

3.3 Identifiers

Identifiers XE "Identifiers"

 XE "id" are used to name entities. Simple identifiers are just equivalent to an <ID>. However, the IL syntax allows the use of any identifier that can be formed using the Unicode character set. To achieve this an identifier is placed within single quotation marks. This is summarized in the following grammar.

	<id> ::=

	 <ID>

	| <SQSTRING>

Keywords may only be used as identifiers if they appear in single quotes (see Appendix B, section 20, for a list of all keywords). The maximum length of identifiers is 1024 characters.

Several <id>’s may be combined to form a larger <id>. The <id>’s are separated by a dot (.). An <id> formed in this way is called a <dottedname>.

	<dottedname> ::= <id> [. <id>]*

Note: In the syntax of ilasm, names that end with $PST followed by a hexadecimal number have a special meaning. The assembler will automatically truncate the part starting with the $PST. For more information see section 6.3.2.

Examples:
The following shows some simple identifiers:

A

Test
$Test
@Foo?
?_X_

The following shows identifiers in single quotes:

′Weird Identifier′
′Odd\102Char′
′Embedded\nReturn′

The following shows dotted names:

System.Console
A.B.C
′My Project′.′My Component′.′My Name′
3.4 Labels and Lists of Labels

A simple label XE "Label" is a special name that represents an address. Syntactically, a label is equivalent to an <id>. Thus, labels may be also single quoted and may contain Unicode characters.

A list of labels is comma separated, and can be any combination of these simple labels and integers. The integers are byte offsets that can be used instead of labels. However, these integers are intended for use only by a disassembler, e.g. ildasm, and not for use by a programmer.

	<label> ::= <id>

	<labeloroffset> ::=

	 <int32> /* For round trip use only */

	| <label>

	<labels> ::= <labeloroffset> [, <labeloroffset>]*

IL distinguishes between two kinds of labels: code labels XE "Label:Code label" and data labels XE "Label:Data label" . Code labels are always followed by a colon (“:”) and represent the address of an instruction to be executed. Code labels appear always before an instruction and they represent the address of the instruction that immediately follows the label. A particular code label name may not be declared more than once in a method.

In contrast to code labels, data labels specify the location of a piece of data and do not include the colon character. The data label may not be used as a code label, and a code label may not be used as a data label. A particular code label name may not be declared more than once in a module.

	<codeLabel> ::= <label> :

	<dataLabel> ::= <label>

Example:

The following is code label that represents the address of the instruction ldstr:

ldstr_label:
ldstr
“A label”

3.5 Lists of Hex Bytes

A list of bytes XE "bytes" consists simply of zero or more hex bytes. Hex bytes XE "hexbyte" are pairs of characters 0 – 9, a – f, and A – F.

	<bytes> ::= <hexbyte> [<hexbyte>*]

3.6 Floating point numbers

There are two different ways to specify a floating point number XE "Floating point number" :

1. The regular way is to type in the floating point number with the dot (“.”) for the decimal point and “e” or “E” in front of the exponent. Both the decimal point and the exponent are optional. This way is primarily used to specify floats as parts of instructions

2. The second way is to convert from an integer to a floating point number by using either the keyword float32 XE "float32" or float64 XE "float64" and indicating the integer to be converted in parentheses. This way is used to specify floats for the metadata.

	<float64> ::=

	 float32 (<int32>)

	| float64 (<int64>)

	| <realnumber>

Examples:

5.5

1.1e10

float64(128)
3.7 Source Line Information

To aid with debugging, source line information XE "Source line information" may be included in the PDB XE "PDB" (Portable Debug XE "Portable Debug") file associated with each module. There are two directives that can be used to accomplish this:

· .line XE ".line" takes a line number and an optional single quoted string that specifies the name of the file the line number is referring to

· #line XE "#line" takes both a line number and a (required) double quoted string that specifies the name of the file the line number is referring to

#line is only used for compatibility purposes. The .line directive is recommended for adding source line information.

	<externSourceDecl> ::=

	 .line <int32> [<SQSTRING>]

	| #line <int32> <QSTRING>

3.8 File Names

Some grammar elements require that a file name XE "File name" be supplied. A file name is like any other dotted name, with the difference that if provided the part after the last dot is interpreted as the extension of the file. The specific syntax for file names follows the specifications of the underlying operating system.

The following grammar shows the definition of file names:

	<filename> ::=
	Section

	 <dottedname>
	3.3

3.9 Attributes and Metadata

The power of the CLR lies in the language independent representation of important information about types and its members in form of metadata. The term metadata XE "Metadata" refers to descriptive information that provides the runtime a specification of the types and their members as well as global information about the application.

In IL, attributes XE "Attributes" of types and their members are the metadata which provides descriptive information. Many attributes are predefined and have a specific bit in the metadata associated with them. These attributes have keywords in the IL assembly language.

Usually, the use of an attribute turns a bit on and the absence turns the same bit off. ilasm uses default values for attributes which are not specified. Generally, these default values correspond to the turned off bit state. However, in some cases there are exceptions. All default values are specified in this document.

4 Assemblies, Manifests and Modules

4.1 Assemblies, Modules, Types and Namespaces

It is important to understand the difference between assemblies, modules, types and namespaces, all of which are mechanisms for grouping constructs, each playing a different role in the CLR.

An assembly XE "Assembly" is a family of files that is deployed as a unit. Typically, it might include some image files (.exe and .dll’s), resource files, online help or documentation. Although, in the extreme case, it’s also perfectly feasible for an assembly to include just one file. An assembly has a strong sense of family membership; one of the files in the assembly embeds a list of all its siblings, together with their identity (name, version, culture information, etc). We call this list the assembly manifest. You cannot update just one file in an assembly; if you attempt to do so, the CLR will detect this stranger and refuse to load. If any part of an assembly needs to be updated, you build a new version of that assembly, and deploy it to customers. Types (classes, interfaces, value types) can be accessed from outside an assembly only if you explicitly mark them for export (using the public keyword on their definition). All other types are invisible from outside that assembly.

The assembly is also the entity treated by the security system. That’s to say, a security administrator will grant rights based on the evidence of authenticity the assembly as whole unit can provide.

The assembly is also the unit of versioning. Assemblies have a version associated with them, which is used by the CLR to prevent version conflicts. In addition, the assembly provides culture information used for localization purposes.

A module XE "Module" is a single file containing executable content within an assembly, conceptually corresponding to a DLL or EXE in a native code environment. A module will typically contain a number of types and other declarations, and may itself be an assembly if the assembly only contains one module. A module contains metadata, in addition to the metadata of its enclosing assembly, that provides the runtime with necessary descriptive information about the module.

A type XE "Type" specifies a set of data and behaviors associated with each other. All values have a certain type and may only be assigned to variables that support the type. Types may themselves contain nested types. Each type is fully defined within a single module.

A namespace XE "Namespace" is syntactic sugar to create dotted type names, and while it may contain types (e.g. System.Object) and other namespaces (e.g. System.XML), there is no semantics associated with this containment. The CLR does not recognize namespaces as a separate entity. They become a part of the full name of a type.

4.2 IL Assembly Files

A single file input to the IL assembler is a sequence of declarations, defined as follows:

	<ILFile> ::=
	Section

	 <decl>*
	6

The complete grammar for a top level declaration XE " Declarations:Top level" is shown below. The following sections will concentrate on the various parts of this grammar.

	<decl> ::=
	Section

	 .assembly <asmAttr>* <dottedname> { <asmDecl>* }
	4.3

	| .assembly extern [fullorigin] <dottedname> { <asmRefDecl>* }
	4.4

	| .class <classHead> { <classMember>* }
	7

	| .comtype <comtypeHead> { <comtypeDecl>* }
	4.8.1

	| .corflags int32
	4.3

	| .custom <customDecl>
	17

	| .data <datadecl>
	12.3.1

	| .field <fieldDecl>
	12

	| .file [nometadata] <filename> [.hash = (<bytes>)]
	0

	| .manifestres [public | private] <dottedname>

 [(<QSTRING>)] { <manResDecl>* }
	4.3.3

	| .method <methodHead> { <methodBodyItem>* }
	11

	| .module [<filename>]
	4.5

	| .module extern <filename>
	4.6

	| .namespace <dottedname> { <decl>* }
	7.1

	| .subsystem int32
	4.3

	| .vtfixup <vtfixupDecl>
	7.8.2

	| <externSourceDecl>
	3.7

	| <securityDecl>
	15

4.3 Defining an Assembly

An IL file does not necessarily define an assembly XE "Assembly" . It only does so if it contains a manifest XE "Manifest" . A manifest describes an assembly and contains information that is used by the assembler, other tools and the EE itself.

If a manifest is given, it should appear at the beginning of an IL file. The manifest does not appear as a single declaration, rather it is begun by using the .assembly XE ".assembly" directive, and other declarations add further information. The following grammar specifies all the relevant declarations:

	<decl> ::=
	Section

	 .assembly <asmAttr>* <dottedname> { <asmDecl>* }
	4.3

	| .corflags <int32>
	4.3

	| .file [nometadata] <filename> [.hash = (<bytes>)]
	0

	| .manifestres [public | private] <dottedname>

 [(<QSTRING>)] { <manResDecl>* }
	4.3.3

	| .subsystem int32
	4.3

	| …
	4.7

The .assembly directive begins the manifest and specifies to which assembly the current module belongs to. Each module may only contain one .assembly directive. After the .assembly directive any number of <asmAttr>s may be provided. A <dottedname> specifies the name of the assembly and is followed by the assembly declarations in braces.

The .assembly directive is required for exe files. However, it is optional for other modules (DLL files). The presence of the .assembly directive creates an assembly. At runtime, any files and modules referenced by the assembly using the .module extern XE ".module extern" (see section 4.6) and .file XE ".file" (see section 0) directives will become part of that assembly. Multiple assemblies may reference the same modules or files.

An IL file may need to access other assemblies, which it does by using the .assembly extern XE ".assembly extern" directive covered in section 4.4. This information is then used by the EE to determine which assembly is to be used.

The following picture should clarify the various forms of references XE "References" :

[image: image2.png]Cesemply A assembly B

Figure 4.1: References

Eight files are shown in the picture. The name of each file is shown below the file. Files that declare a module have an additional border around them and have names beginning with M. The other two files have a name beginning with F. These files may be resource files, like bitmaps, or other files that do not contain IL code. Files M1 and M4 declare an assembly in addition to the module declaration, namely assemblies A and B, respectively. The assembly declaration in M1 and M2 references other module, shown with straight lines. A references M2 and M3. B references M3 and M5. Thus, M3 is referenced by both assemblies. Usually, a module belongs only to one assembly, but it is possible to share it across assemblies. When A is loaded at runtime, an instance of M3 will be loaded for A. When B is loaded, possibly simultaneously with A, another, independent, instance of M3 will be loaded for B. Both assemblies reference also F2, for which similar rules apply. The module M2 references F1, shown by dotted lines. As a consequence F1 will be loaded as part of the assembly A, when A is executed. Thus, the file reference must also appear with the assembly declaration. Similarly, M5 references another module, M6, which becomes part of B when B is executed. It follows, that assembly B must also have a module reference to M6.

Assembly names do not contain the file extension.

Note: Since some platforms may treat names in a case insensitive manner, two assemblies that have names that differ only in case should not be declared.

The following grammar shows the attributes allowed after a .assembly directive.

	<asmAttr> ::=
	Description
	Section

	 implicitcom
	Must be set in V1
	

	| noappdomain
	One instance only per application domain
	4.3.1

	| nomachine
	One instance only per machine, install time
	4.3.1

	| noprocess
	One instance only per process
	4.3.1

Note that for Version 1, the CLR ignores any definitions made using the noappdomain, nomachine and noprocess keywords.

The .manifestres directive introduces a manifest resource declaration, described in section 4.3.3.

The .subsystem directive is used to indicate the kind of executable the assembly represents. E.g. a Windows GUI program or a Windows console program. Permissible values are defined in the Windows WinNT.h header file. See section 22
The .corlags directive can be used to specify flags specific to 64 bit architectures. Permissible values are defined in the CLR CorHdr.h header file. See section 23
Examples:

.assembly CountDown {
 .hash algorithm 32772

 .ver 1:0:0:0

}

.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7 02 BE E7 52 3A CB 17 AF)
4.3.1 Operational Characteristics of Assemblies

The attributes noappdomain XE "noappdomain" , nomachine XE "nomachine" and noprocess XE "noprocess" specify how many instances of the assembly are loaded. The attributes may be combined. The default is that none of them is specified. (However, note that for Version 1, the CLR ignores these settings)

An application is a complete program that forms its own assembly and contains its own set of threads. A thread is a sequential flow of execution of code. In contrast to an application, a process is an operating system entity that lives in a well defined memory space. Code inside a particular process cannot access any memory not allocated for that process. The CLR allows multiple applications to reside in the same process and thus share memory. The applications are separated by so called application domains. Each application has its own domain inside a process.

Usually, assemblies are loaded on a per application domain basis. However, if for some reason an assembly needs to be loaded only once for a process, the attribute noappdomain may be specified. In this case, all application domains inside the process will share the same instance of the assembly, and the assembly will have a unique state across all application domains inside the process.

If an assembly cannot support multiple instances across processes, the attribute noprocess may be used. This attribute is similar to noappdomain, but will make sure that only one instance of an assembly is loaded for a particular machine. All processes on this machine will share the same instance of the assembly with the same unique state.

In certain situations involving networking, an assembly might not support separate instances on separate machines. In this case, the nomachine attribute may be specified, wich will guarantee that within a particular network session, only one instance of the assembly will be loaded. This instance will be shared across machines.

4.3.2 Information about the Assembly

The following grammar shows the information you may specify about an assembly XE "Assembly:Information" . All of these are optional.

	<asmDecl> ::=
	Description
	Section

	 .hash algorithm <int32>
	Hash algorithm ID for hash value used in the .file directive
	4.3.2.1

	| .title <QSTRING> [(<QSTRING>)]
	Title of the assembly. The optional QSTRING is a description.
	4.3.1

	| .custom <customDecl>
	Custom attributes
	17

	| .locale = (<bytes>) /* round trip only */
	Information about the locale
	4.3.2.2

	| .locale <QSTRING>
	Information about the locale
	4.3.2.2

	| .originator = (<bytes>)
	Information about the originator. The <bytes> of the originator's public key.
	4.3.1

	| .os <int32> .ver <int32> : <int32>
	OS ID, with major version and minor version
	4.3.2.3

	| .processor <int32>
	Processor ID
	4.3.2.4

	| .ver <int32> : <int32> : <int32> : <int32>
	Major version, minor version, revision, and build
	4.3.1

4.3.2.1 Hash Algorithm

The hash algorithm XE "Hash algorithm" id is defined in the Windows header file wincrypt.h. The ID is the object identifier stored in one of the constants of the form CALG_<algorithm>, where <algorithm> is the name of the algorithm. This algorithm is used to calculate and compare the hash value of a file referenced with the .file XE ".file" directive (see section 0). The hash algorithm is not used for any other calculations.

In case you are not familiar with these algorithms, you may consider using the CALG_SHA1 algorithm.

See section 24 for the permissible values.

4.3.2.2 Locale

The locale XE "Locale" contains culture specific information. The strings that can be used in the .locale XE ".locale" form are the same strings accepted by the System.Globalization.CultureInfo class. More information about this class can be found in the .NET SDK Base Class Library documentation.

The culture names follow the RFC1766 names. The format is “<language>-<country>”, where <language> is a lowercase two-letter code in ISO 639-1. <country> is an uppercase two-letter code in ISO 3166.

The list of strings is not reproduced here due to its length, but can be found with the documentation of the CultureInfo XE "CultureInfo" class.

The form of .locale that accepts a list of bytes rather than strings is only used by ildasm for round tripping purposes.

Example:

.locale “en-US”
// locale string for the United States of America

4.3.2.3 Operating System

The .os XE ".os" directive is for documentation purposes and records on what platform the assembly was built and tested. This information can be used for debugging purposes. In particular, this information does not restrict the target machine.

The OS id can be found in the Windows header file winbase.h. XE "winbase.h" See section 25
4.3.2.4 Processor

Similar to the OS information, the processor information introduced by the .processor XE ".processor" directive is used for documentation and debugging purposes only. The specified processor is the processor on which this assembly was built and does not restrict the target processor.

The processor id can be found in the Windows header file winnt.h XE "winnt.h" . See section 26
4.3.3 Manifest Resources

A manifest resource XE "Manifest resource" is simply a named item of data associated with an assembly. As the name implies, it includes resources for the assembly, e.g. bitmaps, references to files, etc. A manifest resource is introduced using the following declaration, which adds the manifest resource to the assembly manifest begun by the .assembly XE ".assembly" declaration.

	<decl> ::=
	Section

	 .manifestres [public | private] <dottedname>

 [(<QSTRING>)] { <manResDecl>* }
	

	| …
	4.2

If the manifest resource is declared public it is exported from the assembly. If it is declared private it is not exported and only available from within the assembly. The <dottedname> is the name of the resource followed by an optional description in parentheses. The actual manifest resource declarations are provided in braces.

The following grammar defines a manifest resource declaration.

	<manResDecl> ::=
	Description
	Section

	 .assembly extern <dottedname>
	Manifest resource is in external assembly with name <dottedname>.
	

	| .custom <customDecl>
	Custom attribute.
	17

	| .file <dottedname> at <int32>
	Manifest resource is in file <dottedname> at byte offset <int32>.
	

Note that, for the .file directive, you must supply the byte offset at which the resource begins, even if its value (commonly) is zero.

4.3.4 Files in the Assembly

Assemblies may be associated with other files, e.g. documentation and other files that are used during execution. The declaration .file XE ".file" is used to add a reference to such a file to the manifest of the assembly:

	<decl> ::=
	Section

	 .file [nometadata] <filename> [.hash = (<bytes>)]
	

	| …
	4.2

The attribute nometadata XE "nometadata" is specified if the file does not contain any metadata, an example of such a file is a resource file.

The <bytes> after the optional .hash XE ".hash" specify a hash value computed for the file. The EE will recomputed this hash value when this file is accessed and report an error if it does not match. This ensures that the correct file is used and changes to the file do not break the code. The algorithm used to calculate this hash value is specified with .hash algorithm XE ".hash algorithm" (see section 4.3.1).

If the hash value is not specified, it will be automatically computed by the assembly linker al when an assembly file is created using al. Even though the hash value is optional in the grammar for ilasm, it is required at runtime.

4.4 Referencing Assemblies

When you want to refer to constructs in an external assembly, you must first use a .assembly extern XE ".assembly extern" declaration to define some information about the assembly you wish to access, and to give the resulting assembly a name for the purposes of the rest of your IL file. .assembly extern declarations are thus used for the resolution of names that refer to external entities. The declaration includes the external assembly name and a sequence of further declarations in braces. The option fullorigin XE "fullorigin" specifies that the assembly reference holds the full (unhashed) originator.

	<decl> ::=
	Section

	 .assembly extern [fullorigin] <dottedname> { <asmRefDecl>* }
	

	| …
	4.2

The following is the grammar for a .assembly extern declaration:

	<asmRefDecl> ::=
	Description
	Section

	 .hash = (<bytes>)
	Hash Blob for file references
	

	| .custom <customDecl>
	Custom attributes
	17

	| .locale = (<bytes>) /* round trip only */
	Information about the locale
	4.3.2.2

	| .locale <QSTRING>
	Information about the locale
	4.3.2.2

	| .originator = (<bytes>)
	Information about the originator. The <bytes> are the low 8 bytes of the SHA1 hash of the originator's public key.
	

	| .os <int32> .ver <int32> : <int32>
	OS ID, with major version and minor version
	4.3.2.3

	| .processor <int32>
	Processor ID
	4.3.2.4

	| .ver <int32> : <int32> : <int32> : <int32>
	Major version, minor version, revision, and build
	

The dotted name used in .assembly extern must exactly match the name of the assembly as declared with .assembly directive in a case sensitive manner.

These declarations are very similar to those for .assembly declarations (section 4.2) and some of them are described in the subsections following the description of the .assembly declarations, with the exception of the .hash value. You may determine appropriate settings for these by using ildasm on the assembly you wish to access.

The assembly mscorlib XE "mscorlib" contains many of the classes and methods in the System namespace. This assembly may always be referenced implicitly, so that its classes and methods can be used without having to explicitly reference the assembly.

Example:

.assembly extern MyComponents {
 .originator = (BB AA BB EE 11 22 33 00)

 .hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 A1 D3 7F 7F A0 9C 24)
 .ver 2:10:2002:0

}

4.5 Declaring Modules

All IL files must be part of a module XE "Module" . An IL file may be added to a module by using the .module XE ".module" directive. A module encapsulates only one file but may reference other files (see 4.6).

	<decl> ::=
	Section

	| .module [<filename>]
	

	| …
	4.2

Usually, a name will be provided with the module. The name is case sensitive and should be the same as the file name, including its file extension. The module will be referenced by this name.

If no name is provided, the name is set by ilasm to be the empty string (‘’). If the .module directive is missing, ilasm will automatically add a .module directive and set the module name to be the file name, including its extension in capital letters. E.g., if the file is called foo and compiled into an exe, the module name will become “Foo.EXE”.

Note: Since some platforms may treat names in a case insensitive manner, two modules that have names that differ only in case should not be declared.

Example:

.module CountDown.exe

4.6 Referencing Modules

Instead of referring to a construct via its containing assembly, you may instead need to refer to it via its module, in particular if the construct is part of another module in the same assembly. This can be done by using the .module extern XE ".module extern" directive with the module name. The file which contains the module must be referenced with the .module directive.

The module reference includes the file extension. The module name should be the same as the file name, and it is case sensitive.

	<decl> ::=
	Section

	| .module extern <filename>
	

	| …
	4.2

The file name used in .module extern must exactly match the name of the module as declared with .module directive in a case sensitive manner.

Example:

.module extern Counter.dll

4.7 Declarations inside a Module or Assembly

Declarations inside a module XE " Declarations:Inside Module" or assembly are specified by the following grammar. More information on each option can be found in the corresponding section.

	<decl> ::=
	Section

	| .class <classHead> { <classMember>* }
	7

	| .custom <customDecl>
	17

	| .data <datadecl>
	12.3.1

	| .field <fieldDecl>
	12

	| .method <methodHead> { <methodBodyItem>* }
	11

	| .namespace <dottedname> { <decl>* }
	7.1

	| .vtfixup <vtfixupDecl>
	7.8.2

	| <externSourceDecl>
	3.7

	| <securityDecl>
	15

	| …
	

4.8 Export Declarations

.export XE ".export" is used to export types from a module or assembly. The .export declaration is used only in the main file of the assembly (i.e. the one with the manifest). This way, all exported types are specified at one place and there is no need to check all files to determine which types are exported.

As shown in the grammar below, after any number of attributes, the name under which the type is exported is specified. Finally, the export declarations follow.

	<decl> ::=
	Section

	 .export [<exportAttr>] <dottedname> [(<compQstring>)] { <exportDecl>* }
	

The following grammar shows the attributes of an .export declaration:

	<exportAttr> ::=
	Section

	 nested assembly
	6

	| nested famandassem
	6

	| nested family
	6

	| nested famorassem
	6

	| nested private
	6

	| nested public
	6

	| public
	6

	| private
	6

The following grammar shows the body of an .export declaration:

	<exportDecl> ::=
	Description
	Section

	 .class <int32>
	Specifies a class
	

	| .custom <customDecl>
	Custom attributes
	17

	| .file <dottedname>
	Specifies a file
	

	| .nestedtype <dottedname>
	Specifies a nested type
	

4.8.1 The .comtype directive

The .comtype directive is for disassembling purposes only. It should not be used. Instead, use the .export directive (see section 4.8).

	<decl> ::=
	Section

	| .comtype <comtypeHead> { <comtypeDecl>* } /* roundtrip only */
	4.3.1

5 Types

5.1 Introduction to Types

The two key components of any software program are data and behavior. Types XE "Type" apply to both of these concepts. Data is stored in the form of bits and bytes. In order for humans to understand this data and do useful operations with it, the data needs to be interpreted to be of a certain type, e.g. an integer or a string. This form of loose typing can be made stricter. The data stored in memory is reached by using variables. In a static type model, only certain types of data can be associated with a particular variable. This is achieved by assigning a particular type to a variable.

The CLR has adopted a static typing model, in which variables have one type assigned to them. While static typing may restrict the programmer in some sense, this has many advantages. The most important advantage is code verification. With types, the CLR is able to detect code that handles its data incorrectly and thus in a potentially harmful way. With static typing this verification can be done before the program is executed, and any problematic code can be rejected before the execution starts. Verification does not only make code less error prone, but also opens the door for a security system. The security system protects the user and the machine on which the program is running from malicious attacks by applications.

However, it would be very restrictive to allow the association of a variable with only one type. E.g., it is known that an integer is a number. It is also known that a real is a number. Thus, a number is a more general type than an integer or a real. This form of a relationship between types is called subtyping. A type that is a special form of a general type is called a subtype XE "Subtype" of the general type. The general type is called the supertype XE "Supertype" of the specific type.

The notion of subtyping may be extended to let subtypes reuse behavior defined in their superclasses as well as affect the behavior of their superclasses XE "Superclass" . A subtype that does this needs to inherit behavior from its supertype. Inheritance and subtyping are defined in detail in section 5.6.

The CLR allows data that is a subtype of some general type to be assigned to a variable declared to be of that general type. Thus, at a particular time, a variable may represent a type of data other than its declared type XE "Declared type" . The type of the variable which it represents at a particular time is called its exact type XE "Exact type" . The ability of a variable to have a variety of exact types and support different behaviors depending on its exact type is called polymorphism XE "Polymorphism" .

A type may be just a simple data item or be a container for a set of data items. Often data is associated with a particular set of behaviors, that define operations on the data. These behaviors may provide typical operations with the data and implement complicated algorithms that need to be performed on the data. This concept is called abstraction XE "Abstraction" . Frequently, it is even desirable to protect the data from other programmers and provide a particular interface through which the data can be accessed and modified, which is called encapsulation XE "Encapsulation" . The combination of subtyping, abstraction, encapsulation, and polymorphism is referred to as an Object Oriented Programming XE "Object oriented programming" (OOP) style. Even though the CLR does support procedural and functional programming styles, it has an emphasis on OOP and particularly targets this programming model.

Even though OOP is a powerful way to design large applications, Object Oriented type systems face a big challenge. On the one hand, there is the aim to fully support OOP concepts, in which there are no special types and all types conform to a common type. On the other hand, there are performance problems due to the larger overhead. Some programming languages solve this problem by distinguishing between primitive types, like integers, and types defined by classes. In these languages, primitive types and class types do not have a subtype/supertype relationship to each other and live in separate worlds. Other languages stay with the OOP concepts and take the performance loss.

The CLR provides an elegant solution to this problem. It does stay loyal to true OOP concepts and does not make a distinction between primitive and class types. However, at the same time, the CLR offers the same performance as a system that has primitive types. This is achieved by distinguishing two kinds of types, reference types XE "Reference type" and value types XE "Value type" .

With the .NET Framework, the CLR provides many predefined types that define a number of behaviors, which enable the programmer to develop many applications. However, a fixed type system is of little use for a programmer. There are various ways to create new types in the CLR. New types may be defined by classes, value type definitions or implicit type XE "Implicit type" declarations. Both the CLR and the IL assembly language have direct support for these various forms of type declarations.

Classes of many OOP languages declare only reference types. A variable of a reference type stores a reference to the actual data. Thus, to reach the data the reference must be first dereferenced. The CLR supports two main kinds of reference types. These are pointer types and types defined by classes. Pointer types are fixed, while class types, also called self-describing types, are defined. There is yet another category of reference types called interfaces, which are used for type declarations.

Data that has a type defined by a class type is said to be an instance of the class type. Instances of class types are also called objects. In the CLR type system, all objects are subtypes of the class System.Object XE "System.Object" .

In contrast to reference types, the data of value types is stored directly in the variables themselves. This is in some sense similar to C++ structures. In the CLR type system, value types are defined by value type definitions. Value classes have certain restrictions on them as described in section 9.

In the CLR, types that correspond to primitive types of other languages are represented as value types. Further, a value type may be defined by the user, such that the CLR enables the programmer to make use of the higher performance of value types. This is especially useful for compilers of languages that have a rich set of primitive types.

The CLR supports an important feature that brings value types and reference types together. Value types may be converted into reference types. This operation is called boxing. A boxed value type behaves like any other reference type and is a subtype of System.Object. A boxed value type may be converted back into its unboxed form, which is called, following the naming pattern, unboxing.

The IL assembly language provides keywords for certain types, like int32 for integers. It is important to understand that even though there are keywords for these types, these types are not special. The keywords are just a more comfortable way to refer to these types and produce more efficient code. These keywords are just aliases to the value types defined in the System XE "System" namespace. Since these types are used very often, they are encoded in a special space efficient way that is expressed at the assembly language level by a dedicated keyword. There are also specific IL instructions (like ……) that perform common operations on these types, so they may be manipulated even without the existence of the Base Class Library.

Finally, another important aspect of typing needs to be mentioned. Sometimes, it may be useful to reinterpret the data as a different type. The declared type of a variable may not change, however the type of the data may be changed. In general, reinterpreting the type of a variable is called casting XE "Casting" if it does not change the data representation. If the data representation is changed as part of the reinterpretation, the change of type is called coercion XE "Coercion" . E.g., changing a real number into an integer is a coercion. The CLR has built-in support for casting of class types and casting or coercion of value types. Casting will explicitly declare for verification and the runtime that the data shall be treated as another type after the cast is done. The exact type of the variable must be a subtype of the type to which the variable is cast. Coercion is very similar to casting, but the exact type of the variable does not need to be a subtype of the type targeted by the coercion.

Section 7 describes reference types, section 8 discusses interfaces and section 9 describes value types. Section 10 is a description of special types, which are either types created on the fly by the runtime or features of the type system that deserve special discussion.

More information on types can also be found in the Common Type System (CTS) specification.

5.2 The Type System

The following diagrams give an overview of the CLR type system XE "Type:Type System" .

[image: image3.png]Value Types

Figure 5.1: Value types and reference types.

Types are separated into value types XE "Value type" and reference types XE "Reference type" . Value types have both a performance and space advantage compared to reference types. However, reference types give more flexibility to the programmer. Boxing and unboxing glue together reference and value types, by converting types defined by value classes to and from reference types and letting instances of value types enjoy the benefits of both worlds.

[image: image4.png]T

ting Point Typ: Typed Reforences
Integer Types B

Figure 5.2: Value types

Value types can be further separated into built-in types, like integral types, floating point types, and typed references XE "Typed reference" . Even though these types are built-in, they are not special but just predefined. Value types may also be user defined. Enumerations are a special class of user defined value types. More information on enumerations can be found in section 10.5.

[image: image5.png]VOS Reference Types

) : ‘

Name
Equhvalent

Valug Types.

Figure 5.3: Reference types

Reference types are subdivided into self-describing XE "Type:Self-describing" reference types, pointer types, and interfaces. Self-describing types contain their full definition. There are name equivalent versions, which correspond to regular classes, and structural equivalent versions primarily used with arrays. The structural equivalent types are created on the fly by the CLR as needed. While in V.1 delegates will be name equivalent, in V.2 delegates may be structurally equivalent. A description of delegates can be found in section 10.2. Boxed value types, including enumerations, if implemented in V.2 will be name equivalent types.

Pointers are separated into method (or function) pointers (section 10.4) and pointers to data (section 10.3). Pointers to data may be managed by the runtime and enjoy the comfort of features like garbage collection or be unmanaged. The use of unmanaged pointers make the code in which they are used unverifiable. Unlike self-describing types, interfaces only declare a type but do not provide a full definition with it. Interfaces need to be implemented by a class.

5.3 Types

The following grammar completely specifies all built-in types XE "Type:Built-in" including pointer types of the CLR system. It also shows the syntax for user defined types XE "Type:User defined" that can be defined in the CLR system:

	<type> ::=
	Description
	Section

	 bool XE "bool"
	Boolean
	

	| char XE "char"
	Unicode character
	

	| class XE "class" <typeReference>
	User defined reference type.
	

	| float32 XE "float32"
	32-bit floating point number
	

	| float64 XE "float64"
	64-bit floating point number
	

	| int8 XE "int8"
	Signed 8-bit integer
	

	| int16 XE "int16"
	Signed 16-bit integer
	

	| int32 XE "int32"
	Signed 32-bit integer
	

	| int64 XE "int64"
	Signed 64-bit integer
	

	| method XE "method" <callConv> <type> * (<parameters>)
	Method pointer
	10.4

	| native int XE "native:native int"
	Signed integer whose size varies depending on platform (32- or 64-bit)
	

	| native unsigned int XE "native:native unsigned int"
	Unsigned integer whose size varies depending on platform (32- or 64-bit)
	

	| <type> & XE "&"
	Managed pointer (by-ref) to <type>. Note that <type> cannot itself be a managed pointer.
	10.3

	| <type> * XE "*"
	Unmanaged pointer to <type>
	10.3

	| <type> [[<bound> [,<bound>]*]]
	Array of <type> with optional rank (number of dimensions) and bounds.
	10.1.1.1

	| <type> modopt (<typeReference>)
	Custom modifier that may be ignored by the caller.
	5.3.1

	| <type> modreq (<typeReference>)
	Custom modifier that the caller must understand.
	5.3.1

	| <type> pinned
	For local variables only. The garbage collector will not move the referenced value.
	5.3.2

	| typedref XE "typedref"
	Typed reference, created by mkrefany and used by refanytype or refanyval.
	

	| value XE "value" class <typeReference> (value will be removed in Beta-2)
	User defined value type.
	

	| unsigned XE "unsigned" int8
	Unsigned 8-bit integers
	

	| unsigned int16
	Unsigned 16-bit integers
	

	| unsigned int32
	Unsigned 32-bit integers
	

	| unsigned int64
	Unsigned 64-bit integers
	

	| void XE "void"
	No type. Only allowed as a return type or as part of void *
	

	| wchar XE "wchar"
	Unicode character
	

In several situations the grammar permits the use of a slightly simpler mechanism for specifying types, by just allowing type names (e.g. “System.Object”) to be used instead of the full algebra (e.g. “class System.Object”). These are called type specifications:

	<typeSpec> ::=
	Section

	 [[.module XE ".module"] <dottedname>]
	5.5

	| <typeReference>
	5.4

	| <type>
	5.3

5.3.1 modreq and modopt

The use of a method or field may require certain care. The additional information is specified with a custom modifier. Typically, a custom modifier is used for a particular parameter of a method. However, it may be also used with the return type of a method or a field.

The keyword modreq XE "modreq" is used with modifiers that the user of a method or field must understand and handle correctly in order to be able to use the method or field. The keyword modopt XE "modopt" is used to provide additional information for tools that understand the modifier. In general, a user of a method or field does not need to understand the modifier introduced by a modopt.

Associated with the custom modifier is a type that is referenced in parentheses after the modifier. This type is used as a tag and qualifies the modifier. The type will tell tools and compilers what the meaning of the modifier is and distinguish the modifier from other modifiers. Even though the type is primarily intended as tag, it may implement behavior or provide fields.

The modifier with the referenced type becomes part of the signature of the method or field. This means that the same modifier with a reference to the same type needs to be used with any reference to the method or field. The type used to reference the method or field must match exactly the type of the modifier. Subclasses of this type may not be used.

5.3.2 pinned

The garbage collector of the runtime may move the location of objects in memory. If this is a problem, the garbage collector can be specifically instructed not to move an object referenced by a local variable. This is done by using the keyword pinned XE "pinned" after the type of the local variable. pinned is only used with the declaration of the local variable. It is not used with any references to the local variable.

If unmanaged pointers are used to dereference managed objects, these objects must be pinned. Otherwise, the garbage collector may fail to operate properly.

5.3.3 Types in Reflection Emit

Types are primarily used as part of signatures, which can be constructed using System.Reflection.Emit.SignatureHelper. To construct a new type, use System.Reflection.Emit.TypeBuilder to define its fields, methods, properties, and events, then call the CreateType method to finalize the definition. Once a type has been defined, a new instance can be created using the CreateInstance method on the class System.Reflection.Type.

5.4 Built-in Types

The CLR built-in types XE "Type:Built-in" have corresponding value types defined in the Base Class Library. The list of these classes must be known to all compilers because it is not legal for them to be referenced (in their unboxed form) in signatures by their value type names, they must be referenced by the ELEMENT_TYPE defined for that purpose (see CorHdr.h XE "CorHdr.h"). When using System.Reflection.Emit this is taken care of by the SignatureBuilder.

Care must be taken when using the assembler since it will accept not only the built-in name of the type but the syntax value class followed by the name as used in the Base Class Library. This latter form, while it can be specified, will not execute correctly. This error is detected by PEVerify. (value keyword disappears in Beta-2)
Rather than using the name in the Base Class Library, a special keyword that the assembler provides needs to be used. E.g., rather than using System.Int32, the keyword int32 must be used to refer to integers. Note that this is only required in declarations or signatures. To refer to a specific member of the class as specified in the Base Class Library, the class name needs to be used.

The table below shows various types provided by the runtime. The first column shows the syntax in ilasm and the second column shows the corresponding class in the Base Class Library. The third column specifies whether CLS compliant tools need to support the type. The fourth column gives a brief description and the last column shows the constant in CorHdr.h that corresponds to the type.

	Name in ilasm
	Type in Base Class Library
	CLS Type
	Description
	Name from CorHdr.h

(ELEMENT_TYPE_<name>)

	bool
	System.Boolean XE "System.Boolean"
	Yes
	Boolean (true/false)
	BOOLEAN

	char
	System.Char XE "System.Char"
	Yes
	Unicode Character
	CHAR

	class System.Object1
	System.Object XE "System.Object"
	Yes
	Object or boxed value type
	OBJECT

	class System.String2
	System.String XE "System.String"
	Yes
	Unicode String
	STRING

	float32
	System.Single XE "System.Single"
	Yes
	IEEE 32-bit floating point
	R4

	float64
	System.Double XE "System.Double"
	Yes
	IEEE 64-bit floating point
	R8

	int8
	System.Sbyte XE "System.Sbyte"
	No
	Signed 8-bit integer
	I1

	int16
	System.Int16 XE "System.Int16"
	Yes
	Signed 16-bit integer
	I2

	int32
	System.Int32 XE "System.Int32"
	Yes
	Signed 32-bit integer
	I4

	int64
	System.Int64 XE "System.Int64"
	Yes
	Signed 64-bit integer
	I8

	native int
	System.IntPtr XE "System.Int" 3
	No
	Singed, native size integer
	I

	native unsigned int
	System.UIntPtr XE "System.Int" 3
	No
	Unsigned, native size integer
	U

	typedref
	System. TypedReference XE "System.TypedReference"
	No
	Pointer to runtime type
	TYPEDBYREF

	unsigned int8
	System.Byte XE "System.Byte"
	Yes
	Unsigned 8-bit integer
	U1

	unsigned int16
	System.Uint16 XE "System.Uint16"
	No
	Unsigned 16-bit integer
	U2

	unsigned int32
	System.Uint32 XE "System.Uint32"
	No
	Unsigned 32-bit integer
	U4

	unsigned int64
	System.Uint64 XE "System.Uint64"
	No
	Unsigned 64-bit integer
	U8

	wchar4
	System.Char XE "System.Char"
	Yes
	Unicode Character
	CHAR

Notes:

1 In the .NET SDK not all mathematical operations are supported for this type. Future versions may support more operations

2 In Beta-2, the ilasm keyword will change to simply object
3 In Beta-2, the ilasm keyword will change to simply string
4 char and wchar do the same thing. We recommend use of wchar
Example:

The following declares a 32 bit integer:

int32 x

The following converts the integer into a string:

// load x onto the stack

callvirt instance class System.String [mscorlib]System.Int32::ToString()
5.5 Type References, Assemblies and Modules

Type are referred to by using a dotted name. Names of nested classes XE "Nested class:Name" (see section 7.7) are formed by using recursively the full name of the outer class, a slash (“/”) and the name of the nested class.

The use of a type within code is referred to as a type reference. Often, the definition of a type which is referenced is not available at compile time, but needs to be resolved by the CLR just before the code is executed. While types based on fundamental types, like int32, will be self-contained and appear as type specifications well known to the runtime, a type name used to specify a reference type (e.g. “class MyClass”) must be resolved. Once the definition of the type is found, the type reference can be replaced by a type definition token, which contains a pointer to an internal description of the type. These type description tokens are automatically inserted by the ilasm tool where possible. Type references will be used, however, if the type cannot be found in the same module in which the type is referenced.

In many cases the type definition is located in another module or even in another assembly. To help the runtime to resolve these types, a resolution scope needs to be attached in front of the type name. If the type is located in another module within the same assembly, a type reference is used and a module reference is attached to the type reference as part of the resolution scope. If the type is located in another assembly, an assembly reference is attached to the type reference. A module reference must have been declared by a prior .module extern XE ".module extern" directive (see section 4.5), and an assembly reference by a prior .assembly extern XE ".assembly extern" directive (see section 4.4).

The following grammar defines type references and resolution scopes. If a module reference needs to be used, then the .module XE ".module" keyword is used with the resolution scope. Otherwise an assembly reference is assumed.

	<typeReference> ::=

	 [<resolutionScope>] <dottedname> [/ <dottedname>]*

	<resolutionScope> ::=

	 [.module <filename>]

	| [<assemblyRefName>]

	<assemblyRefName> ::=
	Section

	 <dottedname>
	3.1

Examples:

The following is the proper way to refer to a class defined in the .NET SDK base class library. The name of the type is System.Console and it is found in the assembly named mscorlib.dll. A .assembly extern directive to define mscorlib must be declared before this reference:

class [mscorlib]System.Console

A reference to the named C.D in the module named x.dll in the current assembly. There must be a top-level .module extern directive to define x.dll:

class [.module x.dll]C.D

A reference to the type named C nested inside of the type named Foo.Bar in another assembly, named MyAssembly.exe. Notice that there must already have been a top-level .assembly extern directive that defines the name MyAssembly:

class [MyAssembly]Foo.Bar/C

5.6 Inheritance and Subtyping

Reference types may be related to each other by inheritance and other rules. E.g. System.String is related to System.Object. We say that System.String is a subtype of System.Object. At the same time, System.Object is said to be the supertype XE "supertype" of System.String. If one type is a subtype of another type, this means that it provides the same members, contracts, and member signatures as the other type. However, the behavior of the types may differ.

The word subtype includes the type itself. Thus, A is a subtype of A. However, A is not a proper subtype XE "subtype" of A.

If class A defines a subtype of a type defined by a class B, then class A is a subclass of B. Similarly, class B is a superclass XE "superclass" of A. The class A is said to extend the definition of class B. In the CLR type system every class must extend exactly one other class. The exception is the class System.Object, which does not extend any class.

If a class A defines a subtype of a type defined by an interface I, then class A is said to implement interface I. In the CLR, classes may implement any number of interfaces.

If a variable has a declared type that is a subtype of the declared type of another variable, than the first variable is said to be assignment compatible XE "Assignment compatible" to the second variable.

In summary, the rules for subtyping between reference types are as follows:

· In the trivial case, a type is always a subtype of itself

· If a type B is a class type and has a superclass A, then type B is a subtype of type A

· If a type B is a class or interface type and supports interfaces I0, ... In, then type B is a subtype of each of I0 through In
· All reference types are subtypes of System.Object
· All array types are subtypes of System.Array (which is a subtype of System.Object)

· An array type B[...] is a subtype of an array type A[...] if type B is a subtype of type A. This applies if the rank of the two types is identical, and in the case of single dimensional arrays if one of the types has lower bound 0 then both must. The bounds are otherwise ignored. More information about arrays can be found in section 10.1.

5.6.1 Verification of Subtyping

Subtyping is most crucial for the verification XE "Verification" of IL instructions that call methods, perform stores, and return values from methods (e.g., call XE "call" , callvirt XE "callvirt" , ret XE "ret" , starg XE "starg" , stfld XE "stfld" , stloc XE "stloc" etc., see section 18). The exact rules applied by verification vary (see section 18 and related specifications), but typically a variable may be assigned a value of another assignment compatible variable. E.g., if a variable has type A, and B is a subtype of A, then the variable may be assigned values of type B.

5.6.2 Conformance and Subtyping at Runtime

Types and type conformance is also relevant at runtime: the exact type of an object is the type of which its value is an instance. E.g. in the above case, even though the declared type is A, the exact type may be either A or B (or even some subtype of B). Exact types may be compared and checked by using IL instructions such as castclass XE "castclass" and isinst XE "isinst" , as well as the facilities available in the reflection library.

5.7 Native Data Types

This section is a brief summary of native types XE "Type:Native" . More information about native types can be found in the Data Type Marshaling specification.

Native data types are optional items you can specify in method and field declarations. They are preceded by the marshal keyword, and define how a method’s arguments and return value, as well as field values, should be marshalled between managed and unmanaged code.

The following table lists all native types supported by the CLR and provides a description for each of them.

	<nativeType> ::=
	Description

	 []
	Native array. Type and size are determined at runtime by the actual marshaled array.

	| as any XE "as any"
	Dynamic type that determines the type of an Object at runtime and marshals the Object as that type.

	| bool XE "bool"
	Boolean. 4-byte integer value where a non-zero value represents TRUE and 0 represents FALSE.

	| [ansi XE "ansi"] bstr XE "bstr"
	A COM style BSTR with a prepended length and Unicode (or ANSI) characters. (Not supported for StringBuilder)

	| byvalstr XE "byvalstr"
	A string in a fixed length buffer.

	| custom XE "custom" (<QSTRING> , <QSTRING> , <QSTRING> , <QSTRING>)
	Custom marshaler. The 3rd string is a custom marshaler type name. The 4th string is a cookie – it may be blank. The first 2 strings must be present, and blank (ie ‘ ‘)

	| error XE "error"
	Return value for HRESULT methods that failed.

	| fixed array XE "fixed array" [<int32>]
	A fixed size array of length <int32>

	| fixed sysstring XE "fixed sysstring" [<int32>]
	A fixed size system string of length <int32>

	| float32 XE "float32"
	32-bit floating point number.

	| float64 XE "float64"
	64-bit floating point number.

	| [unsigned XE "unsigned"] int XE "int"
	Signed or unsigned size-agnostic integer

	| [unsigned] int8 XE "int8"
	Signed or unsigned 8-bit integer

	| [unsigned] int16 XE "int16"
	Signed or unsigned 16-bit integer

	| [unsigned] int32 XE "int32"
	Signed or unsigned 32-bit integer

	| [unsigned] int64 XE "int64"
	Signed or unsigned 64-bit integer

	| interface XE "interface"
	A COM interface pointer. The GUID of the interface is obtained from the class metadata.

	| lpstr XE "lpstr"
	A pointer to a null terminated array of ANSI characters.

	| lpstruct XE "lpstruct"
	A pointer to a C-style structure. Used to marshal managed formatted classes and value types.

	| lptstr XE "lptstr"
	A pointer to a null terminated array of platform characters.

	| lpvoid XE "lpvoid"
	An un-typed 4-byte pointer.

	| lpwstr XE "lpwstr"
	A pointer to a null terminated array of Unicode characters.

	| method XE "method"
	A function pointer.

	| <nativeType> *
	Pointer to <nativeType>.

	| <nativeType> []
	Array of <nativeType>. The length is determined at runtime by the size of the actual marshaled array.

	| <nativeType> [int32]
	Array of <nativeType> of size <int32>.

	| <nativeType> [.size .param = int32 [* int32]]
	<nativeType> [.size .param = paramIndex * mult]

Array of <nativeType>. The size of the array is specified by a parameter with index paramIndex (see also 11.5.6). An optional multiplier may be provided to increase the size by some factor.

	| safearray XE "safearray" [<variantType>]
	An OLE Automation SafeArray. The optional <variantType> supplies the unmanaged type of the elements within the array when it is necessary to differentiate among string types.

	| struct XE "struct"
	A C-style structure, used to marshal managed formatted classes and value types.

	| tbstr XE "tbstr"
	A COM style BSTR with a prepended length and platform dependent characters format (rarely used). ANSI is used on Win9x, and Unicode on WinNT and Win2K.

	| variant bool XE "variant bool"
	Boolean. 2-byte integer value where the value –1 represents TRUE and 0 represents FALSE.

The following grammar specifies a variant type. These are used for marshalling. The native constants for variants types XE "Type:Variants" for older versions of Windows can be found in MSDN.

	<variantType> ::=
	Description

	 blob /* roundtrip only */
	Bytes prefixed with the length.

	| blob_object /* roundtrip only */
	Blob contains an object.

	| bstr XE "bstr"
	A COM style BSTR with a prepended length and Unicode characters. (Not supported for StringBuilder)

	| bool XE "bool"
	Boolean. 4-byte integer value where a non-zero value represents TRUE and 0 represents FALSE.

	| carray /* roundtrip only */
	C style array.

	| cf /* roundtrip only */
	Clipboard format.

	| clsid /* roundtrip only */
	Class ID.

	| currency XE "currency"
	A currency structure.

	| date XE "date"
	A data structure.

	| decimal XE "decimal"
	16 byte fixed point number

	| error XE "error"
	Return value for HRESULT methods that failed.

	| filetime /* roundtrip only */
	Structure for a file time.

	| float32 XE "float32"
	32-bit single precision floating point number.

	| float64 XE "float64"
	64-bit double precision floating point number.

	| hresult XE "hresult"
	Standard return type.

	| idispatch XE "idispatch" *
	COM style IDispatch interface.

	| [unsigned] int
 /* roundtrip only */
	Signed or unsigned size-agnostic integer

	| [unsigned] int8
	Signed or unsigned 8-bit integer

	| [unsigned] int16
	Signed or unsigned 16-bit integer

	| [unsigned] int32
	Signed or unsigned 32-bit integer

	| [unsigned] int64
 /* roundtrip only */
	Signed or unsigned 64-bit integer

	| iunknown * XE "iunknown *"
	Native pointer to COM style IUnknown interface.

	| lpstr /* roundtrip only */
	A pointer to a null terminated array of ANSI characters.

	| lpwstr /* roundtrip only */
	A pointer to a null terminated array of Unicode characters.

	| null /* roundtrip only */
	SQL style null.

	| record
	User defined type.

	| safearray /* roundtrip only */
	A safe array.

	| storage /* roundtrip only */
	Storage structure.

	| stored_object

 /* roundtrip only */
	Store contains an object.

	| stream /* for roundtrip only */
	A stream.

	| streamed_object
 /* for roundtrip only */
	Stream contains an object.

	| userdefined

 /* for roundtrip only */
	User defined type.

	| variant * XE "variant *"
	Native pointer to a variant type.

	| <variantType> &
	Managed pointer to variant.

	| <variantType> []
	Array of variant, size is unspecified.

	| <variantType> vector
	A variant vector.

5.8 Marshaling

The CLR provides automatic marshaling to and from a variety of native (unmanaged) data types and corresponding managed data types.

The keyword marshal XE "marshal" is used to specify how a parameter, return type or field should be marshaled to or from unmanaged code. XE "classical COM."

 XE "Classical COM." It is used only if the implementation of a method is declared to be via COM or PInvoke XE "PInvoke" (see also section 11.6.1) or if a field is passed to such a method as an argument.

The marshal keyword takes an optional native type. The CLR will select an appropriate marshaler according to the indicated native type and marshal the value when necessary.

Example:

The following shows a method declaration requests marshaling the string return value of the method to a bstr:

.method public static class [mscorlib]System.String marshal(bstr) MyMethod() il unmanaged {
// body

}

5.8.1 Marshaling with Reflection

The marshal information can be set using the SetMarshal method in the appropriate builder class of the name space System.Reflection.Emit. The complete list of these types is in CorHdr.h as the enumeration CorNativeType.

6 Visibility, Accessibility and Hiding

The CTS (see also Common Type System Specification) makes use of three different ideas that must be mapped back to the desired language semantics:

Visibility controls whether or not a type is visible outside of the assembly in which it is defined. If a type is not visible outside its assembly, then no reference to that type can be resolved from other assemblies and the name of the type and its members do not participate in any way in name resolution at runtime.

Hiding controls which method names inherited from its super class are available during compile-time name binding. Members other than methods are not subject to hiding, since they can only be referenced using the type in which they are defined.
Accessibility does not affect name lookup directly (except for one case having to do with choosing the method implementation used to fulfill an interface method definition). Only visibility and hiding are considered when determining how a member reference should be resolved. Once resolved, the accessibility of the chosen member is examined and the lookup may fail (rather than the member being ignored) if the accessibility condition is not met.

The following sections provide more detail about these topics.

6.1 Visibility

Visibility XE "Visibility" is attached only to top-level types, and there are only two possibilities: visible to types within the same assembly, or visible to types regardless of assembly.

For nested types (i.e. types that are members of another type) the nested type has an accessibility that allows visibility to be further refined. While a top-level type might be thought of as having either public or assembly accessibility, a nested type may have any of the 7 accessibility modes (see below) for its visibility.

The following table shows all visibility attributes.

	Visibility
	ilasm Keyword
	Description

	Public
	publicXE "public"
	The type may be exported from the assembly.

	Assembly
	privateXE "private"
	The type is only visible within the assembly.

	Nested
	nestedXE "nested"
	The type has the same visibility as its outer type.

Note that the keyword for assembly visibility is private. It is assumed by default.

Because the visibility of a top-level type controls the visibility of the names of all of its members, a nested type cannot be more visible than the type in which it is nested. That is, if the outer type is visible only within an assembly then a nested type with public accessibility is still only available within the assembly. By contrast, a nested class that has assembly accessibility is restricted to use within the assembly even if the outer class is visible outside the assembly.

6.2 Hiding

Hiding XE "Hiding" applies to individual members of a type (nested types are not considered to be members for this purpose). The CTS specifies two mechanisms for hiding:

hide-by-name, meaning that the introduction of a name in a given class hides all inherited members of the same kind (method or field) with the same name.
hide-by-name-and-sig, meaning that the introduction of a name in a given class hides any inherited member of the same kind but with precisely the same type (for fields) or signature (for methods, properties, and events).

Hiding is a compile-time, not a runtime, issue. It specifies how the compiler should treat method references—either by generating an error or resolving to a specific method. It is only this resolved reference that is used by the runtime.

The runtime supports only the latter form of hiding. Compilers that desire the effect of hide-by-name need to emit appropriate code to achieve this functionality; this is done by the use of the newslot keyword and judicious choice of class name for resolution.
6.3 Accessibility

There are seven accessibility XE "Accessibility" modes. These can be applied to members of a type and to nested types, which have an accessibility associated with them in addition to their nested visibility.

The following table shows and describes the accessibility attributes:

	<accessibility> ::=
	Description

	 assembly XE "assembly"
	Accessible only to referents in the same assembly that contains the implementation of the type.

	| family XE "family"
	Accessible only by referents whose base class (immediate or indirect) defined the member or type in question.

	| famandassem XE "famandassem"
	Accessible only to referents that qualify for both Family and Assembly access.

	| famorassem XE "famorassem"
	Accessible only to referents that qualify for Family or Assembly access, but not necessarily both.

	| private XE "private"
	Accessible only to referents in the implementation of the exact type that defines the member.

	| privatescope XE "privatescope"
	Not accessible by a reference, but only with a member definition token.

	| public XE "public"
	Accessible by all referents.

With the exception of attributes involving family as described below, all other accessibility attributes can be verified statically (i.e. at compile time). The following two subsections give more information on family and privatescope accessibility.

6.3.1 Family Access

It is worth explaining the modes that involve family accessibility (family XE "family" , famandassem XE "famandassem" , famorassem XE "famorassem") in more detail. family accessibility gives a context sensitive way to control which classes may access certain members as described by the following two rules:

1. The accessing type must be a subtype of the type that declares the member.

2. If the member is associated with an instance of a type, than the type of the instance must be a subtype of the accessing type.

For static members, only the first rule applies. However, for instance (and virtual) members the second rule must be followed, too. The EE will always check the first rule, but not the second rule. The second rule will be checked by verification. Code that does not follow the second rule is not verifiable.

The following class diagram illustrates this:

[image: image6.png]Systen. Object

AN

50

B

Figure 6.1: Family accessibility

Suppose there is a class A that defines an instance family member f. In the diagram, the arrows show subtyping, where, e.g., an arrow from B0 to A means that B0 is an immediate subtype of A.

Clearly Z cannot access f, since rule 1 does not apply for Z. However, types A, B0, B1, C and D all fulfill rule 1. They all are subtypes of A. Thus, the EE will not throw any exceptions if an instance of one these types is used to access f. However, not all types follow rule 2. Imagine that m, defined in C, tries to access f. To follow rule 2, m must use either an instance of C or D to access f, because those are the only types that are subtypes of the accessing type C. It is a verification error if m uses an instance of B0, B1 or A to access f.

If for some reason, m accepts an instance over a parameter that has a declared type that adheres to rule 1, but m is sure that the exact type of the parameter does follow rule 2, then a cast operation may be used with the parameter to do a verifiable access to f. The parameter needs to be cast to type C, the accessing type, and not A.

6.3.2 Privatescope Access

privatescope XE "privatescope" effectively restricts access to a member to the same compilation unit that defines it, allowing a compiler complete control over accessibility. The member can only be accessed with a member definition token. This access mode is most useful for implementing concepts like function-local static variables.

In the syntax for the assembler, a specific privatescope item can be referenced by using the postfix $PST<token value> after its name. The token value is a hexadecimal number that specifies the token associated with the item.

The assembler ilasm will automatically truncate names of the form <name>$PST<token value> to just <name>. The disassembler ildasm produces automatically names of the form <name>$PST<token value> for privatescope items. To determine the token value, the disassembler may need to be run on the output of the assembler after the item was declared.

Example:

The following is the declaration of a privatescope method, note that the actual name of the method in the metadata is MyMethod:

.method static privatescope void MyMethod$PST06000001() {

// method body

}

The following is a call to the method:

call void MyMethod$PST06000001()

7 Class Types

Class types XE "Class types" describe data which are heap allocated and accessed using a reference. Class types are defined by classes.

Classes XE "Classes" have members XE "members" that describe the data and behavior of a class type. The CLR supports the following groups of class members:

· fields

· methods

· properties

· events

Field XE "Fields" s are typed memory locations that store the data of classes and their instances. Fields are described in more detail in chapter 12.

Method XE "Methods" s implement the behavior of classes. They are described in further detail in chapter 11.

Properties XE "Properties" are another way to represent data. While fields correspond to actual memory locations that store the data, a property is a group of methods that provide access to the data and the ability to change the data. The data represented by properties may be stored in one or more memory locations or may be computed on the fly. More information on properties can be found in chapter 13.

Event XE "Events" s are a group of methods that communicate changes of the state of an object to other objects. Using events, an object may be notified when the state of the system changes and react to the change. More about events can be found in chapter 14.

Members may be instance XE "instance" or static XE "static" . instance members are associated with a particular instance of the type, while static members are associated with the type itself. static members are shared across all instances of a type.

The CLR supports nested types XE "Nested types" . Nested types are declared inside other types. Nested types are not formal members of their outer types. However, the outer class restricts the visibility of its nested types by its visibility declaration. Nested classes are covered in more detail in section 7.7.

The CLR type system supports single class inheritance XE "Inheritance" . At runtime classes may be instantiated, allocating an object on the heap and creating a reference to this location. As the name implies, classes are reference types and only a reference to their instances may be stored in variables or passed as arguments to other methods.

All classes inherit ultimately from the same base class, System.Object XE "System.Object" , which makes polymorphism between all class types possible. Any class may be treated as if it were of type System.Object.

7.1 Namespaces

Namespaces XE "Namespaces" declare a common prefix for a set of classes. Namespaces are introduced by the .namespace XE ".namespace" directive. Each namespace has a <dottedname> and contains all its declarations in braces. Namespaces may be nested.

	<decl> ::=
	Section

	 .namespace <dottedname> { <decl>* }
	

	| …
	4.7

Namespaces are syntactic sugar. The assembler ilasm will automatically combine the prefix introduced by a namespace with the name of a class, inserting a dot (“.”) between them. Declaring a class MyClass in namespace MySpace would have the same effect as giving the class directly the name 'MySpace.MyClass', quoted in single quotes to permit the use of the “.”. Namespaces are not recognized as separate entities by the runtime. The disassembler ildasm automatically splits names with a dot in them into a namespace component and a class name component. Classes that start with the same prefix in front of the dot will be put into the same namespace.

Note: If a name contains several dots, the part after the last dot is treated as the class name and the part in front of the last dot is treated as the namespace name. Since nested namespaces create names with several dots after they are assembled, this means that ildasm will not preserve the nesting of the namespaces but create separate top-level namespaces for each nested namespace.

Examples:

Suppose the following class is declared:

.class public 'Outer.Middle.Inner' extends [mscorlib]System.Object {

// body

}

ildasm will disassemble the class into:

.namespace Outer.Middle {
.class public auto ansi Inner extends [mscorlib]System.Object {

// body

}

}

Suppose another class is called 'Outer.Middle.Inner2', then this class will also end up in the Outer.Middle namespace.

However, if a class is called 'Outer.Middle2.Inner', then the class will end up in the namespace Outer.Middle2. ildasm will not create a namespace Outer with nested namespaces created, even though this can be done manually. Because namespaces are syntactic sugar, the results are identical even though the input looks different.

7.2 Using Classes

A class is referred to by using the class XE "class" keyword followed by a type name reference. The type reference is resolved to a type definition token either at runtime, or if possible at compile time. The following grammar shows reference type references:

	<refTypeReference> ::=

	 class <typeReference>

There are two exceptional reference types that are referred to differently in signatures. These are System.Object XE "System.Object" and System.String XE "System.String" . Rather than using a <typeReference>, only System.Object or System.String needs to be used. Eg, using class [mscorlib]System.Object, in a signature will cause a verification error.

[Note that in Beta-2, these will be shortened even further to use the keywords object and string respectively]
Outside of signatures both classes are referred to as any other class. The special forms provide enable a space efficient encoding in signatures.

Examples:

class [.module CountDownComponents.dll] CounterTextBox

The class CounterTextBox is referred to using the module reference CountDownComponents.dll.

class System.String[]
System.String is referred to without using an assembly reference. Using [mscorlib]System.String would cause a verification error.

7.3 Instantiating Classes

Classes are instantiated XE "Instance"

 XE "instantiating" using the newobj XE "newobj" instruction. The newobj instruction allocates memory for an instance of the class on the heap and calls the constructor of the class. The constructor to be called is specified as part of the newobj instruction. Any parameters accepted by the constructor must be pushed onto the stack before the newobj instruction is executed. The newobj instruction will return a reference to the object on the stack when it is complete.

Example:

The following code loads the parameters expected by the constructor of the class to be instantiated and then uses the newobj instruction to instantiate the class. The desired constructor is specified with the instruction.

ldloc button

ldloc
count

newobj instance void [.module Counter.dll]BeepingCounter::.ctor(class [.module Counter.dll]StartStopEventSource, class [.module Counter.dll]Count)
// reference on stack

7.4 Defining a Class

Classes XE "Classes:Defining classes" may be defined at the top-level of an IL file program as the following grammar shows:

	<decl> ::=
	Section

	 .class <classHead> { <classMember>* }
	

	| …
	

7.4.1 Class Head

A class head consists of

· any number of class attributes (see section 7.4.2)

· a name (an <id>)

· an optional superclass (see section 5.6)

· an optional list of interfaces to be implemented (see also section 8)

The following grammar shows the syntax of a class declaration:

	<classHead> ::=

	 <classAttr>* <id> [extends <typeReference>] [implements <typeReference> [, <typeReference>]*]

The extends XE "extends" or implements XE "implements" clauses contain references to other classes or interfaces (see also section 7.7). A <typeReference> is simply a <dottedname> with an optional module or assembly reference, that is resolved to the appropriate class at runtime.

The extends keyword defines the superclass of a class, for a kind of inheritance called code inheritance. In the CLR a class always inherits code from exactly one other class. If no class is specified, ilasm will add an extend clause to make the class inherit from System.Object.

The implements keyword defines the interfaces of a class, a kind of inheritance called multiple type inheritance. Any number of interfaces may be specified. A class that implements an interface promises to provide implementation for all abstract virtual methods declared inside the interface. More about interfaces can be found in section 8.

The inheritance structure creates a hierarchy of classes. At the top of the hierarchy must be System.Object.

Example:

.class private auto autochar CounterTextBox

extends [System.WinForms]System.WinForms.TextBox

implements [.module Counter.dll]CountDisplay {

// body of the class

}
The code above declares the class CounterTextBox, which extends the class System.WinForms.TextBox in the assembly System.WinForms and implements the interface CountDisplay in the module Counter.dll of the current assembly. The attributes private, auto and autochar are described in the following sections.

7.4.2 Built-in Class Attributes

Predefined attributes of a class may be grouped into attributes that specify visibility, class layout information, class semantics information, special semantics, implementation attributes, interoperation information, and information on special handling. The following subsections provide additional information on each group of predefined attributes.

The following grammar shows and describes the attributes of a class:

	<classAttr> ::=
	Description
	Section

	 abstract
	Class is abstract.
	7.4.2.4

	| ansi
	Used for string marshaling across managed/ unmanaged boundary.
	7.4.2.6

	| auto
	Auto layout of class.
	7.4.2.2

	| autochar
	Specifies to use platform specific char marshal across boundary.
	7.4.2.6

	| explicit
	Layout of fields are provided explicitly.
	7.4.2.2

	| import
	The class is imported from COM.
	7.4.2.5

	| interface
	The declaration is an interface declaration.
	7.4.2.3

	| lateinit (rename to before_field_init in Beta-2)
	Initialize class as late as possible.
	7.4.2.7

	| nested assembly
	Assembly accessibility for nested class.
	7.4.2.1

	| nested famandassem
	Family and Assembly accessibility for nested class.
	7.4.2.1

	| nested family
	Family accessibility for nested class.
	7.4.2.1

	| nested famorassem
	Family or Assembly accessibility for nested class.
	7.4.2.1

	| nested private
	Private accessibility for nested class.
	7.4.2.1

	| nested public
	Public accessibility for nested class.
	7.4.2.1

	| not_in_gc_heap (remove in Beta-2)
	Specifies that the class shall not be allocated in garbage collected heap.
	7.4.2.3

	| private
	Private visibility of top-level class.
	7.4.2.1

	| public
	Public visibility of top-level class.
	7.4.2.1

	| rtspecialname
	Special treatment by runtime.
	7.4.2.7

	| sealed
	The class cannot be subclassed anymore.
	7.4.2.4

	| sequential
	The class is laid out sequentially.
	7.4.2.2

	| serializable
	Specifies that the fields of the class may be serialized by the CLR serializer.
	7.4.2.5

	| specialname
	Special treatment by tools.
	7.4.2.7

	| unicode
	Used for string marshaling across managed/unmanaged boundary.
	7.4.2.6

7.4.2.1 Visibility and Accessibility Attributes

The visibility XE "Visibility" of top-level classes is either private XE "private" or public XE "public" . Nested classes have nested XE "nested" visibility, which mean that they have the same visibility as their outer class. In addition nested classes have an accessibility attribute, which specifies the range from which they can be referenced.

The accessibility XE "Accessibility" attributes are assembly XE "assembly" , famandassem XE "famandassem" , family XE "family" , famorassem XE "famorassem" , private XE "private" , and public XE "public" . These attributes must follow immediately the nested attribute.

Visibility attributes are described in section 6.1 and accessibility attributes are described in section 6.3. Nested classes are covered in section 7.7.

A class may only have one visibility and nested classes in addition one accessibility associated with them. The default visibility for top-level classes is private. The default accessibility for nested classes is private.

7.4.2.2 Class Layout Attributes

The class layout attributes XE "Class:Layout attributes" are auto XE "auto" , explicit XE "explicit" , and sequential XE "sequential" . These attributes are used to specify how the fields of an instance of a class are arranged. Layout attributes are mutually exclusive and the default is auto.

auto specifies that the layout is done by the runtime.

explicit specifies that the layout of the fields is explicitly provided (see also section 7.8.1).

sequential specifies that the fields are laid out in sequential order by the runtime. The order used is the order of declaration. Otherwise, the runtime may use a different order. The attribute sequential needs to be specified if interoperation with the unmanaged world is desired.

7.4.2.3 Class Semantics Attributes

The class semantics attributes XE "Class:Semantics attributes" are interface, XE "interface" not_in_gc_heap (to disappear in Beta-2) XE "not_in_gc_heap"

 XE "value" and value (also to disappear in Beta-2)
These attributes specify what kind of type is defined. interface specifies that an interface is defined. The default is the definition of a reference type by a class, in which case no class semantics attribute is used.

In Beta-2, instead of marking a ValueType with the value attribute, you should make the class descend from System.ValueType.
The not_in_gc_heap attribute, used in conjunction with the value attribute, denotes that no instance of this ValueType should ever be allocated from the garbage collected heap (it should be allocated elsewhere – for example, on the stack). As a consequence, any operation that causes such an instance to be allocated, or moved into garbage collected heap is illegal. Examples of such operations are boxing or using the type as the base type of an array. Allocating an instance of a such a ValueType type on the heap causes a verification error.

Instances of class types are always allocated on garbage allocated heap and may not be marked not_in_gc_heap.

(the not_in_gc_heap keyword will be removed in Beta-2. Types with the special semantics implied by this attribute will instead be so marked by attaching one, or more, system-defined custom attributes to their definition)
7.4.2.4 Special Semantics Attributes

Attributes that specify special semantics XE "Class:Special semantics" are abstract XE "abstract" and sealed XE "sealed" . These attributes may be used together.

abstract specifies that this class may not be instantiated. Typically, even though not necessary, abstract classes contain one or more abstract methods (see section 11.5.4.4). If a class contains abstract methods, it must be declared as an abstract class.

sealed specifies that a class may not have any subclasses. A class that inherits from a sealed class cannot be loaded and will generate a System.TypeLoadException when an attempt is made to load such a class. virtual methods of sealed classes turn effectively into instance methods. They cannot be overridden since the class may not have any subclasses.

A class that is both abstract and sealed cannot have any non-static members. Such a class defines only a set of static fields and methods. It may define nested types.

7.4.2.5 Implementation Attributes

The implementation attributes XE "Class:Implementation attributes" are import XE "import" and serializable XE "serializable" . These attributes may be combined.

import specifies that the class (or interface) is imported from COM.

serializable indicates that the fields of the class may be serialized into a data stream by the CLR serializer. E.g., the class may be sent over the network or saved to a file. More about serialization can be found in the Base Class Library documentation.

7.4.2.6 Interoperation Attributes

These attributes are for interoperation XE "Class:Interoperation attributes" with unmanaged code and define how managed Strings should be marshalled between managed and unmanaged code. Specify none or one of ansi XE "ansi" , autochar XE "autochar" , unicode (default is ansi) XE "unicode" .

ansi says that arguments whose type is managed String (array of 2-byte Unicode characters) will be marshalled to ANSI strings (arrays of 1-byte ANSI characters) before calling the target, unmanaged routine (and vice-versa)

unicode says that arguments whose type is managed String will be marshalled to UNICODE strings before calling the target, unmanaged routine (and vice-versa). [in effect, a simple copy]

autochar says that Strings will be marshalled to either Unicode or ANSI, depending upon the platform at runtime (Windows-NT => Unicode, Windows-9X => ANSI)

7.4.2.7 Special Handling Attributes

The three attributes that are used for special handling XE "Class:Special handling" are lateinit (becomes before_field_init in Beta-2), rtspecialname and specialname. These attributes may be combined.

lateinit instructs the runtime to initialize the class as late as possible, rather than initializing classes at load time or soon after that (see also section 7.6.7).

rtspecialname signals a special name to the runtime, while specialname signals a special name to some other tool.

7.5 Body of a Class

A class may contain any number of further declarations. The following grammar shows the grammar for these declarations and provides a description for each item.

	<classMember> ::=
	Description
	Section

	 .class <classHead> { <classMember>* }
	Defines a nested class.
	7.4

	| .comtype <comtypeHead> { <comtypeDecl>* } /* for round trip only */
	Exports a COM type, use .export instead. (For round trip only).
	4.8.1

	| .custom <customDecl>
	Custom attribute.
	17

	| .data <datadecl>
	Defines static data associated with the class.
	12.3

	| .event <eventHead> { <eventMember>* }
	Declares an event.
	14

	| .export [public | private] <dottedname> { <exportDecl>* }
	Specifies entities to export. Public exports it from the assembly. Private exports it only inside the same assembly.
	4.8

	| .field <fieldDecl>
	Declares a field belonging to the class.
	12

	| .method <methodHead> { <methodBodyItem>* }
	Declares a method of the class.
	11

	| .override <typeSpec> :: <methodName> with <callConv> <type> <typeSpec> :: <methodName> (<parameters>)
	Specifies that the first method is overridden by the definition of the second method.
	7.6.3.1

	| .pack <int32>
	Used for explicit layout of fields.
	7.8.1

	| .property <propHead> { <propMember>* }
	Declares a property of the class.
	13

	| .size <int32>
	Used for explicit layout of fields.
	7.8.1

	| <externSourceDecl>
	.line or #line
	3.7

	| <securityDecl>
	.permission or .capability
	16

The directives .event, .field, .method, and .property are used to declare members of a class. These members are discussed in more detail in the following sections and chapters.

The directive .class inside a class declaration is used to create a nested type, which is discussed in further detail in section 7.7.

7.6 Members of Classes

This section gives an introduction into some of the members of classes. This discussion primarily concentrates on the members and their relationship to a class or to an instance of a class. Most of the members are also discussed in other chapters of this document.

7.6.1 Static and Instance Fields

static fields XE "Fields:static" are associated with the type which declares them. They are similar to global variables in the sense that they are shared by all objects of the type. Only one copy of the field is created each time the type is loaded. A static variable is created when a class is loaded and initialized by the type initializer. (see section 7.6.7)

instance fields XE "Fields:instance" are not only associated with the type but with a particular instance of the type. To access an instance field, a reference to the instance is needed. Each instance of the type has its unique copy of the instance field. instance fields are created and initialized when an instance of the class is created.

7.6.2 Static and Instance Methods

static methods XE "Methods:static" are very similar to procedures of procedural languages. They are associated with a class or interface, but are not associated with any particular instance of the type.

In contrast to static methods, instance methods XE "Methods:instance" are associated with an instance of the class. Typically, to call an instance method an instance of the class is needed. However, it is possible to use a null reference to call an instance method.

The CLR automatically adds a hidden parameter XE "this" to instance methods. This new parameter becomes the first parameter of the method and has the type of the declaring class or interface. This parameter is not explicitly specified in the signature of the method, unless it is specified otherwise by the calling convention (see section 11.4.1).

Even though not explicitly specified, the hidden parameter still needs to be passed to the method. Thus, for all calls of instance methods, a reference that points to an object that is a (not necessarily proper) subtype of the declaring type of the method. The passed in hidden parameter, which has argument index 0, can be used in calls to other instance methods declared by the type of the hidden parameter or it can be used to access the instance fields of that type. However, an instance method needs to be prepared for the case when the first argument is null.

Except for their special hidden parameter, instance methods are the same as static methods.

More about static and instance methods can be found in section 11.3.

7.6.3 Virtual Methods

virtual methods XE "Methods:virtual" are similar to instance methods. They are also associated with a particular instance of a class. However, virtual methods may be overridden by subclasses, such that the implementation of a virtual method is determined at runtime. This gives subclasses the ability to modify their behavior compared to that of their superclasses.

Similar to instance methods (see section 7.6.2) the first argument of virtual methods must be a reference to an instance of the class. When called as a virtual method (see below) the hidden parameter must not be null.

Introducing a new virtual method in a sealed class XE "sealed" is possible and is precisely the same as introducing the method as an instance method.

The final attribute XE "final" on a virtual method prohibits any subclass from providing its own implementation of this virtual method. However, a new virtual method with the same signature may be introduced via the newslot XE "newslot" attribute. This can be thought of as creating a new method that has no relationship to the method of the superclass.

A virtual method of a superclass is overriden by providing a direct implementation of the virtual method using a definition in the class and not specifying it to be newslot (see section 11.1). A method may also be overridden using the .override XE ".override" directive, which is described in section 7.6.3.1.

When a virtual method is introduced for the first time in the inheritance hierarchy, it can be done in either of two ways. The preferred method is to use a definition that provides the location of the code that implements the method and is marked as newslot. This causes the CLR to create a new method that has no relationship with any method of its superclass. If later a superclass defines a virtual method with the same signature, this method will not override the implementation of the superclass.

It is also possible not to mark the method as newslot which will cause the CLR to create a new method only if no existing virtual method with that signature is provided by its superclass. This is not recommended for the first introduction of a virtual method, however, since it allows a superclass to capture this implementation by introducing a virtual method with the same signature.

When computing whether a virtual method overrides a virtual method of its superclass, given that the virtual method is not marked newslot the EE will try to find an inherited virtual method to override. The EE will continue to search up the chain of superclasses looking for a virtual method with the same signature as the introduced virtual method. This search ignores intervening static methods with the same signature. If the EE is unable to locate an existing virtual method in any of its parents a new method is created, exactly as though the definition had been marked newslot.

7.6.3.1 The .override Directive

Usually, the runtime will automatically determine which method overrides which method by matching signatures.

However, it is possible to explicitly specify which method overrides another method using MethodImpls XE "MethodImpl" (see also section 11.1). A MethodImpl takes two MethodRefs. The first MethodRef specifies the method to be implemented and the second specifies the method that implements the first method. The implementing method must be declared in the class that specifies the MethodImpl. Its definition may be deferred to a subclass by declaring the implementing method abstract XE "abstract" in the class that defines the MethodImpl. Both methods must have a matching signature, which means that except for their type and name their signature must be equal to each other.

In the ilasm grammar a MethodImpl is defined with the .override directive. However, the .override directive makes a simplification and requires only the type and name of the first method and a full MethodRef for the implementing method. The calling convention, return type and parameter types of the first MethodRef are inferred from the second MethodRef since they must be the same.

The syntax for .override is as follows:

	<classMember> ::=
	Section

	 .override <typeSpec> :: <methodName> with <callConv> <type> <typeSpec> :: <methodName> (<parameters>)
	

	| …
	7.5

The first method specified by the partial MethodRef will be overridden by the method specified by the MethodRef after the with XE "with" keyword.

The .override directive may appear inside a class or inside a method. If it appears inside a method, the implementing method is the method inside which the directive appears and the second MethodRef is omitted from the .override directive (see also section 11.5.3).

Example:

The following example shows a typical use of the .override directive. A method implementation is provided for a method declared in an interface. Interfaces are described in detail in section 8.

Suppose the interface, call it I, declares the following method:

.method public virtual abstract void m() il managed {}

And suppose a class, call it C, implements I and provides the following method, notice the different name:

.method virtual public void m2() {

// body of m2

}

Then the .override directive below will associate the method from the interface with the implementation of the class:

.override I::m with instance void C::m2()
7.6.4 Method Implementation Requirements

A class (concrete or abstract) may provide

· implementations for instance, static, and virtual methods that it introduces

· implementations for methods declared in interfaces that it has specified it will implement, or that its superclass has specified it will implement

· alternative implementations for virtual methods inherited from its parent

· implementations for virtual methods inherited from an abstract superclass that did not provide an implementation

A concrete (i.e. non-abstract) class must provide either directly or by inheritance an implementation for

· all methods declared by the class itself

· all virtual methods of interfaces implemented by the class

· all virtual methods that the class inherits from its superclass

If a class overrides an inherited method, it may widen, but it cannot narrow, the accessibility of that method. As a principle, if a client of a class is allowed to access a method of that class, then it should also be able to access that method (identified by name and signature) in any derived class. Table 7.1 defines the precise meaning of narrow and widen – a “Yes” denotes that the subclass can apply that accessibility, a “No” denotes it is illegal.

	Subclass
	
	Superclass Accessibility

	
	
	private
	family
	assembly
	famandassem
	famorassem
	public

	private
	
	Yes
	No
	No
	No
	No
	No

	family
	
	Yes
	Yes
	No
	No
	If not in same assembly
	No

	assembly
	
	Yes
	No
	Same assembly
	No
	No
	No

	famandassem
	
	Yes
	No
	No
	Same assembly
	No
	No

	famorassem
	
	Yes
	Yes
	Same assembly
	Yes
	Same assembly
	No

	public
	
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

Table 7.1: Legal Widening of Access to a Virtual Method

Notice that a method may be overridden even if it may not be accessed by the subclass. If a method has assembly accessibility, then it must have public accessibility if it is being overridden by a method in a different assembly. A similar rule applies to famandassem, where also famorassem is allowed outside the assembly. In both cases assembly or famandassem, respectively, may be used inside the same assembly.

A special rule applies to famorassem. Here is the only case where the accessibility is apparently narrowed by the subclass. A famorassem method may be overridden with family accessibility by a class in another assembly. This way, the implementer is not forced to use public. The EE will handle this case in a special way. For such a method, the EE will grant access to any type inside the assembly of the superclass, even though family is specified.

For CLS compatibility, the accessibility of a virtual method must not be changed when it is overridden.

7.6.5 Instance constructors

Instance constructors XE "Instance constructors"

 XE "Constructors" initialize an instance of a class or value type. An instance constructor is called when an instance of a class is created.

An instance constructor must not be static or virtual. It must be named .ctor XE ".ctor" and marked with rtspecialname and specialname. Instance constructors may take parameters, but may not return a value. Instance constructors may be overloaded, (i.e. a class may have several instance constructors). Each instance constructor must have a unique signature. At instantiation time, this signature is specified and determines which constructor is called.

Instance constructors are a kind of instance method. However, instance constructors have a special privilege to write into fields of the class that are marked with the initonly XE "initonly" attribute.

An instance constructor should call one of the instance constructors of its superclass. If an instance constructor of the superclass is not called, the instance of the class will be not be completely initialized. A program that has an instance constructor which does not call an instance constructor of its superclass is not verifiable.

Example:

The following shows the definition of an instance constructor that does not take any parameters:

.method public rtspecialname specialname hidebysig instance void .ctor() il managed {

.maxstack 1

// call super constructor

ldarg.0

// load this pointer, created by CLR

call
instance void [mscorlib]System.Object::.ctor()

// do other initialization work

ret
}

7.6.6 Instance Finalizer

An instance finalizer XE "Finalizer" allows objects to execute some final code before they are reclaimed by the garbage collector. The finalize method is invoked when the GC determines that the current object is no longer being referenced by any other object.

The finalize method is defined in the class System.Object XE "System.Object" as follows:

family virtual void Finalize() { }
As you can see, the Finalize method in System.Object does nothing. If you want to use a Finalize method to, for example, release resources before that object is reclaimed by GC, you must override the Finalize method. Finalizers should be kept short: there is a timeout (of a few seconds) for running Finalizers during shutdown – after that time, the process is simply shutdown without completing the running of any remaining Finalizers.

Note that CLR does not guarantee when a Finalizer will be run, nor the order in which it is run, compared with other Finalizers. In the extreme, a Finalizer may not actually be run at all. For example, when the application shuts down, the CLR does not, by default, execute Finalizers at all – after all, the process and its entire memory space is about to be reclaimed by the Operating System. However, if you want to change this default, then call the method System.GC.RequestFinalizeOnShutdown – this can be called at any time, and it applies to the whole process. Thus, if one AppDomain calls RequestFinalizeOnShutdown(), then all AppDomains in that process are affected. Note that there is no method provided to cancel the request to finalize on shutdown – it’s a once-off decision for that process. XE "System.GC.RequestFinalizeOnShutdown"
Finalization of a specific object may be explicitly prevented by using the System.GC.SupressFinalize(Object obj) method. By notifying GC, we avoid burning cycles needlessly; it also allows that object to be reclaimed sooner by the GC, since it need never be added to the internal “finalize” queue.

Note that ‘nothing comes free’ – if you request Finalization, then GC will take longer to complete. Finalize may take any action, including resurrecting an object (that is, making the object accessible again) after it has been cleaned up by the GC. (However, an object that is resurrected will never have its Finalizer run again, even if it becomes garbage)

Because Finalizers are not guaranteed to run, you should follow the Dispose design pattern (see Design Guidelines spec) if you really need objects to release resources promptly. [in effect, devise a “Dispose” method on the class, and call it explicitly when the last reference to a particular object of that class is about to be released]

In Beta2, the CLR will default to always running Finalizers on shutdown. The System.GC.RequestFinalizeOnShutdown will be withdrawn. And there will be no means provided to change that default behavior. The System.GC.SuppressFinalize method will be retained – it’s usefulness still applies.
Example:

.method virtual family void Finalize() {

.maxstack 3

// remove the onClick event

ldarg.0

dup

ldfld class [mscorlib]System.EventHandler StartStopButton::

onClickEventHandler

call instance void [System.WinForms]System.WinForms.Button::

remove_Click(class [mscorlib]System.EventHandler)

ret

}

7.6.7 Type Initializers

Classes may contain special methods called type initializers XE "Type initializer" to initialize the class itself.

Classes, interfaces, and value types may all have type initializers. This method must be static, take no parameters, return no value, be marked with rtspecialname and specialname, and be named .cctor XE ".cctor" . Thus a class may only have one type initializer. Most type initializers are simple methods that initialize static fields of the type from stored constants or via simple computations. There are, however, no direct limitations on what code is permitted in a type initializer.

Type initializers are a kind of static method. Thus, they may only access static fields. Type initializers have a special privilege to write into static fields of the class that are marked with the initonly XE "initonly" attribute.

Example:

The following shows the definition of a type initializer:

.method static public rtspecialname specialname void .cctor() il managed {

// do other initialization work

ret
}
7.6.7.1 Type Initialization Guarantees

There are three fundamental guarantees about Type initialization.

1. The Type initializer (.cctor) always starts running before

· any instance of that Type is created

· any static member (method or field) of that Type is referenced

2. A Type initializer is run exactly once for any given Type, unless explicitly called by user code (few languages allow the user to call a Type initializer explicitly, but it is supported by ILASM)

3. No method other than these called directly or indirectly from the Type initializer will be able to access members of a Type before its initializer completes execution.
7.6.7.2 Delaying Type Initialization

The default behavior (which we informally describe as “precise”) of a Type Initializer (.cctor) is as follows:

CLR guarantees to have started running the .cctor, by the first occurrence of : access of any static or instance field (of that Type), or invocation of any static or instance method (of that Type). Moreover, it is one of these four events that triggers execution of the .cctor -- so, in effect, running the .cctor is left as late as possible

You can request another behavior, by specifying the lateinit attribute on the Type defintion (in Beta-2, this name will change to before_field_init). This provides improved performance, particularly when the Type is included in a ‘shared’ or ‘domain-neutral’ assembly. The behavior in this case is as follows:

CLR guarantees to have started running the .cctor, by the first access of any static field (of that Type); but CLR is allowed to start running the .cctor earlier, if it so chooses

Note that, if you select this option for a particular Type, it's entirely possible that code might execute a static method of this Type before the .cctor runs. Also, it's possible that code might create objects of the Type, and call methods on these objects, before the .cctor runs

Classes, ValueTypes and Interfaces can be marked as either “late initialize required” or “early initialize allowed” based on the lateinit XE "lateinit" attribute (see also section 7.4.2.7) (note that this attribute will be renamed to before_field_init in Beta-2) Requiring them to be initialized late ensures that the type initializer will be called no earlier than absolutely required to meet the first of the guarantees. Allowing early initialization relaxes this requirement and allows the JIT and the execution engine to initialize the class at any earlier time, allowing them to optimize performance but at the possible cost of predictable behavior.

7.6.7.3 Races and Deadlocks

 XE "Race"

 XE "Deadlock" Consider the following two class definitions:

.class public A extends [mscorlib]System.Object {

.field static public class A a

.field static public class B b

.method public static rtspecialname specialname void .cctor () {

ldnull

// b=null

stsfld
class B A::b

ldsfld
class A B::a
// a=B.a

stsfld
class A A::a

ret

}

}

.class public B extends [mscorlib]System.Object {

.field static public class A a

.field static public class B b

.method public static rtspecialname specialname void .cctor () {

ldnull

// a=null

stsfld
class A B::a

ldsfld
class B A::b
// b=A.b

stsfld
class B B::b

ret

}

}

After loading these two classes, any attempt to reference any of the static variables causes a problem, since the type initializer for each of A and B requires that the type initializer of the other be invoked first. If we required that no access to a type was permitted until its initializer had completed we would create a deadlock situation. Instead, the CLR provides a weaker guarantee: the initializer will have started to run, but it need not have completed. But this alone would allow the full uninitialized state of a class to be visible, which would make it difficult to guarantee repeatable results.

There are similar, but more complex, problems when class initialization takes place in a multi-threaded system such as the CLR. In these cases, for example, two separate threads might start attempting to access static variables of separate classes (A and B) and then each would have to wait for the other to complete initialization.

The CLR deals with these problems by ensuring that in addition to the three type initialization guarantees (see 7.6.7.1) two further guarantees for code that is called from a class initializer are met:

1. static variables of a class are in a known state prior to any access whatsoever.

2. Type initialization alone cannot create a deadlock unless some code called from a class initializer (directly or indirectly) explicitly invokes blocking operations.

The check of these guarantees is optimized by the JIT. Once the class is initialized, the check is not done anymore.

A rough outline of the algorithm is as follows:

1. At class load time (hence prior to initialization time) store zero or null into all static variables of the class.

2. If the type is initialized you are done.

3. If the type is not yet initialized, try to take an initialization lock.

· If successful, record this thread as responsible for initializing the type and proceed to step 4.

· If not, see whether this thread or any thread waiting for this thread to complete already holds the lock.

a. If so, return since blocking would create a deadlock. This thread will now see an incompletely initialized state for the type, but no deadlock will arise.

b. If not, block until the type is initialized then return.

4. Initialize the parent type and then all interfaces implemented by this type.

5. Execute the type initialization code for this type.

6. Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to be initialized, and return.

7.7 Nested Classes

 XE "Nested classes" One class may be nested within another. All references to the class are through its enclosing class. The nested class has its own accessibility, and references to the nested class must therefore have access to both the enclosing class and the nested class itself. Nested classes have the same visibility as their enclosing class. There visibility must be declared to be nested XE "nested" .

A nested class is not associated with an instance of its enclosing class. The nested class has its own superclass and may be instantiated independent of the enclosing class. This means that the instance members of the enclosing class are not accessible using the this pointer of the nested class.

A nested class may access any members of its enclosing class, including private members, as long as the member is static or the nested class has a reference to an instance of the enclosing class. Thus, by using nested classes a class may give access to its private members to another class.

On the other side, the enclosing class may not access any private or family members of the nested class. Only members with assembly, famorassem, or public accessibility can be accessed by the enclosing type.

Example:

The following example shows a class declared inside another class. Both classes declare a field. The nested class may access both fields, while the enclosing class does not have access to the field b.

.class private auto autochar CounterTextBox extends [System.WinForms]System.WinForms.TextBox implements [.module Counter.dll]ICountDisplay {

.field static private int32 a

/* Nested class. Declares the NegativeNumberException */

.class nested assembly NonPositiveNumberException extends [mscorlib]System.Exception {

.field static private int32 b

// body of nested class

} // end of nested class NegativeNumberException
}

7.8 Controlling Layout and Dispatch

In some cases, it may be useful to control the layout of fields of an instance. E.g., layout control becomes necessary to enable interoperation with unmanaged code. A set of directives make layout control of fields possible. Further, it may be also desirable to directly influence the dispatch of virtual methods.

7.8.1 Layout Control of Fields

The CLR supports sequential XE "sequential" and explicit XE "explicit" layout control. If sequential layout control is specified, the runtime will allocate space for the fields in the order they are declared and one next to the other.

If the exact position of the fields needs to be specified, explicit layout control must be used and the class marked with the attribute explicit (see section 7.4.2.2).

The following grammar shows the declaration of a field as it appears after the .field directive:

	<fieldDecl> ::=

	 [[<int32>]] <fieldAttr>* <type> <id> [= <fieldInit> | at <dataLabel>]

The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset from the beginning of the instance of the class. This form of explicit layout control cannot be used with static fields.

Any offset may be specified. It is possible to overlap fields in this way, even though it is not recommended. The field may be accessed using pointer arithmetic and ldind XE "ldind" to load the field indirectly or stind XE "stind" to store the field indirectly (see section 18.4).

The directive .pack XE ".pack" specifies to put fields at multiples of the specified number or the natural word boundary of the native machine, whichever is smaller. E.g., .pack 4 on a 64 bit or 32 bit machine has no effect, while on a 16 bit machine the variables are put at offsets divisible by 4. The integer following .pack must be one of the numbers 1, 2, 4, 8 or 16.

The directive .size XE ".size" specifies that a memory block of the specified amount of bytes shall be allocated for an instance of the class. E.g., .size 32 would leave a blob of 32 bytes for the instance. This can be used to store values in the blob by using pointers into the blob. However, this is only possible with unverifiable code.

Example:

The following class uses sequential layout of its fields:

.class sequential public SequentialClass {

.field public int32 a

// store at offset 0 bytes

.field public int32 b

// store at offset 4 bytes
}

The following class uses explicit layout of its fields:

.class explicit public ExplicitClass {

.field [0] public int32 a

// store at offset 0 bytes

.field [6] public int32 b

// store at offset 6 bytes
}

The following value type uses .pack to pack its fields together. Suppose the natural alignment of variables on this platform is 32 bit.

.class value sealed explicit public MyClass extends System.ValueType {

.pack 2

.field public int8 a
// store at offset 0 bytes

.field public int32 b
// store at offset 2 bytes (not 4)
}

The following class specifies a blob of size 16:

.class public BlobClass {

.size
16

}

7.8.2 Controlling Virtual Method Dispatch

In some cases when interoperation with unmanaged code is required, the exact address of a virtual method is important. In addition, the unmanaged code might not use the correct calling convention to invoke a managed virtual method.

Both of these problems are solved by the .vtfixup XE ".vtfixup" directive. This directive may appear several times only at the top level of an IL assembly file, as shown by the following grammar:

	<decl> ::=
	Section

	 .vtfixup <vtfixupDecl>
	

	| …
	4.7

The .vtfixup directive declares that at a certain memory location there is a table that contains MethodDefs which needs to converted into method pointers. The CLR will do this conversion automatically.

The table does not need to be a contiguous block of memory. It may be separated into several chunks of memory. Each chunk is called an entry, and has an entry number associated with it. Each entry must capture a contiguous block of memory and is divided into slots. The slots will contain a pointer that points to the actual code.

The entries are numbered by the order of their declaration within a file. The syntax does not provide a way for explicit numbering, so a tool that uses this feature must keep track of the entry numbers.

Each entry occupies a certain size at a certain memory location. This memory location with the desired size must be reserved using the .data directive (see section 12.3).

The syntax for .vtfixup takes the desired number of slots for the virtual method table entry in brackets. Note that the number of slots is different from the size of the memory block required for .data directive and must be calculated. Following the number of slots are any number of attributes and the label at which the memory block was reserved. This is shown by the following grammar:

	<vtfixupDecl> ::=

	 [<int32>] <vtfixupAttr>* at <dataLabel>

The following grammar shows the attributes that can be used with the .vtfixup directive:

	<vtfixupAttr> ::=

	 fromunmanaged

	| int32

	| int64

The attributes int32 and int64 are mutually exclusive. int32 is the default. These attributes specify the width of each slot. If int32 is used, the slots are 32 bits wide, if int64 is used the slots are 64 bits wide. If int64 is used and the pointers on the target machine are only 32 bits wide, the high order bits of the slot will be filled with zeros and ignored.

If fromunmanaged XE "fromunmanaged" is specified, the runtime will automatically generate a thunk that will convert the unmanaged method call to a managed call, call the method, and return the result to the unmanaged environment.

An application needs to emit the desired method definition tokens with the .data directive. The CLR will convert these into method pointers and at runtime, the slots in the reserved memory will have pointers to the desired methods.

7.9 Global Fields and Methods

 XE "Global fields"

 XE "Global methods" In addition to classes with static members, many languages have the notion of data and methods that are not part of a class at all. These are referred to as global fields and methods and are supported by the CLR.

It is simplest to understand global fields and methods in the CLR by imagining that they are simply members of an invisible abstract public class. In fact, the CLR defines such a special class, called ′<Module>′, that does not have a superclass and does not implement any interfaces. The only noticeable difference is in how definitions of this special class are treated by the metadata merge code, the CLR class loader, and Reflection, all of which follow the same rules.

For an ordinary type, if the metadata merges two different definitions of the same type, it simply discards one definition on the assumption they are equivalent and that any anomaly will be discovered when the class is loaded. For the special class that holds global members, however, members are unioned across all compilation units at merge time. If the same name appears to be defined for cross-compilation-unit use in multiple compilation units then there is an error. In detail:

· If no member of the same kind (field or method), name, and signature exists, then add this member to the output class.

· If there are duplicates and no more than one has an accessibility other than privatescope, then add them all in the output class.

· If there are duplicates and two or more have an accessibility other than privatescope an error is reported.

8 Interfaces

Interfaces XE "Interfaces" define a contract that classes may implement. Similar to a class, an interface defines a reference type. Unlike classes however, interfaces cannot be instantiated. They are just constructs to specify type information.

Even though interfaces may have static fields and methods, they may not have instance fields or methods. However, interfaces typically define abstract virtual methods.

Classes may implement interfaces. A class that implements an interface promises to provide an implementation for each abstract virtual method declared in the interface. A class may propagate this promise to its subclasses without providing the method implementations, but must then be declared abstract and cannot be instantiated since it has unimplemented methods. If a class implements an interface, all classes that inherit from it also implement that interface. They may use the original implementation or override individual methods.

While a class must always extend another class, a class may implement any number of interfaces. Even though single inheritance is easy to understand and use, it has a problem describing objects which are combinations of various types. E.g., a seaplane has the properties of a swimming object and a flying object. However, single inheritance forces the implementation to choose one of them. Even though interfaces do not solve the problem, they provide a work around without introducing the complexities of multiple inheritance. A class may agree to provide implementations for a set of other methods. The class will not be able to inherit any code, but the type checker will be able to verify that a class follows a special contract. E.g. in the case of a seaplane, the class Seaplane may implement the interfaces IAircraft and IWatercraft. Some user who is only interested in watercraft may treat the seaplane as an IWatercraft, because Seaplane implements methods that a watercraft must have. The same applies to IAircraft.

The negative side of interfaces is that a class does not inherit any code and must provide its own implementation, although it may inherit an implementation from the topmost class.

Interfaces may be nested inside interfaces. Interfaces may also be nested inside classes and classes may be nested inside interfaces. This works fine, since the nested type is not associated with an instance of the outer type.

8.1 Implementing Interfaces XE "Interfaces:Implementation"
A class may implement an interface by adding the interface name after the optional implements XE "implements" keyword in the class declaration. Any number of interface names separated by comma may be listed after the implements keyword.

	<classHead> ::=

	 <classAttr>* <id> [extends <typeReference>] [implements <typeReference> [, <typeReference>]*]

A class that declares that it implements an interface but does not provide an implementation for all the virtual methods declared by the interface must be declared to be abstract.

Interfaces are referenced in the same way as class types.

Interfaces cannot extend other classes, but they may require a class that implements the interface to also implement a set of other interfaces. To do this, an interface declares that it implements one or more other interfaces. This is done in the same way as for classes using the implements keyword. Note that the word implements is a little bit misleading. It refers to the class that eventually implements the interface. An interface can not provide any implementation itself. The class implementing the interface does not need to declare that it also implements the interfaces required by the interface it implements, although it may do so. The difference is subtle. (see section 8.1.1)

Example:
The following class implements the interface IStartStopEventSource defined in the module Counter.dll.

.class private auto autochar StartStopButton extends [System.WinForms]System.WinForms.Button implements [.module Counter.dll]IStartStopEventSource {

// body of class

}

8.1.1 Implementation Requirements

When a class declares that it implements an interface the EE follows a simple set of rules to determine which method definition will be used. A MethodImpl XE "MethodImpls" (see also section 8.1.2) can be used when the default behavior does not capture the programmer’s intention.

The implementation of virtual methods may be provided by:

· directly specifying an implementation

· inheritance from its parent class

· use of an explicit MethodImpl (see section 8.1.2).

A method definition is said to be a matching method definition XE "Matching method definition" for a method declared by an interface, if it is a virtual method with the same calling convention, return type, and the same order of parameter types as the method declared by the interface.

The detailed rules for determining which method body implements a particular interface method are as follows:

Suppose an interface I requires the implementation of method Foo(), and class A implements I. Then,

1. if A provides a MethodImpl for I::Foo():
the MethodImpl specifies the method body to use. If a MethodImpl is supplied but the body is not a matching method definition, a System.TypeLoadException is generated.

2. otherwise, if A itself provides a matching method definition for a public method named Foo:
use that method

3. otherwise, if the immediate parent of A implements the same interface and provides an implementation for I::Foo():
use whatever implementation A’s parent provides,

4. otherwise, if any parent of A provides a matching method definition for a public method named Foo:
use the method from the closest parent, even if that parent does not implement the interface,

5. otherwise:
leave the slot empty if class A is abstract or generate a System.TypeLoadException if class A is concrete.

8.1.2 MethodImpls

MethodImpls XE "MethodImpls" are a mechanism used to explicitly specify, for a given class, what method definition should be used to implement a virtual method.

A MethodImpl consists of two parts, both of which are MethodRefs XE "MethodRef" . The first MethodRef specifies the method to be implemented and the second specifies the implementing method. Both methods must have a matching signature, which means that except for their names and declaring type their signatures must be equivalent.

MethodImpls can be used to specify the implementation of a method declared by an interface. This way of specifying a method implementation is especially appropriate if a class implements several interfaces and each declares a method with the same name. If MethodImpls are not used, both method declarations will be implemented by the same method. If this is not desired, MethodImpls can be used to provide methods with different names for the two interfaces.

In V1 of the CLR, the implementing MethodRef cannot refer to an inherited method implementation. It must refer to a method declaration inside the class that declares the MethodRef. However, the method may override a method of its superclass or may be overriden by subclasses. The MethodDecl XE "MethodDecl" inside the class may also be an abstract method which is implemented by a subclass.

In the ilasm syntax, MethodImpls are declared using the .override XE ".override" directive which is discussed in section 7.6.3.1. MethodImpls are also described in section 11.1.

8.2 Defining Interfaces

Interface definitions XE "Interfaces:Definitions" are very similar to class definitions (see 7.4
). They are introduced with the .class XE ".class" directive but contain the interface XE "interface" attribute.

Compared to classes, interfaces are subject to various constraints:

· all methods must be either virtual or static
· all virtual methods must be abstract and public
· no instance fields are allowed

· interfaces must be abstract and cannot be instantiated

· interfaces may not inherit from a class

Interfaces may have static methods, which must have an implementation for them. This is used, for example, to provide a type initializer for the interface to initialize its static fields.

However, it is not CLS compatible for interfaces to have static methods other than a type initializer (named .cctor and marked with both specialname and rtspecialname).

Example:

.class interface public auto autochar CountDisplay {

.method public abstract virtual void SetCount(int32 count) {}

.method public abstract virtual int32 GetCount() {}
}
The interface CountDisplay is defined with two members. The description of the attributes can be found in section 7.4.2.

9 Value Types

In contrast to reference types (section 7), value types XE "Value types" are not accessed by using a reference, but are stored directly in the location occupied by the variable that declares the value type.

Typically, value types are used to describe the type of small data items. Often, value types will be used as the type of a local variable. Value types are useful for stack allocated data, since their creation is fast. However, they can also be useful as the type of fields in heap allocated data. Compared to reference types, value types are accessed faster since there is no additional indirection involved.

Value types are inappropriate to use if inheritance is desired, if changes to local data need to be visible across method boundaries, or if the size of the data is fairly large.

Typical value types are complex numbers or dates. A typical non-value type would be a Window.

Value types have the same set of members as reference types:

· fields

· methods

· properties

· events

Similar to reference types, all members may be instance or static. Value types may have virtual methods. These are used to override virtual methods defined in System.ValueType or System.Object or to provide implementations for methods declared by interfaces.

The CLR does not support subtyping of value types. Value types may not have any subtypes and must be declared sealed.

As the name implies, value types are passed by value in method calls, which means that a new copy of the value will be created for the called method.

A value type may be converted into a reference type by a process called boxing. In this representation it is said to be in its boxed form. A boxed value type may be converted back into its value type representation, the unboxed form, by a process called unboxing. More about boxing and unboxing can be found in section 9.5.

All boxed value types inherit from the base class System.ValueType XE "System.ValueType" , which is a subclass of System.Object XE "System.Object" . This relationship between value types and reference types creates a unified type system in which all types may be treated as subtypes of System.Object.

Similar to reference types, value types may be nested. Value types may have nested classes and interfaces and classes and interfaces may have nested value types. This does not cause any problems since a nested type is not associated with any instance of the outer type.

Value types may declare that they implement interfaces, but the implementation is only effective in their boxed form. Only the boxed form can be used as an instance of the interface type.

When a value type is defined, a corresponding type that describes the boxed form of the value type will be automatically created by the runtime. In version 1 of the CLR, this type cannot be directly represented in metadata, so System.Object or any interface implemented by the value type has to be used as the type of all boxed value types and only members of System.Object or a member of an implemented interface can be used with the boxed form of a value type.

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinst XE "isinst" instruction on unboxed value types. The isinst instruction may be used for boxed value types. E.g., the isinst instruction may be used with System.ValueType to check whether the top of the stack is a reference to a boxed value type.

Unboxed value types may not be assigned the value null and they may not be compared to null XE "null" .

Value types support layout control in the same way as reference types do (see section 7.8). This is especially important when values are imported from native code.

9.1 Referencing Value Types

 XE "Value types:Referencing" The unboxed form of a value type is referred to by using the value XE "value" class XE "class" keyword followed by a type reference. The type reference is resolved to a type definition token either at load time, or if possible at compile time. The following grammar defines value type references:

	<valueTypeReference> ::=

	 value class <typeReference>

The boxed form of a value type is referenced using class System.Object XE "System.Object" . (becomes simply object in Beta-2)
Example:

The following example declares the variable size of type System.Drawing.Size which is a value type:

value class [System.Drawing]System.Drawing.Size size

9.2 Instantiating Value Types

 XE "Value types:Instantiating" A value itself is already an instance of a value type. Instances of value types are stored in local variables, fields, and method arguments. The value type is instantiated when memory is allocated for the local, field, or argument. In addition, instances of value types may be also be directly created on the stack (e.g. by using ldc).

Value types are initialized with the initobj XE "initobj" instruction. The initobj instruction zeroes out all instance fields of a value type. The static fields are initialized when the value type is loaded.

The initobj instruction expects a managed pointer to an instance of the value type. initobj specifies the value type to be initialized as part of the instruction. The instruction does not return anything on the stack. If a value type is used without calling initobj first, the values of its instance fields may have any value.

Value types may have any number of initializers. Similar to instance constructors of classes, an initializer is named .ctor and has the attributes rtspecialname and specialname, which mark a special name for the runtime and for other compilers and tools, respectively. The initializer is not automatically called by the initobj instruction and should be explicitly called after the initobj instruction.
Verification requires that all fields of a value type be written before they are read or a pointer to an instance of the value type is passed to a method other than an initializer of the value type. Every initializer of the value type is required to store into every field of the value type (this applies recursively, when one value type is embedded as a field of another value type).

Tools are urged to insert calls to the initializer, but this is not required. Programmers who expect their value types to be used from another language must be prepared to handle the case where the state has been zeroed but no initializer has been called.

If a value type has an initializer, an instance of its unboxed type can be created as is done with classes. The newobj instruction is used along with the initializer and its parameters to allocate and initialize the instance. The newobj does not require any pointer to a variable of the value type. The instance of the value type will be allocated on the stack. Unlike the initobj instruction, the newobj does call the initializer. It takes the a reference to the initializer as part of the instruction.

The Base Class Library provides the method System.Array.Initialize() XE "system.Array.Initialize" to zero out all instances in an array of unboxed value types.

Example:

The following code initializes the value type variable declared in the example in section 9.2:

ldloca
size

// load address of local variable

initobj
value class [System.Drawing]System.Drawing.Size

ldloca
size

// load address for initializer (argument 0)

ldc.i4
425

// load argument 1 (width)

ldc.i4
300

// load argument 2 (height)
call instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32)
// instance of value type is initialized

9.3 Defining Value Types

Similar to class types, the definition of value types is introduced by the .class directive and follows the same rules as for class types (see section 7.3) with the difference that the value attribute must be used. (the value attribute will be removed for type definitions in Beta-2) In addition, all value types must explicitly inherit from System.ValueType XE "System.ValueType" defined in the DLL mscorlib XE "mscorlib" . The only exception are enumerations, which are described in section 10.2.

Example:

The following example defines a value type to represent complex numbers. The value type provides an implementation of the ToString method that overrides the implementation given in System.Object.

.class value public sealed Complex {

.field public int32 re
// the real part

.field public int32 im
// the imaginary part

// create string of the form 1 + 2i, where 1 is re and 2 is im

.method virtual public hidebysig instance class System.String ToString() il managed {

.maxstack 4

ldarg.0

ldfld
int32 Complex::re

call
class System.String System.Int32::ToString(int32)

ldstr
" + "

ldarg.0

ldfld
int32 Complex::im

call
class System.String System.Int32::ToString(int32)

ldstr
"i"

// combine the pieces on the stack

call
class System.String System.String::Concat(class
 System.String, class System.String)

call
class System.String System.String::Concat(class

System.String, class System.String)

call
class System.String System.String::Concat(class

System.String, class System.String)

ret

// return combined string on stack

}

}

9.4 Methods of Value Types

 XE "Value types:Methods" Value types may have static XE "static" , instance XE "instance" and virtual XE "virtual" methods. static methods of value types are defined and called the same way as static method of class types.

While instance methods of class types expect a reference to an instance of the class as the first argument, all instance methods of value types, boxed or unboxed, expect a managed pointer to an unboxed instance of the value type as the first argument to the method. The same applies for virtual methods. This argument corresponds to the this pointer for value types and can be used to access the fields and call instance or virtual methods of the value type.

Both instance and virtual methods of a boxed or unboxed value type are called using the call XE "call" instruction. The callvirt XE "callvirt" instruction may not be used with unboxed value types.

However, since methods implemented for an interface can only be called using the callvirt instruction, all methods in a value type defined for an interface and thus declared virtual must be called using the callvirt instruction. This requires the value type to be in its boxed form, since callvirt is not allowed with its unboxed form. If the callvirt instruction is used, it is illegal to use the value type to refer to the method to be called. Only a superclass of the value class, e.g. System.Object, or an interface type may be used with the callvirt instruction as a type reference to specify the method to be called. Since value types do not have subclasses, a callvirt that would explicitly reference the value type would never make sense and is considered illegal.

There is a problem for virtual methods that override a virtual method of a superclass or that implement a method declared in an interface. Callers of the method that make the call using the superclass or the interface declaration do not know that the actual implementation is defined inside a value type. As a consequence, they will pass a reference to the boxed version of the value type as the first argument to the method. However, since the virtual method is in a value type, it expects a managed pointer to the unboxed instance of the value type as the first argument. This conflict is resolved by the EE. When a virtual method of a value type is called using the callvirt instruction, the caller is required to pass a reference to an instance of the boxed value type. Thus, from the callers point of view, there is no difference between calling a virtual method of a value type or class with the callvirt instruction. The EE will automatically unbox the this pointer reference and pass a managed pointer to the unboxed instance to the virtual method.

The following table summarizes the discussion in this section. It shows what the caller needs to push onto the stack for the first argument in order to call an instance or virtual method with the call instruction, or a virtual method with the callvirt instruction. The method of the value type will always expect an unmanaged pointer to an unboxed instance of the value type. The first column shows the kind of type reference the caller uses.

	
	Value Type (Boxed or Unboxed)
	Interface
	Class Type

	call
	managed pointer to value type
	illegal
	object reference

	callvirt
	illegal
	object reference
	object reference

Table 9.1: Type of this given IL instruction and declaring type of instance method.

Examples:

The following converts an integer of the value type int32 into a string. Suppose the integer is declared as:

.locals init (int32 x)
Then the call is made as shown below:

ldloca x

// load managed pointer to local variable
call instance class System.String System.Int32::ToString()
However, if System.Object is used as the type reference rather than System.Int32, the code becomes:

ldloc boxed_x

callvirt instance class System.String System.Object::ToString()
9.5 Boxing and Unboxing

If data of a value type needs to be assigned to a memory location of type System.Object or an interface type, e.g. as part of a method call, it first needs to be converted into a reference type by boxing it.

An instance of an unboxed value type can be converted to an instance of the corresponding boxed type using the box XE "box" instruction. The box instruction takes the address of an instance of a value type, allocates space on the heap, copies the instance fields of the value type to the allocated space and returns a reference to the location on the heap. Since the box instruction requires an address, the instance of the value type must be stored in a local variable, argument, or field before the box instruction can be used. This requirement follows from the restriction that it is not possible to obtain an address to a value on the stack. The boxed version of the value type behaves like any other reference type. However, since its exact type is not accessible, only members of System.Object XE "System.Object" are accessible in the boxed version. In order to access members specific to the value type, the boxed form needs to be unboxed first. The box instruction takes a type reference to the value type as part of the instruction. The following picture illustrates the box operation:

[image: image7.png]Heay

Heap or [T

19] potncer

ol

Box

|

Figure 9.1: box
An instance of a boxed value type can be converted to an instance of the corresponding unboxed type using the instruction unbox XE "unbox" . The unbox instruction takes a reference to the boxed version of a value type and returns a managed pointer to the actual data of the value type. The returned pointer will point to data of the actual value type, such that all members of the value type are accessible and can be modified. Notice that the unbox instruction does not do a copy. The result of unbox shares state with the original object. The unbox instruction takes a type reference to the value type as part of the instruction. The following picture illustrates the unbox operation:

[image: image8.png]o or
c

Figure 9.2: unbox

The result of unbox can be stored in a local variable using the cpobj XE "cpobj" instruction. cpobj copies a value type from a source to a destination, both of which must be declared to be value types. It expects the address of the source on top of the stack and the address of the destination as a second argument on the stack. Similar to unbox and box, the cpobj takes a type reference to the value type as part of the instruction.

There is one case in which the runtime will do the unboxing implicitly, which is discussed in section 9.4 and has to do with the callvirt XE "callvirt" instruction.
Both boxed and unboxed value types are marshal by value (not reference) and are not contextful. This means that value types, boxed or unboxed, are copied in remoting scenarios (across application domain boundaries) and thus do not have a strong notion of identity. Within a single application domain, but across contexts, boxed value types retain their identity.

For CLS compliance, the reference returned by the box instruction must be treated as a reference to an instance of System.Object. The reference needs to be explicitly cast to an interface type before assigning it to a variable that is declared to be of that interface type.

Examples:

The following code boxes the local myInt of type int32 and stores it in the local boxedInt of type System.Object:

ldloca myInt

// load address of myInt
box int32

stloc boxedInt

The following unboxes the boxed version of myInt and copies it back to myInt:

ldloca myInt

// load address of destination

ldloc boxedInt

// load reference of boxed type

unbox int32

// address of unboxed type on stack

cpobj int32

// copy into myInt

9.6 Copy Constructors on Value Types

Copy constructors XE "Copy constructors" are necessary if certain behavior needs to be executed when an instance of a value type is copied from one memory location to another.

A value type can have a copy constructor, which is simply an initializer (i.e. it is named .ctor XE ".ctor" and has the attributes specialname and rtspecialname). The copy constructor will receive the pointer as a argument. Typically, copy constructors do not declare other parameters. Further, a value type with a copy constructor should have the attribute not_in_gc_heap XE "not_in_gc_heap" associated with it.

The copy constructor is not called automatically by the runtime, and is not supported on boxed instances, i.e. the garbage collector will not call it.

Since the garbage collector only manages objects on the GC heap, the not_in_gc_heap attribute will prevent any problems associated with movement of the value type. However, it has also some restrictions associated with it. Instances of value types marked with not_in_gc_heap
· may not be assigned to fields of classes, fields of value types that aren’t also marked not_in_gc_heap, or static variables

· may not be boxed

since both of the above would move the instance to the GC heap.

For classes that have a copy constructor, the compiler must insert code to do the copy construction as appropriate. The x86 managed calling convention is that the caller makes the copy and then passes the address of that copy to the callee. This is unlike C++ where methods that take a copy-constructed parameter appear to be called by value.

In order to interoperate with unmanaged code that passes the copy constructed values on the stack, PInvoke XE "PInvoke" (platform invoke) may call the copy constructor an additional time to construct a copy on the unmanaged stack. This behavior is triggered (if needed) by a particular custom modifier applied to the parameter which must be copy constructed. This modifier, Microsoft.VisualC.NeedsCopyConstructorModifier, may only be placed in front of a parameter whose type is a managed pointer to a value type.

For CLS compliancy, copy constructors may not be used.

Example:

The following defines a copy constructor for the value type Complex given in example 9.7.2:

.class value not_in_gc_heap public sealed Complex {

.method public hidebysig rtspecialname specialname instance void .ctor() il managed {

// body of copy constructor

}
}
9.7 Using Value Types for C++ Classes

 XE "Value types:For C++ classes" Where possible, languages that provide features in their object system not directly supported by the CLR should use value types with visible field members to represent their classes. The following rules, designed for compiling C++ to IL, expose as many features of the underlying object model to other languages as is possible with the CTS.

For C++, the trick is that managed languages will import C++ classes as value types and will see C++ virtual and instance methods on those types as static methods with an explicit unmanaged this pointer. The C++ compiler is fully responsible for handling multiple inheritance, so other languages can use methods that are defined in C++ using multiple inheritance even though they could not define such methods themselves. In addition, because value types are sealed, it is not possible to extend frameworks created in C++ in another language.

Similar rules can be devised for many other languages.

9.7.1 Representation of a Class as a Value Type

First, a custom attribute needs to be defined, possibly in a reserved part of the System namespace, to indicate that a value type is a CTS representation of a language-specific class. The custom attribute may have fields that provide more information of use to a browser that understands the language-specific semantics. All value types that represent unmanaged classes need to be marked with instances of this custom attribute.

Then the object layout has to be described in form of a value type, possibly with explicit layout control. Static methods, static fields, and instance fields can be defined on the value class directly. There will be necessarily a field for a pointer to the VTable and all constructors for the class must store the appropriate value (see below) into this field.

Instance and virtual methods have to be converted to static methods with one more parameter than the original C++ method had. This additional parameter is the first parameter, functions as the this parameter, and its type is an unmanaged pointer to the value type. These methods should have a custom attribute attached so that browsers (and the C++ compiler itself) can distinguish true static methods from these introduced static methods.

The method body for instance and virtual methods has access to the pointer to the original object through its first parameter, through which it can access the VTable, and via the VTable the function pointers to the virtual methods. The compiler can use explicit address arithmetic to adjust the address of the object or VTable to handle multiple inheritance, etc. The calli instruction is used to call through the function pointers in the VTable.

Classes that have user supplied copy constructors or destructors cannot be boxed, cannot be fields of managed types, and cannot be passed by value directly. For this reason the not_in_gc_heap attribute should be used to prevent the instance of the value type to be moved to GC heap. C++ classes that do not have a copy constructor are usable by other languages just as any other value type would be and should not set this bit. Copy constructors are also further described in section 9.6.

9.7.2 Representation of the VTable

The VTable itself is represented as the value of a static variable with specified RVA (relative virtual address). The type of this variable is a class with a unique mangled name (or a type nested within the object’s type), explicit layout, and with named fields that are function pointer types to native method implementations.

The data for the VTable is stored in the data section of the PE file and the appropriate fixups must be stored in the CLR header within the PE file. If unmanaged compatibility is required the entries may be forced to be 32 bits wide and the PE file header marked for 32-bit architectures only. Otherwise, the entries should be 64 bits wide. See also the description of vtfixup in section 7.8.2.

10 Special Types

10.1 Arrays

An array XE "Array" is a contiguous memory block that stores an indexed collection of values of the same type. The CLR has partially built-in support for arrays, including multidimensional arrays.

Arrays that have only one dimension and are zero based (i.e. the first element is at index zero) are called vectors. Even though the runtime has support for multidimensional arrays and arrays with a specified lower and upper bound, the execution engine has only built in instructions for dealing with vectors. The .NET Framework provides services to create arrays which are not vectors.

The following sections discuss vectors, general arrays, and arrays of arrays.

CLS Note XE “CLS Restrictions” : CLS-compliant tools are only required to support arrays whose elements are of types supported by the CLS and which have zero lower bounds for all dimensions. For a CLS consumer there is no need to accept arrays of other types. For a CLS extender there is no need to provide syntax to define other types of arrays or to extend interfaces or classes that use other array types. For a CLS framework other array types may not appear in exposed members.

10.1.1 Vectors

10.1.1.1 Declaring Vectors

Vectors XE "Vectors" are declared by providing the type of the elements followed by brackets.

	<type> ::=
	Section

	 <type> []
	

	| …
	5.3

The type of the elements may be any subtype of System.Object XE "System.Object" (including System.Object itself) and any boxed or unboxed value type. This includes Delegates, and function pointers (see example below). Pointer types are not allowed as an element type in the first version of the CLR.

The vector itself is an instance of a special array type that defines the vector. If necessary, the VES (Virtual Execution System, see CTS Spec) creates this special array type automatically.

The special array type is an object type. It is always a subtype of System.Array, which is a subtype of System.Object. The operations on an array type are defined by the CTS. These include indexing the array to read and write a value and computing the address, obtained in form of a managed pointer, of an element of the array. The System.Array XE "System.Array" type supports additional operations which are discussed in section 10.1.1.4.

Example:
A vector of Strings:

class System.String[] errorStrings

(becomes: string[] errorStrings in Beta-2 if a signature)
Example:
A vector of function pointers:

.field method instance void*(int32) [0..5] myVec

10.1.1.2 Creating Vectors

Vectors are created using the newarr XE "newarr" instruction. Note that the newarr instruction can only be used to create vectors and not other types of arrays. The newarr instruction expects the type of the elements as part of the instruction and an unsigned 32 bit integer specifying the size of the vector on the stack. The instruction returns a reference to the array on the stack.

Example:

ldc.i4.4

newarr
class System.String

stfld
class System.String[] CountDownForm::errorStrings

(in Beta-2, becomes:

ldc.i4.4

newarr
class System.String // no change!

stfld
string[] CountDownForm::errorStrings // change!)
The instructions above create a zero based array with size 4. The maximum index in the array is 3. The next instruction stores this array in a dedicated memory location.

10.1.1.3 Using Vectors

The most common operations on arrays is to index them to retrieve an element or to set the value of an element. The CLR has special instructions that implement these operations for vectors.

The instruction ldelem XE "ldelem" is used to load an element of the vector onto the stack. ldelem expects the type of the elements as a postfix and a reference to the vector and an unsigned 32 bit integer specifying the index of the element to load on the stack. The instruction returns the element on the stack. The complete list of ldelem instructions can be found in section 18.

The instruction stelem XE "stelem" is used to store a value in the vector. Similar to ldelem, stelem expects the type as a postfix and a reference to the vector, the index, and value to store on the stack. The complete list of stelem instructions can be found in section 18.

The instruction ldelem has a corresponding instruction ldelema XE "ldelema" that loads the address of an element rather than the element itself.

There is a special case for value types. To access a value type in an array, the address of the array element needs to be loaded via ldelema and then the value type can be loaded using ldobj XE "ldobj" . To store a value type, first the address of the element is loaded with ldelema and then stobj XE "stobj" is used. More about these instructions can be found in section 18.5.

All three instructions throw a System.NullReferenceException XE "System.NullReferenceException" if the array on the stack is null. The instructions throw a System.IndexOutOfRangeException XE "System.IndexOutOfRangeException" if the index is greater or equal to the size of the vector. An System.ArrayTypeMismatchException XE "System.ArrayTypeMismatchException" is thrown if the array does not hold elements of the required type. Note that the index value is treated as an unsigned value.

The instruction ldlen XE "ldlen" may be used to obtain the length of a vector. It takes the array on the stack and returns the length as a 32 bit integer on the stack. The instruction throws a System.NullReferenceException if the array on the stack is null.

Examples:

ldfld
class System.String[] CountDownForm::errorStrings

ldloc
errorCode

ldelem.ref

The instructions above load a vector, an index and use ldelem to retrieve the element. The postfix .ref is used since strings are reference types.

ldfld
class System.String[] CountDownForm::errorStrings

ldc.i4.1

ldstr
"Number must be positive!"

stelem.ref

The code fragment above loads a vector, the index of the second element, a string, and stores the string in the vector using stelem.ref.

10.1.1.4 Methods of Vectors

Array types form a hierarchy, with all array types inheriting from the type System.Array. This is an abstract class in mscorlib.dll XE "mscorlib.dll" that represents all arrays.

The class System.Array defines a number of methods that can be used to apply operation to the array. E.g., the class defines methods to retrieve the length of the array, copy the array, reverse the array, or sort the elements of the array among other operations.

More information can be found in the Base Class Library documentation.

Example:

ldloc
myVector

call
instance int32 [mscorlib]System.Array::get_Length()

call
void [mscorlib]System.Console::WriteLine(int32)
The code above loads a reference to a vector and calls the method get_Length() to obtain the length of the array.

10.1.2 General Arrays

There are no IL instructions to handle arrays which are not vectors, but they are still supported by the runtime. In contrast to vectors, general arrays may have any bounds. The following sections discuss how general arrays are declared, created, and used.

10.1.2.1 Declaring General Arrays

The rank XE “rank” of an array is defined to be the number of dimensions of the array. The CLR does not support arrays with rank 0.

General arrays XE "General arrays" are defined in a way similar to vectors. However, they must declare their rank and optionally may restrict their bounds.

	<type> ::=
	Section

	 <type> [[<bound> [,<bound>]*]]
	

	| …
	5.3

The rank of the array is declared by using commas (“,”) between the brackets. The number of commas plus one is equal to the rank of the array. For example, no commas means that the rank equals to one, one comma means that the rank equals to two, five commas means the rank equals to six, etc.

Array declarations have the following choices to declare the bounds for each dimension:

· No bounds declaration, lower bound is assumed to be zero.

· Declaration of upper bound only, lower bound is assumed to be zero.

· Declaration of lower bound only

· Declaration of both lower and upper bounds.

	<bound> ::=
	Description

	 ...
	lower and upper bound are unspecified

	| <int32>
	zero lower bound, <int32> upper bound

	| <int32> ...
	lower bound only specified

	| <int32> ... <int32>
	both bounds specified

While vectors have a type based on the type of the elements in the array, regardless of the upper bound, arrays with more than one dimension or one dimension but with non-zero lower bound have the same type if they have the same element type and rank, regardless of lower and upper bound of the array. This array type is created on the fly by the execution engine as required.

Note that ILASM allows you to declare array variables with this rich syntax, providing some lower bounds, missing out others, etc. However, in Version 1, CLR largely ignores this information – in effect, all it pays attention to is the rank of that array variable. Just to be clear – when you define an instance of an array (using the newobj instruction, detailed later), you must supply the actual upper and lower bounds for each dimension – you cannot miss any out. Thereafter, when you bind this new object to your array variable, the CLR ignores all the bounds information you gave to that variable – so long as its rank is the same (and the array <type> is assignment-compatible of course), the bind will be accepted.

The following table shows examples of array declarations – note carefully that only the first results in a vector – all the others, despite what you might have guessed, result in a general array
	Array Declaration
	Array Type

	int32[]
	vector of int32

	int32[0...5]
	array of int32, rank 1

	int32[...]
	array of int32, rank 1

	int32[0...]
	array of int32, rank 1

	int32[5]
	array of int32, rank 1

	int32[,]
	array of int32, rank 2

	int32[0...3,...]
	array of int32, rank 2

	int32[1...,0...]
	array of int32, rank 2

Only arrays which have zero lower bounds in all their dimensions are CLS compliant. [vectors are therefore, of course, all CLS compliant]

10.1.2.2 Creating General Arrays

The newarr instruction can not be used to create arrays other than vectors. However, when an array is declared the execution engine will create a type for the array which can be used to construct the array.

The declared array type may be used to access the members of the array type. The execution engine defines two constructors for each array type. One of them takes the same number of unsigned 32 bit integers as arguments as the rank of the array. Each of the arguments specifies the number of elements for each dimension of the array, starting with the first dimension.

The other constructor takes twice as many arguments as the rank of the array. The first argument is the lower bound for the first dimension and the second argument is the length of the first dimension. The third argument is the lower bound of the second dimension and the fourth is the length of the second dimension, and so on. Every even numbered argument (starting at zero) specifies the lower bound, while every odd numbered argument specified the length for a certain dimension.

While the second contructor declares the lower bounds, the first constructor sets the lower bounds automatically to zero.

Note: The declaration of the bounds is for documentation purposes only and will not affect the runtime or verification. Only the choice of the constructor determines if the array has lower bounds zero or some specified lower bounds.

The following table shows some constructors:

	Array Declaration
	Constructors

	int32[]
	void int32[]::.ctor(int32)

	
	void int32[]::.ctor(int32,int32)

	float32[1...5]
	void float32[1...5]::.ctor(int32)

	
	void float32[1...5]::.ctor(int32, int32)

	class System.String[,]
	void class System.String[,]::.ctor(int32, int32)

	
	void class System.String[,]::.ctor(int32, int32, int32, int32)

	int32[0...,1...5,...]
	void int32[0...,1...,...]::.ctor(int32, int32, int32)

	
	void int32[0...,1...,...]::.ctor(int32, int32, int32, int32, int32, int32)

Example:
Assume the following array is declared:

int32[5...10,3...7] myArray

The following code creates an instance of the array. Note that the length for each dimension has to be computed according to the formula upper bound – lower bound + 1. This formula assumes that the bounds are inclusive.

ldc.i4.5
// load lower bound, dim 1

ldc.i4.6
// load upper bound - lower bound + 1, dim 1

ldc.i4.3
// load lower bound, dim 2

ldc.i4.5
// load upper bound - lower bound + 1, dim 2

newobj instance void int32[5...10,3...7]::.ctor(int32, int32)

stloc myArray

10.1.2.3 Using General Arrays

In addition to the constructor, the execution engine defines the instance methods Get and Set for the declared array type. These methods take the same number of arguments as the rank of the array, each of them a 32-bit integer specifying the index of the element for each dimension starting with the first dimension. The method Set takes an additional argument that specifies the value to store and has the same type as the type of the elements.

The following tables shows some examples of the Get and Set methods:

	Array Declaration
	Get Method

	int32[]
	void int32[]::Get(int32)

	float32[1...5]
	void float32[1...5]::Get(int32)

	class System.String[,]
	void class System.String[,]::Get(int32, int32)

	int32[0...,1...5,...]
	void int32[0...,1...,...]::Get(int32, int32, int32)

	Array Declaration
	Set Method

	int32[]
	void int32[]::Set(int32, int32)

	float32[1...5]
	void float32[1...5]::Set(int32, float32)

	class System.String[,]
	void class System.String[,]::Set(int32, int32, class System.String)

	int32[0...,1...5,...]
	void int32[0...,1...,...]::Set(int32, int32, int32, int32)

The index must be within the range specified at construction time.

The next section will introduce more methods that are defined for arrays.

Examples:

Assume the following array is declared:

int32[5...10,3...7] myArray

The following example stores the value 25 at position [6,7], i.e. myArray[6,7] = 25.

ldloc
myArray
// load instance to array
ldc.i4 10

// desired index for dim 1
ldc.i4.7

// desired index for dim 2

ldc.i4 25

// value to be stored in element

int32[5...10,3...7]::Set(int32,int32,int32)
The following example retrieves the value at position [6,7], i.e. myArray[6,7] .

ldloc myArray
// reference to an instance of the array on stack
ldc.i4 6

// desired index for dim 1
ldc.i4.7

// desired index for dim 2
call instance int32 int32[5…10,3…7]::Get(int32,int32)
// The value retrieved from the

array is on stack

10.1.2.4 Methods of General Arrays

Similar to vectors, all general arrays are subtypes of System.Array XE "System.Array" (see also 10.1.1.4). All members of System.Array are inherited to the specific array types created by the execution engine on the fly. These members can be used to obtain further information on the array, e.g. the size of a specific dimension, or do certain operations on the array, e.g. sort the elements.

More information on these members can be found in the Base Class Library documentation.

10.1.3 Arrays of Arrays

Arrays of arrays XE "Arrays of arrays" are different then multi dimensional arrays. While multi dimensional arrays form one memory block, arrays of arrays are arrays that reference other arrays.

The following graphs illustrate this:

[image: image9.png]

[image: image10.png]AL

b

O

Figure 10.1: A 2 Dimensional array
Figure 10.2: An array of arrays

In figure 10.2, not one but 5 arrays were created. The vertical array is an array of arrays and references the horizontal arrays. As can be seen in the figure, several references may exist to the same array. In figure 10.1, there is only one memory block. Verifiable code cannot reference a sub-array inside the array.

While in the case of arrays of arrays an additional indirection is needed to reach the final element, the location of the element can be calculated directly in multi dimensional arrays. This has performance advantages, especially for large dimensions. Further, multi dimensional arrays make pointer arithmetic possible, since the range of memory that contains all of the elements is well known.

On the other hand, all dimensions of a multi dimensional array must be of the same size. In the case of arrays of arrays, it is possible to reference arrays with different sizes.

The syntax for arrays of arrays easily follows from the previous sections. The only difference is that the elements are arrays themselves. The following sections give a summary and some examples.

The execution engine creates a special type for arrays of arrays on the fly, in the same way it is done for regular arrays.

10.1.3.1 Declaring Arrays of Arrays

The syntax for the declaration of an array of arrays follows recursively from the syntax for general arrays. An array of arrays is declared by using an additional pair of brackets. This may be repeated to declare an array of arrays of arrays, etc.

Example:

int32[][][] arrayOfArraysOfIntArrays

In the example above, an array is declared that has elements of type array, which also have elements of type array, which have element type int32.

10.1.3.2 Creating Arrays of Arrays

Arrays of arrays can be treated as vectors as appropriate or as general arrays. The syntax for creating arrays of arrays follows from the discussion of general arrays in section 10.1.2.2 and 10.1.2.3.

The following example illustrates this using the syntax for general arrays.

Example:
Suppose the following array is declared:

int32[][][] myArray

Then the following code creates my Array, sets the first element to be an array of array of integers, and the second element of the latter array to be an array of integers.

ldc.i4.5

// Size of myArray
newobj instance void int32[][][]::.ctor(int32)
stloc
myArray
// myArray is created
ldloc
myArray
// start creating an int32[][] to store in myArray
ldc.i4.0

// index to store int32[][]
ldc.i4.3

// size of int32[][]
newobj instance void int32[][]::.ctor(int32)

// int32[][] created, now store it in the int32[][][]

call instance void int32[][][]::Set(int32, int32[][])
ldloc
myArray
// start creating an int32[] to store in int32[][]
ldc.i4.0

// retrieve reference to int32[][]
call instance int32[][] int32[][][]::Get(int32)
ldc.i4.1

// index to store int32[]
ldc.i4 10

// size of int32[]
newobj instance void int32[]::.ctor(int32)
// int32[] created, now store it in the int32[][]

call instance void int32[][]::Set(int32, int32[])
10.1.3.3 Using Arrays of Arrays

When using arrays of arrays, they may be treated like vectors or general arrays, whichever is more appropriate. However, they should be treated in a consistent way. Arrays of arrays inherit from the class System.Array and may use all of its members to do the operations defined by that class.

The following example uses the syntax of general arrays to store and retrieve an integer in the array created in the example in section 10.1.3.2.

Example:

The following represents the operation myArray[0][1][5] = 100

ldloc myArray
// load reference to myArray
ldc.i4.0

// retrieve myArray[0]
call instance int32[][] int32[][][]::Get(int32)
ldc.i4.1

// retrieve myArray[0][1]
call instance int32[] int32[][]::Get(int32)
ldc.i4.5

// store the value at myArray[0][1][5]
ldc.i4 100

call instance void int32[]::Set(int32, int32)
The following represents the expression myArray[0][1][5]

ldloc myArray
// load reference to myArray
ldc.i4.0

// retrieve myArray[0]
call instance int32[][] int32[][][]::Get(int32)
ldc.i4.1

// retrieve myArray[0][1]
call instance int32[] int32[][]::Get(int32)
ldc.i4.5

// retrieve myArray[0][1][5]
call instance int32 int32[]::Get(int32)
10.2 Enumerations

An enumeration XE "Enumerations" defines a set of symbols that all have the same type. A variable declared to be of the enumeration type should only be assigned a symbol that belongs to the set of symbols of the enumeration. E.g., an enumeration days of week would contain the names of the days as symbols, i.e. Monday, Tuesday, etc.

All enumerations inherit from the class System.Enum XE "System.Enum" and must explicitly indicate this in their definition. System.Enum inherits from System.ValueType XE "System.ValueType" . As a consequence, enumerations are value types and all rules that apply for value types (see section 9) also apply for enumerations. E.g., enumerations have boxed and unboxed forms and may not have any subclasses.

The symbols of an enumeration are represented by an integral type, like int32. Any of the integer types can be selected as the underlying representation XE "Enumerations:Underlying representation" of the enumeration. The first version of the CLR does not support an underlying representation for enumerations other than integers.

The CLR does not provide a guarantee that values of the enumeration type are integers corresponding to one of the symbols (unlike Pascal).

Enumerations are subject to a series of restrictions in addition to the restrictions imposed by the fact that they are value types:

· Enumerations may not contain any members other than fields, not even constructors or type initializers

· As a consequence of the above, enumerations may not implement any interfaces

· Enumeration may not have sequential or explicit field layout, they must have auto field layout (see 7.4.2.2)

· All enumerations must have an instance field of the underlying type as described below

· All fields of an enumerations, except the value field, must be static and literal
· Enumerations may not be initialized with the initobj instruction, they need to be explicitly assigned a value.

All enumerations must declare a single instance field. This field must be of the underlying type of the enumeration. In addition the field must be marked with rtspecialname and specialname. To be useful, the field should be accessible by all users of the enum and typically is public.

CLS note: The field must be named value__ and all fields must be public.

The instance field stores the current value of an instance of the enumeration. This field is never directly accessed. The runtime will automatically take care of setting or retrieving this value. To set or retrieve the value of an enumeration, the instance of the enumeration is used and not the field.

The static, literal fields of an enumeration declare the mapping of the symbols of the enumeration to the underlying integral type. Recall that the runtime does not allocate any memory for literal fields. literal fields are only metadata information and can only be queried by using reflection. All of these fields should have the type of the enumeration and should all have a field init metadata part that assigns a value of the underlying type to them (see section 12.2 for a description of field init metadata).

When used in a signature, enumerations must be marked as value class, since they are value types. For binding purposes enums are distinct from their underlying type. This is used, for example, during the mapping from a methodref to its corresponding methoddef.

For verification purposes and all uses within the execution engine, an unboxed enum automatically coerces to and from its underlying type.

Enums can be boxed to a corresponding boxed instance type. This type is not the same as the boxed type of the underlying type, so that the enum remains type distinct.

Because the unboxed form can be coerced to its underlying type and from there to any other enum with the same underlying type, an enum can be boxed to any corresponding type. The choice is dictated by the type used in the box instruction. Similarly, a boxed enum can be unboxed to the enum, its underlying type, or any enum that has the same underlying type.

Examples:

The following is a declaration of an enumeration:

.class value sealed serializable auto autochar public ErrorCodes extends [mscorlib]System.Enum {

.field public specialname rtspecialname unsigned int8 value__

.field public static literal value class ErrorCodes no_error = int8(0)

.field public static literal value class ErrorCodes format_error = int8(1)

.field public static literal value class ErrorCodes overflow_error = int8(2)

.field public static literal value class ErrorCodes nonpositive_error = int8(3)
}

The enumeration was declared serializable and autochar, but it does not need to be. However, it must be declared sealed, since it is a value type, and auto. The underlying type of the enumeration is an unsigned int8. Thus, it declares an instance field of that type named value__. Then, the symbols of the enumeration are listed as static, literal fields with the corresponding mapping to the underlying type.

The following is a declaration of a variable named errorCode of the enumeration shown above:

value class ErrorCodes errorCode

The code below stores a value in the enumeration:

ldc.i4.1

// store the value 1, (= format_error in metadata)
stloc
errorCode

The code below loads the value of the enumeration

ldarg
errorCode

10.3 Pointer Types

A pointer XE "Pointer types" contains the address of a memory location. Usually, this memory location contains a data item of a specific type. It follows that pointers need to be typed, too, in order to guarantee type safety. The CLR allows the use of generic pointers only in unverifiable code.

A pointer type is defined by specifying a location signature for the location the pointer references. Any signature of a pointer type includes this location signature. Hence, no separate definition of the pointer type is needed. A location signature XE "Location signature" contains the type of the data item and has special syntax that marks it as a pointer type.

While pointer types are reference types, values of a pointer type are not objects, and hence it is not possible, given a value of a pointer type, to determine its exact type. The CTS provides two type safe operations on pointer types:

· loading the value from the location referenced by the pointer

· storing an assignment compatible value into the location referenced by the pointer

The CTS also provides three type unsafe operations on pointer types (byte-based address arithmetic):

· adding integers to pointers

· subtracting integers from pointers

· subtracting one pointer from another

The results of the first two operations are pointers to the same type signature as the original pointer. See the IL Instruction Set specification for details.

CLS note: XE “CLS Restrictions” Unmanaged pointer types are not part of the CLS. For CLS consumers there is no need to support pointer types. For CLS extender there is no need to provide syntax to define or access unmanaged pointer types. In CLS framework, pointer types must not be externally exposed.

The syntax for declaring a pointer’s unmanaged type is as follows:

	<type> ::=
	Section

	 <type> &
	10.3.3

	| <type> *
	10.3.4

	| …
	5.3

The & indicates a managed pointer, while the * indicates an unmanaged pointer.

For pointers into the same array or object (see the EE Architecture Specification), the following arithmetic operations are defined:

· Adding an integer to a pointer, where the integer is interpreted as a number of bytes, results in a pointer of the same kind.

· Subtracting an integer (number of bytes) from a pointer results in a pointer of the same kind. Note that subtracting a pointer from an integer is not permitted.

· Two pointers, regardless of kind, can be subtracted from one another, producing an integer that specifies the number of bytes between the addresses they reference.

None of these operations is allowed in verifiable code.

It is important to understand the impact on the garbage collector of using arithmetic on the different kinds of pointers. Since unmanaged pointers never reference memory that is controlled by the garbage collector, performing arithmetic on them can endanger the memory safety of the system (hence it is not verifiable) but since they are not reported to the garbage collector there is no impact on its operation. Similarly, transient pointers are not reported to the garbage collecor and arithmetic can be performed without impact on garbage collection. (see section 10.3.4)

Managed pointers, however, are reported to the garbage collector. As part of garbage collection both the contents of the location to which they point and the pointer itself can be modified. The garbage collector will ignore managed pointers if they point into memory that is not under its control (the evaluation stack, the call stack, static memory, or memory under the control of another allocator). If, however, a managed pointer refers to memory controlled by the garbage collector it must point to either a field of an object, an element of an array, or the address of the element just past the end of an array. If address arithmetic is used to create a managed pointer that refers to any other location (an object header or a gap in the allocated memory) the garbage collector’s operation is unspecified.

Pointers are compatible with the int64 and, on 32-bit architectures, with the int32 type. They are best considered as unsigned int, whose sites vary based on architecture.

10.3.1 Obtaining and Using an Address

 XE "Address" Most of the load instructions have a corresponding instruction that has the same name as the load instruction but ends with an “a” and loads the address of the data item which the load instruction would load. In particular these instructions are:

	Instruction
	Description

	ldarga XE "ldarga"
	Load address of argument

	ldelema XE "ldelema"
	Load address of array element

	ldflda XE "ldflda"
	Load address of field

	ldloca XE "ldloca"
	Load address of local variable

	ldsflda XE "ldsflda"
	Load address of static field

Once a pointer is loaded onto the stack, the instruction ldind XE "ldind" may be used to load data indirectly. ldind takes an address on the stack and return the value located at the address. ldind also takes the type of the instruction as a postfix. Ldind XE "ldind" is never verifiable.

Note that the runtime may throw an InvalidOperationException for a ldflda instruction if the obj is not within the current application domain. (An example would be where the object derives from System.MarshalByRefObject, where its field values are retrieved by a proxy from the actual target object)

More detail about these instructions can be found in section 18.

Example:

ldloc pString

// load pointer to string reference
ldind.ref

// reference to string is on stack

10.3.2 Unmanaged Pointers

Unmanaged pointers XE "Pointers:Unmanaged" are the traditional pointers used in languages like C and C++. There are no restrictions on their use, although for the most part they result in code that cannot be verified. While it is perfectly legal to mark locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how they are treated by the EE), it is often better to mark them as unmanaged pointers to a specific type of data. This is done by using * XE "*" in a signature for a return value, local variable or an argument or by using a pointer type for a field or array element.

· Unmanaged pointers are not reported to the garbage collector and can be used in any way that an integer can be used.

· It is best to think of unmanaged pointers as unsigned.

· Verifiable code cannot use unmanaged pointers to reference memory (i.e. it treats them as integers, not pointers).

· Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This is safe only if one of the following is true:

1. The unmanaged pointer refers to memory that is not in memory managed by the garbage collector

2. The unmanaged pointer refers to a field within an object

3. The unmanaged pointer refers to an element within an array

4. The unmanaged pointer refers to the location where the element following the last element in an array would be located

Example:

int32* pInt

10.3.3 Managed Pointers

Managed pointers XE "Pointers:Managed" (& XE "&") may point to a field of an object, a field of a value type, an element of an array, or the address where an element just past the end of an array would be stored (for pointer indexes into managed arrays). Managed pointers cannot be null, and they must be reported to the garbage collector even if they do not point to managed memory.

Managed pointers are specified by using & in a signature for a return value, local variable or an argument or by using a by-ref type for a field or array element.

· Managed pointers can be passed as arguments, stored in local variables, and returned as values.

· If you pass a parameter by reference, the corresponding argument is a managed pointer.

· Managed pointers cannot be stored in static variables, array elements, or fields of objects or value types.

· Managed pointers are not interchangeable with object references.

· A managed pointer cannot point to another managed pointer, but it can point to an object reference or a value type.

· Managed pointers that do not point to managed memory can be converted (using conv.u or conv.ovf.u) into unmanaged pointers, but this is not verifiable.

· Unverified code that erroneously converts a managed pointer into an unmanaged pointer can seriously compromise the integrity of the EE. This conversion is only safe if one of the following is known to be true:

1. The managed pointer does not point into the garbage collector’s memory area

2. The memory referred to has been pinned for the entire time that the unmanaged pointer is in use

3. A garbage collection cannot occur while the unmanaged pointer is in use, or the managed pointer refers to a pinned local variable

Example:

int32& pInt

10.3.4 Transient Pointers

Transient pointers XE "Pointers:Transient" are intermediate between managed and unmanaged pointers. They are created within the EE by certain IL instructions, but users cannot declare locations of this type. When a transient pointer is passed as an argument, returned as a value, or stored into a user-visible location it is converted either to a managed pointer or an unmanaged pointer depending on the type specified for the destination.

· The IL instructions that create transient pointers (ldloca XE "ldloca" , ldarga XE "ldarga" , ldsflda XE "ldsflda" when the type of the field is not an object) are guaranteed to produce pointers to data that is not in managed memory.

· Transient pointers need not be reported to the garbage collector, and they are automatically converted to managed or unmanaged pointers when necessary (during method calls or when stored into a local or argument that requires a managed pointer).

· Transient pointers can exist only on the evaluation stack within a single method.

· Verification treats transient pointers as managed pointers.

Example:

Assume that the local variable myLoc is declared

ldloca myLoc

// transient pointer is on stack

10.4 Method Pointer Types

The CLR supports method pointers. A method pointer XE "Method pointer" has a type, which is the signature of the method including its calling convention. Unlike other pointers, a method pointer points to the beginning of a method and not to a data item.

The following grammar shows the syntax for a method pointer type.

	<type> ::=
	Section

	 method <callConv> <type> * (<parameters>)
	

	| …
	5.3

Variables that have the type of the method pointer may store the address of the entry point to a method with compatible signature, which may be used to call the method.

A pointer to a static or (non-virtual) instance method is obtained with the ldftn XE "ldftn" instruction (see section 18.4). A pointer to a virtual method may be obtained by using the ldvirtftn XE "ldvirtftn" instruction (see section 18.4). Both instructions take the method definition token as part of the instruction and return a method pointer on the stack. In addition, the ldvirtftn instruction expects a reference to an instance of the class that defines the method, or one of its subclasses. In contrast to ldftn, ldvirtftn will return a pointer to an overridden version of the method if applicable.

A method may be called by using a method pointer with the calli instruction (see section 18.3.4). The calli XE "calli" instruction may be used with all method pointers independent of whether they were loaded with ldftn or ldvirtftn. The calli instruction expects all arguments to the method on the stack as defined by the method signature, including any instance references for instance and virtual methods. The first argument needs to be pushed first onto the stack. calli also expects the method pointer on the stack. The method pointer must be pushed last, i.e. it must be on top of the stack when calli is executed. If the method has a return value, it will be on top of the stack after the execution of the calli instruction.

Like other pointers, method pointers are compatible with the int64 and, on 32-bit architectures, with the int32 type. The preferred usage, however, is unsigned int.

Example:

ldarg.0

// load this pointer, method is defined by this class
ldvirtftn instance void StartStopButton::onClick(class System.Object, class [mscorlib]System.EventArgs)

// Method pointer is on stack

The code above load a pointer to a virtual method defined in the same class. If a subclass overrides the method, the overridden version will be loaded.

10.5 Delegates

A Delegate is perhaps best thought of as a self-describing function pointer. Recall that in unmanaged code, a function pointer is just a naked address. To call the target function, your assembler code must push the appropriate arguments, and then branch to that target address. But there’s no way to check that where you land expects the particular argument types you just pushed. All you provided was that naked address – you did not supply a signature that describes the function whose entry point lies at that address. In the managed world, such a call is inherently unverifiable.

A Delegate, on the other hand, associates a signature with a target address. Therefore, we can invoke the target method, and be sure we ‘land safely’.

Before launching into the details of Delegates in ILASM, here’s a simple example, written in a high-level managed language (C#) that should clarify the situation:

class Foo {

 private int val;

 public Foo(int v) {val = v;}

 public int Inc(int i) {return i + val;}

}

class Test {

 delegate int Calc(int i);

 static int Double(int i) {return 2 * i;}

 public static void Main() {

 int x;

 Calc a = new Calc(Double); x = a(7);

 Foo f = new Foo(5);

 Calc c = new Calc(f.Inc); x = c(7);

 }

}

We define a delegate called Calc – it takes a single int argument and returns an int. Then we invent a couple of methods with that same signature – a static method called Double and an instance method on a class Foo called Inc.

To use the delegate, we create an instance (called a) and attach it to the static method Double. We then invoke that method, giving it the argument 7, via our delegate.

Similarly, we create an instance of Foo, create another delegate instance (called b), and attach it to the instance method f.Inc. And again, we call Inc via our delegate.

Notice that we can attach our delegate to any old method we can access! – just so long as its signature matches that of our delegate. But unlike the use of function pointers in unmanaged code, the delegate technique ensures our code can be verified as type-safe.

In this example, we have called the delegate in a synchronous fashion – that’s to say, we call the method via the delegate, that method executes, and control then returns to the caller. But it’s possible to define delegates to provide asynchronous calls too – that’s to say, one thread calls the delegate and continues execution; the target method executes asynchronously (by a different thread) and informs the caller later, when it’s finished its work.

With this introduction to delegates over, the following sections discuss how delegates are declared, created and used.

10.5.1 Declaring Delegates

 XE "Delegates:Declaring" Delegates are reference types, and are declared in form of Classes. All delegates must inherit from System.Delegate. Delegates may not have subclasses, and so must be declared sealed. The only kind of members a Delegates may have are methods – they are not allowed to have fields, properties or events.

All Delegates must declare either two or four methods:

1. An instance constructor

2. An Invoke method XE "Invoke" (virtual)
3. A BeginInvoke method (optional, virtual) XE "BeginInvoke"
4. An EndInvoke method (if BeginInvoke is declared, virtual) XE "EndInvoke"
All methods must be declared runtime XE "runtime" and managed (see 11.5.5). The methods must not provide a body. The body will be automatically created by the CLR.

The constructor must take exactly two parameters. The first parameter is of type System.Object and the second parameter is of type void*. The first argument is an instance of the class (or one of its subclasses) that defines the target method. The reference encapsulates the environment of the method. The second argument is a method pointer to the method to be called.

The Invoke method must have the same signature as the target method – ie, it must have the same return type, the same parameter types, the same calling convention, and the same modifiers associated with the return type or parameters. The Invoke method defines what methods this Delegate represents.

The BeginInvoke method must always have the return type System.IAsyncResult XE "System.IAsyncResult" . It must take the same parameters as Invoke, including all associated modifiers, with two additional parameters of types System.AsyncCallback XE "System.AsyncCallback" and System.Object. The BeginInvoke method has the same calling convention as the Invoke method.

The EndInvoke method must always have the same return type as the Invoke method. It always takes the BYREF subset of the Invoke signature, plus one additional parameter of type System.IAsyncResult.

More information on BeginInvoke and EndInvoke and their parameters can be found in section 10.5.3.2.

Example:

The following example declares a Delegate used to call functions that take a single integer and return void --

.class private sealed auto autochar StartStopEventHandler extends [mscorlib]System.Delegate {

.method public hidebysig specialname rtspecialname void .ctor(class System.Object object, void* 'method') runtime managed {}

.method public hidebysig virtual void Invoke(int32 action) runtime managed {}

.method public hidebysig newslot virtual class [mscorlib]System.IAsyncResult BeginInvoke(int32 action, class [mscorlib]System.AsyncCallback callback, class System.Object object) runtime managed {}

.method public hidebysig newslot virtual void EndInvoke(class [mscorlib]System.IAsyncResult result) runtime managed {}
}

10.5.2 Creating Delegates

 XE "Delegates:Creating" Like any regular Class, Delegates need to be instantiated before they can be used to call a method. Delegates are instantiated in the same way as other reference types (see section 7.3). The newobj instruction is used and the constructor of the delegate is specified with this instruction.

First, a method that follows the declaration of the delegate must be defined. This method is declared the same way as the Invoke method of the delegate, except it may have a different name, a different accessibility and may be static, instance or virtual.

The two parameters required by the constructor of the delegate need to be loaded onto the stack before the newobj instruction is executed. Recall that the constructor takes a parameter of type System.Object and another one of type void*.

If the method to be abstracted by the delegate is a static method, then the first argument to the constructor has to be null (null is loaded with the instruction ldnull, see section 18.5). If the method is an instance or virtual method, the first argument has to be a reference to the object that represents the environment in which the method shall be called, i.e. the instance that is passed as the first argument to the method.

The second argument to the constructor is a managed pointer to the method. A method pointer may be obtained with the ldftn XE "ldftn" or ldvirtftn XE "ldvirtftn" instruction (see section 10.4).

Example:
Suppose the delegate given in the example in section 10.5.2 is declared. Then the following method would follow the declaration of the delegate:

.method public void onStartStop(int32 action) {

// body

}

The code below creates and instance of the delegate for the method above.

ldarg.0

// load this instance as environment for method
ldftn instance void Counter::onStartStop(int32)
// load method pointer
// the next line creates an instance of the delegate

newobj instance void StartStopEventHandler::.ctor(class System.Object, void*)
// instance of delegate on stack

10.5.3 Using Delegates

 XE "Delegates:Using" As explained earlier, there are two ways to ‘call’ delegates: synchronously or asynchronously. For each delegate call, you must select synchronous or asynchronous.

10.5.3.1 Synchronous Calls

 XE "Synchronous delegate calls" The synchronous mode of calling delegates corresponds to regular method calls. When a delegate call is made, the caller blocks until the called method returns. The called method is executed on the same thread as the caller.

To make a synchronous call the Invoke method of the delegate has to be used. Since the Invoke method is a virtual method, it needs to be called using the callvirt instruction (see section 11.4). The callvirt instruction requires that first an instance of the delegate is loaded onto the stack and then all arguments of the Invoke method. If the method has a return value, it will be available on the stack after the call.

Example:

Continuing the example introduced in section 10.5.1, the following shows how the Invoke method of delegates is used:

ldloc startStopEventHandler
// load the delegate instance
ldloc state

// load the argument
callvirt instance void StartStopEventHandler::Invoke(int32)
10.5.3.2 Asynchronous Calls

 XE "Asynchronous delegate calls" In the asynchronous mode, the call is dispatched, and the caller continues execution, without waiting for the method to return. The called method will be executed on a separate thread. There is no control over when the called method complete – the exact timing is determined by the thread scheduler.

Note: if the caller thread termintates before the callee completes, the callee thread will throw an exception. A thread that invokes an asynchronous call should not terminate until the call returns.

Note that the callee may throw exceptions. If such an exception is not caught by the callee, it is handed back to the caller.

To call delegates asynchronously, the BeginInvoke and EndInvoke methods are used.

10.5.3.2.1 The BeginInvoke Method

The asynchronous call is done using the BeginInvoke XE "BeginInvoke" method of the delegate. The BeginInvoke method will enqueue request to execute the target method, and return control immediately to the caller. (there is no control over when that target method will be executed – it’s a function of the thread scheduler, other requests enqueued, possible thread pooling, etc)

The BeginInvoke method is very similar to the Invoke method (10.5.3.1), but has three differences:

1. It has an additional parameter of type System.AsyncCallback XE "System.AsyncCallback"
2. It has an additional parameter of type System.Object XE "System.Object"
3. The return type of the method is System.IAsyncResult XE "System.IAsyncResult"
The BeginInvoke method has the same calling convention as the Invoke method. The two additional parameters appear after the parameters that the BeginInvoke method has in common, including their modifiers, with the Invoke method.

Once the call is made, the caller usually wants to know when the called method returns. This is especially important when the called method has a return value. This problem is traditionally solved with callback methods. A callback method is a method that is called when a certain asynchronous event occurs. In this case, the callback method is called when the delegate method returns. In order to call the callback method, a pointer to the method is needed. This is a typical case when the use of delegates is appropriate. Rather than passing a type unsafe pointer to the outside, the caller of the delegate method may instantiate yet another delegate that encapsulates the call to the callback method. In this particular case, the delegate is an instance of the delegate type System.AsyncCallback.

The caller needs to define a method that follows the declaration of System.AsyncCallback. The Invoke method of System.AsyncCallback has no return values and has one parameter of type System.IAsyncResult. The method defined by the caller needs to follow exactly this declaration.

Once the callback method is defined, the System.AsyncCallback delegate can be created in exactly the same way as described in section 10.5.2.

The second additional parameter of the BeginInvoke method is of type System.Object. The argument passed in for this parameter must be a reference to the calling object.

The return value of the BeginInvoke method is of type System.IAsyncResult. Usually, this return value may be ignored, but it may be useful in special circumstances. The interface defines a number of properties, including a wait handle that can be used to suspend the current thread until the called thread returns. Further, it has properties to query the state of the call, i.e. whether completed or not, and the object that is executed asynchronously, which in this case is the delegate of the called method.

Note: If the delegate accepts out parameters (& or * pointers to variables passed in as arguments), the variable to which the pointers refer to will be asynchronously updated by the called method. Any objects shared with the called method by references may asynchronously change their state. Beware of possible deadlocks in the latter case if the object has synchronized methods.

Example:

The following method follows the declaration of the System.AsyncCallback delegate:

.method private hidebysig instance void callback(class [mscorlib]System.IAsyncResult result) {

// body

}

The following piece of code executes an asynchronous call continuing the example of section 10.5.1:

ldloc startStopEventHandler
// load the delegate
ldloc state

// load the argument to the method
// the next three instruction create the AsyncCallback delegate

ldloc caller

// load reference to caller
// load method pointer to callback method

ldftn instance void StartStopButton::callback(class [mscorlib]System.IAsyncResult result)

// create the AsyncCallback delegate

newobj instance void [mscorlib]System.AsyncCallback::.ctor(class System.Object, int32)
ldloc caller

// load the caller for BeginInvoke method
// make the asynchronous call

callvirt instance class [mscorlib]System.IAsyncResult StartStopEventHandler::BeginInvoke(int32, class [mscorlib]System.AsyncCallback callback, class System.Object object)
pop

// ignore the IAsyncResult
10.5.3.2.2 The EndInvoke Method

When the method called via the delegate returns, the caller is notified through its callback method. The caller does not need to implement any logic in the callback method, but typically for delegate calls with return value, the caller may be interested in this return value.

The return value of the method called through the delegate may be obtained by calling EndInvoke XE "EndInvoke" . The name is a little bit misleading. When EndInvoke is called, the called method already completed. It is only used to obtain the return value.

Note: If the delegate has out parameters, these parameters were already asynchronously updated at the time EndInvoke is called.

Recall that the EndInvoke method expects one parameter of type System.IAsyncResult. The callback method receives an argument of the same type. In fact, the argument of the callback method may be passed on to the EndInvoke method.

However, since the EndInvoke method is a virtual method, it also has a hidden argument that expects a reference to the delegate that represented the called method. The argument passed to the callback function contains a reference to this delegate. It is stored in the AsyncObject XE "AsyncObject" property of the argument. This property has type System.Object. Thus, it will be necessary to do an explicit cast to the correct delegate after the value of the property is retrieved.

The EndInvoke method has the same return type as the method represented by the delegate. The EndInvoke method will leave the return value of the method on the stack when it returns.

The EndInvoke method does not need to be called if the delegate method has no return value. In this case, the EndInvoke will also have no return value.

Example:

This example retrieves the return value from the delegate call of the example in section 10.5.3.2.1:

ldarg asyncResult

// the argument passed to callback method
// obtain the AsyncObject

callvirt class System.Object [mscorlib]System.IAsyncResult::get_AsyncObject()
// cast the AsyncObject to the used delegate type

castclass StartStopEventHandler

ldarg asyncResult

// also needed by EndInvoke
callvirt instance int32 StartStopEventHandler::EndInvoke(class [mscorlib]System.IAsyncResult result)
// return value on stack

10.5.4 Multicast Delegates

The delegates discussed so far are called single cast delegates, since they only abstract one method. However, in some cases it may be desirable to abstract a set of methods with the same signature and trigger a call to all these methods at the same time. Delegates that represent more than one method are called multicast delegates XE "Delegates:Multicast" .

To create a multicast delegate, two or more delegates need to be combined. This is done using the Combine XE "Combine" method that combines either two delegates or an array of delegates. The Combine delegate accepts both single and multicast delegates as arguments. The rules are applied recursively if multicast delegates are combined.

Only delegates which are subclasses of System.MulticastDelegate XE "System.MulticastDelegate" may be combined. System.MulticastDelegate is a subclass of System.Delegate. The Combine method will throw a System.MulticastNotSupportedException XE "System.MulticastNotSupportedException" for attempts to combine subclasses of System.Delegate. Notice, that despite this fact the Combine method is defined in the class System.Delegate.

Only delegates of the same type may be combined. If the delegates do not have the same type, the Combine method will throw a System.ArgumentException XE "System.ArgumentException" .

The Combine method returns a new multicast delegate that represents the combined delegates.

When a multicast delegate is invoked, each delegate that was added with the Combine method will be invoked. The order of invocation corresponds to the order in which the single delegates were added. The methods represented by the first argument of the Combine method will be called first. If an array was passed to the Combine method, the first array element will be invoked first.

Delegates that are combined typically have no return values, but may have a return value. If they have a return value, only the return value of the last delegate added to the multicast delegate will be returned. All other return values will be discarded.

A particular delegate may be added multiple times to a multicast delegate. If the same delegate is added several times to a multicast delegate, it is called as many times it is added, using the order in which it was added compared to other method.

If an asynchronous call needs to be made to the delegate, the delegate must have a void return type. Further, the delegate must be marked with the custom attribute System.Runtime.Remoting.OneWayAttribute. This attribute specifies that the caller is not interested in the return value of the method.

If a method represented by one of the delegates inside the multicast delegate throws an uncaught exception, no further calls will be made. The process will be terminated at the point where the exception was thrown.

A delegate may be removed from a multicast delegate by calling the Remove method. The Remove method accepts a multicast delegate as its first argument and a delegate as its second argument. It returns a new multicast delegate that does not contain the second argument. The original multicast delegate passed in as the first argument remains unmodified.

An interesting question arises about the order in which delegates that were added multiple times to the multicast delegate are removed. The Remove method removes the delegates in the opposite order they were added. E.g., if a particular delegate was added multiple times to a multicast delegate, the last version will be removed first.

Example:

The following declares a multicast delegate:

.class private sealed auto autochar StartStopEventHandler extends [mscorlib]System.MulticastDelegate {

// insert the body of the delegate here

}
The following shows how delegates are combined:

ldloc handler1

// some StartStopEventHandler delegate
ldloc handler2

// some other StartStopEventHandler delegate
call class [mscorlib]System.Delegate [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)
// mutlicast delegate is on stack

10.5.5 Other Methods of Delegates

In addition to the methods discussed above, the System.Delegate and System.MulticastDelegate classes have a number of other functions. A detailed description of these functions can be found in the Base Class Library documentation.

It should be pointed out that the System.Delegate class implements the interfaces System.Runtime.ISerializable XE "System.Runtime.ISerializable" and System.IClonable XE "System.IClonable" and thus supports serialization and cloning.

11 Methods

Methods XE "Methods" implement the behavior of types. They contain the IL instructions executed by the execution engine (EE).

One of the most important features of the CLR is that it offers various services to support the execution of a method. Code that makes use of these services is called managed code. Managed code XE “managed code” provides enough information to allow the CLR to provide a set of core services, which include

· Given an address inside the code of a method, locating the metadata describing the method XE “managed data”
· Walking the stack

· Handling exceptions

· Storing and retrieving security information

Only managed code may access managed data. To produce verifiable IL code a compiler must produce managed code.

Code written for the CLR will be managed code. However, it is also possible to make calls to unmanaged methods from managed methods.

Methods may be defined at the global level as well as inside classes XE ".method" :

	<decl> ::=
	Section

	 .method <methodHead> { <methodBodyItem>* }
	

	| …
	4.2

	<classMember> ::=
	Section

	 .method <methodHead> { <methodBodyItem>* }
	

	| …
	7.5

The CLR distinguishes between three kinds of methods:

· static methods (section 11.3.1) XE "static"
· instance methods (section 11.3.2) XE "instance"
· virtual methods (section 11.3.3) XE "virtual"
The CLR has some special methods. These are the type initializers (.cctor) and instance constructors (.ctor) of types. The type initializers are called automatically by the runtime before a type is used (see section 7.6.7). Instance constructors are called when an instance of a class is created (section 7.6.5). In some cases, like value types, instance constructors can be called explicitly (see 9.2).

All methods have a common syntax as described in this chapter. A method definition consists of the keyword .method, a method head, and the body surrounded by braces, which contains the actual instructions to be executed.

	<method> ::= .method <methodHead> { <methodBodyItem>* }

The following sections will give more details on these parts of a method definition. But first, the next section will specify the various method descriptors used in the CLR.

11.1 Method Descriptors

 XE "Method Descriptors" The runtime distinguishes between MethodDecls XE "MethodDecls" , MethodDefs XE "MethodDefs" , MethodRefs XE "MethodRefs" , and MethodImpls XE "MethodImpls" ; each of them represented by tokens and describing methods.

A MethodDecl is simply the declaration of a method that contains all the information in the method head. A MethodDecl contains enough information to specify a contract that a caller can use to interact with the method. The MethodDecl specifies the name of the method, its parameters, return value, calling convention, accessibility, method attributes, and implementation information. A MethodDecl also includes a reference to the definition of the type that declares the method. MethodDecls are used in interfaces and for the declaration of abstract methods in classes.

A MethodDef is the definition of a method. It contains the body of the method, which contains all of its instructions, exception handlers, local variable information, and additional runtime or custom metadata about the method. A MethodDef includes a MethodDecl.

A MethodRef is a reference to a MethodDecl. It is used when a method is called or a pointer to a method is obtained. A MethodRef needs to be resolved into a MethodDef before the method is called. This can be either done at compile time, if the method is defined in the same module, or at runtime, when the class loader resolves all references. If a matching MethodDef cannot be found, the EE will throw a System.MissingMethodException.

A MethodImpl associates a MethodDecl with a MethodDef. It consists of two MethodRefs, the first of which specifies the MethodDecl to be implemented and the second specifies the implementing method. The MethodRefs will be resolved by the loader. A MethodImpl may be used to specify that a particular MethodDecl from an implemented interface is defined by a particular MethodDef of the implementing class. A MethodImpl can also be used to specify the definition of an abstract method, or to specify that a particular method overrides another MethodDef. In any case, the signatures of the implemented and implementing method must match, which means that except their name and declaring type the signatures must be the same.

11.2 Method Signatures

The signature XE "Signature"

 XE "Method signature" of a method is the part of a method declaration that uniquely identifies that method. A signature includes the following information:

· The name of the method

· The type that declares the method

· The calling convention of the method

· The return type of the method, including any modreq XE "modreq" or modopt XE "modopt" specifications

· The types of the parameters of the method in the order in which they are declared, including any modreq or modopt specifications

To reference a method, all of the information above must be present. Two methods may not have the same value for all items in the list. They must differ in at least one item.

If in two method declarations the first two items are the same, i.e. they have the same name and are declared in the same class, the methods are said to overload XE "overload" each other. Two methods also overload each other if they have the same name but are declared in different types, as long as one of the types is a subtype of the other. Note that unlike in many higher level languages the return type of the method belongs to this list. Thus in the CLR, it is possible to overload a method with a different return type.

11.3 Types of methods

As already pointed out, the CLR supports static, instance and virtual methods. These kinds of methods are described in the following sections.

11.3.1 Static Methods

static methods XE "Static methods" are methods that are associated with a type, but not with its instances. static methods are similar to procedures in procedural languages.

static methods may be defined in classes, value types, interfaces, and at the global level. In fact, all global methods must be declared as static methods. static methods must always have a body associated with them. static methods are referenced using a type reference to the type in which they are declared.

11.3.2 Instance Methods

In contrast to static methods, instance methods XE "Instance methods" are associated with an instance of a type. It follows that instance methods may only be defined in classes or value types. In version 1 of the CLR they may not be defined inside interfaces.

While static methods only represent stand-alone behavior, instance methods have behavior that is associated with an environment of data that exists beyond the duration of the method call. The same environment may be re-used with the same method or another method that expects an instance of a compatible type.

instance methods accept a this pointer that has the same type as the type that declares the method and thus requires that an instance of that type or one of its subtypes must be created in order to be able to call the method. The instance referenced by the this pointer represents the environment in which the method is called. The this pointer is not included in the signature, but it is automatically added to the signature of a method as the first parameter. However, when an instance method is called, an instance of the class must be passed to the method explicitly as the first argument, even though this argument is not apparent from the signature.

Even though usually not practiced, the this pointer may be a null reference. Thus, instance and virtual methods must be prepared to handle the possibility that the first argument is null.

As an exception to the above, an explicit XE "explicit" calling convention allows the explicit use of the this pointer in the signature (see 11.4.1).

For classes, the this pointer is a reference to an instance of the class, while for value types the this pointer is a managed pointer to the value type.

Note: Unlike static or virtual, instance is not a method attribute but part of the calling convention (see 11.4.1) of a method.

11.3.3 Virtual Methods

Similar to instance methods, virtual methods XE "Virtual methods" are associated with an instance of a class. However, unlike instance methods, the implementation of the method is not fixed. The MethodDef that implements a virtual method can be determined dynamically at runtime. virtual methods may be called with two instructions, call (see 11.4.3) and callvirt (see 11.4.4).

When the call instruction is used, virtual methods behave like instance methods. However, when the callvirt instruction is used, the notion of subclassing comes into play. A subclass may override a virtual method of its superclass, providing a new definition of the method. A callvirt to the method of the parent will result in a call to the new method, as long as an instance of the subclass is used. Since the subclass is a subtype of the original class, the declared types used in the code does not need to be changed. This allows significant modification of behavior with little changes to the code.

The method attribute newslot XE "newslot" causes the runtime not to override the virtual method definition of the superclass with the new definition, but to treat the new definition as an independent virtual method definition. The first declaration of a virtual method in a class hierarchy should be marked newslot. More about newslot can be found in section 11.5.4.3.

Similar to instance methods, the this pointer must be passed to virtual methods, too.

11.3.3.1 Virtual Method Interop

Some languages, like C++, have more complicated inheritance rules. For these languages, the implementation of virtual methods in the CLR is not sufficient. Rather than using the implementation of the runtime, these languages may explicitly emit code to implement their own algorithm to call virtual methods.

The CLR has some support for these languages. It provides the .vtfixup XE ".vtfixup" directive (discussed in section 7.8.2) that declares a block of memory to contain a table in which method definition tokens may be inserted. After the methods are loaded into memory, the runtime will automatically convert the entries in the table into method pointers. Thus, compilers may emit code to obtain the addresses of specific methods at runtime. These addresses may be used to call the appropriate method.

Even though intended to allow virtual method interop, the .vtfixup directive can also be used to declare other tables in which MethodRefs need to be converted into method pointers.

11.4 Method Calls

The following subsections discuss in detail the various forms of method calls XE "Method calls" . This section gives a brief overview.

There are three call instructions to make a method call:

· call

· callvirt

· calli

There are three additional instruction that call methods in a special way:

· jmp

· jmpi

· newobj

Every method has its own evaluation stack XE "Evaluation stack" , which is called just stack for short in this document. Data is loaded onto this stack and instructions take their arguments from the stack. The result of evaluating an expression can be found on the stack after the appropriate instruction has executed. The runtime automatically creates and maintains this stack when a method is called. When a method exits, the stack is automatically released.

In addition to the evaluation stack there is also a call stack XE "Call stack" that keeps track of the method calls and is also maintained by the runtime.

A method usually returns to the caller using the ret XE "ret" instruction. If the method has a return value, it must be on the stack when the ret instruction is executed. The stack may not contain any value other than the return value when a ret is executed.

The CLR supports exception handling (see section 15). As a consequence, a method may exit also by throwing an exception.

The CLR does support tail calls, which can be found primarily in functional programming languages. A tail call is done using the prefix instruction tail. with any of the three call instructions above. More about tail calls can be found in section 11.4.6.

In a normal (non-tail) call, the current stack frame is kept intact and a new frame is allocated for the called method. For a tail call, on the other hand, the current frame is replaced with a frame for the called procedure.

The CLR also supports various kinds of calls as discussed in the next sections.

11.4.1 Calling Convention

A calling convention XE "Calling convention" specifies how a method expects its arguments to be loaded onto the stack.

A calling convention includes a call kind (see section 11.4.2). In addition it has the optional keywords instance XE "instance" or instance explicit XE "explicit" , which have to do with the this XE "this" parameter.

	<callConv> ::= [instance [explicit]] [<callKind>]

By default, the method call will be treated as a call to a static method. If instance is specified, the method call will be treated as a method call that accepts a this pointer as its first argument.

explicit applies only to instance methods. If explicit is specified, the this pointer is included explicitly in the method signature. This is typically used in the declaration of method pointers in connection with the calli instruction. explicit is not generally used with the call or callvirt instruction, except when interoperating with unmanaged code.

Example:

Suppose a method is defined in class Bar and takes a single parameter of type int32. The following type declaration of a variable of type method pointer uses an explicit signature:

method instance explicit void * (class Bar, int32)
Bar appears explicitly in the signature and specifies the this pointer type.

11.4.2 Call Kinds

The CLR supports various kinds of method calls as part of the calling convention (see section 11.4.1) XE "Call kinds" . The two managed kinds of calls are default XE "default" and vararg XE "vararg" . As the name implies, default is the call kind used by default by the CLR. vararg specifies that the method accepts a variable number of arguments and thus needs to be called in a special way. More information about calling vararg methods can be found in section 11.4.9. Defining vararg method is covered in section 11.5.7.

The unmanaged kinds of calls are primarily intended to support languages which are similar to C++ and cannot produce managed methods for arbitrary code permitted by the language. These calling conventions are specific to Microsoft Windows and are generally needed to call methods of unmanaged DLLs.

There are four unmanaged call kinds:

· unmanaged cdecl XE "unmanaged cdecl" is the calling convention used by standard C

· unmanaged stdcall XE "unmanaged stdcall" specifies a standard C++ call

· unmanaged fastcall XE "unmanaged fastcall" is a special optimized C++ calling convention

· unmanaged thiscall XE "unmanaged thiscall" is a C++ call that passes a this pointer to the method

The following grammar summarizes the call kinds.

	<callKind> ::=

	 default

	| unmanaged cdecl

	| unmanaged fastcall

	| unmanaged stdcall

	| unmanaged thiscall

	| vararg

11.4.3 The call Instruction

static and instance methods are called using the call XE "call" instruction. The call instruction may also be used to call virtual methods. However, there is also another instruction for virtual methods which is discussed in section 11.4.4. The call instruction takes a MethodRef as part of the instruction and expects the arguments of the method on the stack. The first argument is pushed first onto the stack.

The only two differences between a call to a static and a call to an instance method is the use of the keyword instance in the call convention and that the first argument must be the this pointer when instance methods are called.

The general syntax for a call instruction is as follows:

	call <callConv> <type> [<typeSpec>::]<methodName>(<parameters>)

The <typeSpec> specifies the type that declares the method. If it is missing, then the type in which the method call is made is assumed. The use of <typeSpec> is recommended in all cases.

For static methods the syntax simply becomes:

	call <callKind> <type> [<typeSpec>::]<methodName>(<parameters>)

And for instance methods the syntax becomes:

	call instance <callKind> <type> [<typeSpec>::]<methodName>(<parameters>)

To resolve the MethodRef of a call instruction the EE searches for a MethodDef that matches the MethodRef. The EE starts in the type referenced by the MethodRef. If the method cannot be found in this type, then the EE will go up step by step the hierarchy of superclasses until a match is found. E.g., if a MethodRef specifies a particular type in its <typeSpec> and this type does not provide a MethodDef for the MethodRef, then its superclass is searched. This continues until System.Object XE "System.Object" has been queried. Only then the EE will throw a System.MissingMethodException XE "System.MissingMethodException" .

Example:

The following is a call to a static method:

call void [mscorlib]System.GC::RequestFinalizeOnShutdown()
The following is a call to an instance method:

ldloc
timer

// load the this pointer (argument #0)
ldloc
timerEventHandler

// load argument #1
call instance void [System.Timers]System.Timers.Timer::add_Tick(class [mscorlib]System.EventHandler)
Notice that the this pointer is not apparent from the signature of the method.

11.4.4 The callvirt Instruction

Since a call to virtual XE "virtual" methods involves a runtime resolution of the MethodRef, there is a special instruction to call virtual methods, callvirt XE "callvirt" . Even though the call instruction may be used with virtual methods, only the callvirt instruction will consider overridden versions of the method.

Since virtual methods always expect a this pointer as the first parameter, the call convention must always include the keyword instance. The this pointer passed to a virtual method with a callvirt instruction cannot be null. (It may be null if a call instruction was used.) Thus, programmers of a virtual method must be prepared to get a null value for the first argument.
The callvirt instruction has the same syntax as the call instruction for instance methods:

	callvirt instance <callKind> <type> [<typeSpec>::]<methodName>(<parameters>)

Example:

The following code makes a call to a virtual method:

ldarg.0

// load this pointer
callvirt instance void Counter::HandleTick()
11.4.4.1 Super Calls

In some cases, it may be desirable to re-use code defined in the superclass. E.g., an overriding virtual method may want to call its previous version. This kind of re-use is called a super call XE "Super call" , since the overridden method of the superclass is called. However, there is a problem. The callvirt instruction will consider overridden versions of the method, such that a callvirt to the method of the superclass will either result in a call to this method, causing an infinite recursion, or if the method was overridden by subclasses and the this pointer passed to the method is an instance of one of the subclasses, then an overridden version of the method depending on the exact type of this pointer will be called. However, the method wants to call exactly the version of the superclass. It turns out, that in this case the virtual method must be called with the call instruction and treated like an instance method.

Even though not a necessity, it is strongly recommended that the super call is made to the immediate superclass of the virtual method. As described in section 11.4.3 the call instruction will automatically search the hierarchy until an appropriate MethodDef is found. It is important that the call is made to the immediate super class, because this will enable a class to support newer versions of its super class. E.g., the superclass may add or remove the appropriate MethodDef, without breaking the implementation of the subclass.

Example:

The following is a super call to a virtual method (embedded in method of a class):

.class public auto autochar BeepingCounter extends Counter {

.method virtual family void HandleTick() il managed {
ldarg.0

// load the this pointer

// call version in superclass

call instance void Counter::HandleTick()

}

}

11.4.5 Indirect Calls

 XE "Indirect calls" A method may also be called using a pointer to the method with the calli XE "calli" instruction. In addition to the arguments, the calli instruction expects a method pointer at the top of the stack. A method pointer to any kind of method can be loaded with the ldftn XE "ldftn" instruction, while method pointers to virtual methods can also be loaded with the ldvirtftn XE "ldvirtftn" instruction, which will consider overloaded versions of the virtual method. More about method pointers can be found in section 10.4.

The syntax for calli does not include the method name:

	calli <callConv> <type> (<parameters>)

Example:

The following is an indirect call to a virtual method:

ldarg.0

// load the this pointer

ldvirtftn instance void Counter::HandleTick()
calli instance void ()

11.4.6 Tail Calls

Normally calls return to the caller when the called method is done. Tail calls, however, do not return to the caller. They effectively continue with the called method.

Non-tail calls, since they return to the caller, need to save who the caller is. This takes memory on the stack and may limit the depth of a recursion.

In contrast, tail calls do not need to save any return information on the stack. This gives recursions the possibility to continue practically forever without causing a stack overflow and may have significant performance advantages. In particular, tail calls may be used to efficiently implement various looping constructs.

The CLR has support for tail calls which may be marked with the prefix instruction tail. XE "tail." . tail. must be followed by one of the call instructions. Since in some cases, as explained below, the runtime may ignore a tail call, the ret instruction is required after the call instruction of a tail call. This will guarantee that the control flow of the method will always be the same independent of whether a tail or non-tail call was executed. If a tail call is executed, the ret instruction is ignored.

Methods called with a tail call may accept parameters like any other method and they may return a value.

Tail calls may only be used if the following conditions are met:

1. When the call instruction is executed, the stack may only contain the arguments of the called method and for the calli instruction a method pointer.

2. The return type of the called method must be the same or a subtype of the return type of the caller.

3. The caller may not pass the address of an argument or a local variable to the called method.

4. The call is not made from a protected block (try block) or from a handler of a protected block. The CLR does not support exception handling for tail calls.

If the four rules above are met, a tail. prefix may be used in front of the call. However, this does not guarantee that a tail call will actually be performed. In general, tail calls cannot be done if the calling method must do work to exit. In such a case, the runtime reserves the right to ignore the tail. prefix. The following lists the two additional conditions that must be met in order for a tail call to be actually executed:

1. The called method is a managed method and contains save IL as determined by runtime security checks.

2. The calling method must not be a synchronized method.

If the above conditions are not met, the CLR will ignore the tail. prefix and execute a regular call.

The tail call behaves like a jump from one method to another. The EE will release the stack of the current method and create a new one for the called method. If a value is returned, the value will be directly returned to the original caller of the method making the tail call.

Compilers are recommended to emit the tail. prefix whenever it can be determined that a tail call is appropriate.

Example:

The following example shows a program that calculates the factorial of a number using tail calls. It does not require the use of the call stack.

/* num is the number for which the fact shall be computed (see also previous examples), result must be one, the return value is the final result */

.method static public int64 fact(int64 num, int64 result) {

.maxstack 3

ldarg
num

ldc.i8
0

bgt
compute

ldarg
result
// base case

ret

compute:

// recursion

ldarg
num

// calculate new number

ldc.i8
1

sub

ldarg
result
// calculate result for this iteration

ldarg
num

mul

tail.

// make the call

call
int64 fact(int64, int64)

ret

}

11.4.7 jmp and jmpi

The jmp XE "jmp" instruction executes a jump across methods. A method may jump only to the beginning of a method and only to a method that has the same signature as the original method (including parameter types, return type and calling convention)

Note: In Version 1, the jmp instruction is never verifiable. This constraint may be relaxed in a future version. For example, by making further checks (eg, jmp does not occur in an exception try, filter, catch, finally or fault clause) the CLR could detect and permit-as-verifiable, use of the jmp instruction in certain cases

The jmp instruction is a special case of a tail call. It transfers control to a method that accepts the same parameters and has the same arguments as the caller.

Unlike in a call instruction, the jmp instruction passes the arguments of the current method to the next method. Thus, the arguments may not be loaded explicitly. If the arguments were mutated before the instruction is executed, the new values will be used. The arguments may be modified using the starg instruction (see section 18.4).

Similar to tail calls, if the method has a return value, the return value of the called method will be returned to the original caller.

Methods called with a jmp instruction are subject to even stronger restrictions than tail calls:

1. When the jmp is executed, the stack must be empty.

2. The caller must have the same signature as the called method. (In a future version, we might relax this to allow covariance)

3. The jmp may not be executed in a protected block or a handler block. There is no exception support for the jmp instruction.

In addition, to guarantee correct execution of code, the following restrictions should be followed:

1. The called method should contain code that is trusted by the security policy.

2. The caller should not be a synchronized method.

The jmpi XE "jmpi" instruction is similar to the jmp instruction with the difference that it expects a method pointer on the stack.

Note: The jmpi instruction is never verifiable.

Example:

The following examples call the factorial method given in example 11.4.6.

Using jmp:

.method private static int64 MyJmp(int64, int64) il managed {
// do not load any arguments

jmp int64 fact(int64, int64)
}
Using jmpi:

.method private static int64 MyJmpi(int64, int64) il managed {
// do not load any arguments

ldftn int64 fact(int64, int64)
jmpi
}
11.4.8 Calling Instance Constructors

Even though instance constructors (see also section 7.6.5) may be called directly, they are usually called with the newobj XE "newobj" instruction.

The newobj instruction is used to instantiate a class. It creates a new object, but also calls the constructor of a class, which is a special instance method. Thus, the newobj instruction is very similar to an instance method call. The major difference is that no instance is passed to the constructor. Only its parameters as they are visible in the signature need to be passed to the constructor. The instance is automatically created by the runtime and passed to the constructor, such that the argument at index zero still ends up to be the this pointer.

More information about the newobj instruction can be found in section 7.3.

Example:

ldloc button

ldloc
count

newobj instance void [.module Counter.dll]BeepingCounter::.ctor(class [.module Counter.dll]StartStopEventSource, class [.module Counter.dll]Count)
// reference on stack

11.4.9 Calling vararg Methods

This section explains how vararg XE "vararg" methods are called. Defining vararg methods is covered in section 11.5.7.

Since vararg is a calling convention, and thus part of the signature of the method, it must be specified also in the call. If a particular call includes no optional arguments, you specify the signature exactly the same as in its definition (specifically, do not include any ellipsis) . Conversely, if a particular call includes optional arguments, insert an ellipsis into the signature after the fixed parameters, followed by the additional parameter types for this call.

When the method is called, all the additional arguments must be on the stack.

Example:

The following example calls a static vararg method that takes one required integer. The definition of the vararg method can be found in section 11.5.7.

ldc.i4.1

// required
ldc.i4.2

// these are all optional
ldstr
"Hello vararg"

ldc.r8 1.1

call vararg void MyMethod(int32,...,int32,class System.String,float64)
11.5 Defining Methods

11.5.1 Method Head

The method head XE "Method head" contains important information for the identification and correct handling of a method by the runtime. The head of a method also functions as an interface to other methods.

The method head consists of

· any number of predefined method attributes (section 11.5.4)

· an optional indication that this method is an instance method

· an optional description of the kind of call to use

· a return type with optional attributes (section 11.2)

· optional marshalling information (see also section 5.7)

· a method name

· a signature in brackets

· and any number of implementation attributes (section 11.5.4.4)

as also shown by the following syntax rule:

	<methodHead> ::=

	 <methAttr>* [<callConv>] [<paramAttr>*] <type> [marshal ([<nativeType>])] <methodName> (<parameters>) <implAttr>*

Methods not marked as static or virtual are instance methods. Even though not necessary, the instance keyword may be used in the signature after the attributes. With the call kind together this is shown as a call convention in the above grammar. However, note that the keyword explicit has no meaning in a method declaration.

In the CLR, there are no attributes that can be used with the return type. However, future versions may have return type attributes, which is reflected in the grammar. Existing parameter attributes should not be used with the return type.

Methods that do not have a return value must use the keyword void as the return type.

Example:
The following declares a virtual method in a class:

.class public auto autochar Counter extends [mscorlib]System.Object {
.method virtual newslot hidebysig family instance void HandleTick() synchronized il managed {

/* insert instructions and directives here */

}

}

11.5.1.1 Method Name

Most method names XE "Method names" are a <dottedname>. The exception are constructors because they would otherwise require quotation marks. Instance constructors of a type always have the name .ctor XE ".ctor" , while static (class) constructors of a type always have the name .cctor XE ".cctor" .

	<methodName> ::=

	 .cctor

	| .ctor

	| <dottedname>

11.5.2 Method Parameters

Method parameters XE "Method parameters"

 XE "Parameters" let the method accept information from the caller. Method parameters are type safe and force the caller to pass the required information to the called method. The contract between caller and called method specified through method parameters is enforced by the EE.

When a method is called, the caller must pass an argument XE "Method arguments"

 XE "Arguments" for each required parameter of the method.

Method parameters are specified in parentheses after the method name and specify the types of all parameters to the method.

As shown by the following grammar, a method parameter declaration consists of any number of parameters:

	<parameters> ::= [<param> [, <param>]*]

An individual parameter must either be the special token “…” or have a defined type and optionally have additional information.

	<param> ::=

	 ...

	| [<paramAttr>*] <type> [marshal ([<nativeType>])] [<id>]

The <id>, if present, is the name of the parameter. A parameter may be referenced either by using its name or the zero based index of the paramter.
The special value “. . .” can only occur once in a parameter declaration and it must be the last parameter.

The parameter attributes specify special handling of certain parameters:

	<paramAttr> ::=

	 [in]

	| [lcid]

	| [opt]

	| [out]

	| [retval]

None of the parameter attributes is part of the method signature. Methods that have the same declaration but with different parameter attributes are considered to be duplicate method declarations (which is invalid IL).

in XE "in" and out XE "out" specify whether a managed reference or pointer parameter is used to supply input to the method, return a value from the method, or both. If neither is specified in is assumed.

Note: These attributes are used by Interop marshalling code: for example, if a parameter is marked both pdIn and pdOut, then its value is marshalled to the callee, and its value is marshalled back to the caller (else, pinned and referenced as an optimization)

retval XE "retval" should only appear on one parameter of a method, and that parameter must be a pointer type. It is used only on interfaces that are being exposed to unmanaged COM clients, and is the parameter through which the CLR return value will be made visible to those clients.

opt XE "opt" indicates that this parameter is optional.

Note: The opt parameter attribute is for documentation purposes only. Compilers may mark a parameter with opt such that the compiler itself and other tools understand that the parameter is optional. However, from the point of view of the runtime optional parameters are not at all optional, they are treated the same way as required parameters. A corresponding argument must be provided in a method call.

lcid XE "lcid" indicates that this parameter provides the locale ID to unmanaged COM clients.

Examples:

A single input parameter of type int32:

(int32 i)
A pair of parameters, with the first one an input parameter of type System.String and the second one an in/out parameter with type managed pointer to int32:

(class System.String myString, [in][out]int32& ptrInt)
A parameter declaration that takes one required input parameter, one optional input parameter and then any number of further parameters:

(int32 required, [opt]int32 optional, ...)
11.5.2.1 Method Parameters with Reflection

Signatures can be created using System.Reflection.Emit.SignatureHelper. They are most easily accessed using the method GetParameters on System.Reflection.MethodBase and GetIndexParameters on System.Reflection.PropertyInfo.

The information about an individual parameter can be seen through a System.Reflection.ParameterInfo and can be created using System.Reflection.Emit.ParameterBuilder.

The attributes in <paramAttr>* can be found under CorParamAttr in CorHdr.h.

11.5.3 Method Body

The method body contains the instructions of a program. However, it may also contain labels, additional syntactic forms and many directives that provide additional information to the assembler and are helpful in the compilation of methods of some languages.

The following grammar shows the syntax for the body of a method and describes each item. More information about some of the directives can be found in the following subsections.

	<methodBodyItem> ::=
	Description
	Section

	 .custom XE ".custom" <customDecl>
	Definition of custom attributes.
	17

	| .data XE ".data" <datadecl>
	Emits data to the data section of the method.
	12.3

	| .emitbyte XE ".emitbyte" <unsigned int8>
	Emits a byte to the code section of the method.
	11.5.3.1

	| .entrypoint XE ".entrypoint"
	Specifies that this method is the entry point to the application (only one such method is allowed).
	11.5.3.2

	| .locals XE ".locals" [init XE "init"] (<localsSignature>)
	Defines a set of local variables for this method.
	11.5.3.3

	| .maxstack XE ".maxstack" <int32>
	int32 specifies the maximum number of elements on the evaluation stack during the execution of the method
	11.5.3

	| .override XE ".override" <typeSpec>::<methodName>
	Sets this method definition as the implementation for the method specified in the instruction.
	7.6.3.1

	| .param XE ".param" [<int32>] [= <fieldInit>]
	For parameter number <int32>, stores the constant defined by <fieldInit> as its default value
	11.5.3.4

	| .vtentry XE ".vtentry" <int32> : <int32>
	.vtentry <entry> : <slot>
	11.5.3.5

	| .zeroinit XE ".zeroinit"
	Specifies that all local variables are initialized to zero in this method.
	11.5.3

	| <externSourceDecl> XE ".line"

 XE "#line"
	.line or #line
	3.7

	| <instr>
	An instruction
	18.1

	| <codeLabel> : XE "Code label"
	A label
	3.4

	| <scopeBlock>
	See below
	11.5.6

	| <securityDecl>
	.permission or .capability
	16

	| <sehBlock>
	An exception block
	15.1

The following sections describe some of the directives above in more detail.

11.5.3.1 .emitbyte

The .emitbyte XE ".emitbyte" directive emits an unsigned 8 bit value directly into the code section of the method. The value is emitted at the position where the directive appears.

The .emtibyte directive can be used to emit the opcode of a certain instruction. However, typically the .emitbyte directive is used to emit compiler specific data, which is not intended to be executed by the execution engine. In the latter case, the compiler should also emit code to jump over the emitted value. It should be considered whether it is necessary to emit data into the code section rather than the data section. Emitting data into the data section is covered in section 12.3.

Examples:

The following code emits a breakpoint, which can also be done with the break instruction.

.emitbyte 1

The following example shows how custom data can be emitted into the code section.

// some code

br.s continue

// jump over data

.emitbyte 123

// custom data

continue:

// some other code

11.5.3.2 .entrypoint

The .entrypoint XE ".entrypoint" directive marks the current method as the entry point to an application. The execution engine will call this method to start the application.

Every executable must have exactly one entry point method. This entry point method may be a global method or may appear inside a type. However, it must be a static method.

The entry point method may either accept no arguments or may accept a vector of strings. If it accepts a vector of strings, the strings inside the vector will represent the arguments to the executable, with index 0 containing the first argument.

The return value of the entry point method must be either void, int32, or unsigned int32. If an int32 or unsigned int32 is returned, the executable can return an exit code to the operating system. A value of 0 indicates that the application terminated ordinarily. A non-zero return value may indicate various abnormal termination conditions. This value may be queried by other applications.

Entry point methods may have any accessibility. The CLR will always have access to this method.

Example:

The following example prints the first argument and return successfully to the operating system:

.method public static int32 MyEntry(class System.String[] s) il managed

{

.entrypoint

.maxstack 2

ldarg.0

// load an print the first argument
ldc.i4.0

ldelem.ref

call void [mscorlib]System.Console::WriteLine(class System.String)
ldc.i4.0

// return success
ret

}

11.5.3.3 .locals

.locals XE ".locals" is used to define local variables for this method. Local variables are variables that may only be accessed by the method in which they are defined. They may be used to store data that is only needed during a method call. Once the method returns, the local variable will be discarded. Memory for local variables can be allocated faster than memory for fields.

The local variables of a method are described by a signature, although the syntax is slightly different from that for methods, since it is not possible to specify attributes (in, out, etc.) or marshaling for local variables.

A <localsSignature> is simply a comma separated list of one or more local variable descriptions.
	<localsSignature> ::= <local> [, <local>]*

	<local> ::= [[<int32>]] <type> [<id>]

The assembler allows nested local variable scopes to be provided and allows locals in nested scopes to share the same location as those in the outer scope. The information about local names, scoping, and overlapping of scoped locals is persisted to the PDB (debugger symbol) file rather than the PE file itself.

The integer in brackets that precedes the <type>, if present, specifies the local number (starting with 0) being described. This allows nested locals to reuse the same location as a local in the outer scope. It is not legal to overlap two local variables unless they have the same type. The identifier, if present, is the name of the local within the current scope. When no explicit index is specified, the next unused index is chosen. That is, two locals never share and index unless the index is given explicitly.

If init XE "init" is specified, the variables are initialized to their default values according to their type. Reference types are initialized to null and value types are zeroed out. The <localsSignature> (see 11.5.3.3) lists the local variables. Each local variable receives a zero based index that is unique within the method.

Using init in a .locals directive has the same effect as using the .zeroinit directive at the method level. Thus, if init is used, all local variables will be initialized to their default values, even variables in another .locals directive in the same method, which does not have the init directive.

Example:

The following declares two local variables for the method:

.locals init (int32 myCount,

value class [System.Drawing]System.Drawing.Point point)
11.5.3.3.1 Local Variables with Reflection

Information about local variables can be created using the System.Reflection.Emit.LocalBuilder class.

11.5.3.4 .param

Stores a default value with method parameter number <int32>. The value is stored into metadata. And that value may be interrogated when importing that metadata. But the CLR itself does not retrieve the value or insert it automatically into method calls. We call it a default value, because that is how compilers often use the feature – but the CLR attaches no meaning to the constant.

Note: Since it emits metadata, .param uses the indexing of the metadata engine. Index 0 specifies the return value of the method. Index 1 is the first parameter of the method. This is different from the index used in MSIL instructions (eg ldarg), where 0 indicates the first argument for a method – not its return value.

11.5.3.5 .vtentry

This directive is used within the body of a virtual method definition. It directs ILASM to insert the token for this method into a specified slot in an unmanaged vtable. For example,

.vtentry 0 : 2

will insert this method’s token into slot number 2 of the 0th unmanaged vtable. This feature is used by compilers who want to control their own virtual method dispatch (for example, in implementing multiple inheritance). For a fuller description, see the section on .vtfixup XE ".vtfixup" (section 7.8.2).

11.5.4 Predefined Attributes on Methods

Predefined attributes XE "Methods attributes:Predefined" of a method are attributes which provide important information for the caller of a method. Predefined attributes of a method specify information about accessibility, contract information, virtual method table information, implementation attributes, interoperation attributes, as well as information on special handling.

In addition to predefined attributes, the CLR supports custom attributes which are described in further detail in section 17.

The following subsections contain additional information on each group of predefined attributes of a method.

	<methAttr> ::=
	Description
	Section

	 abstract
	Specifies that the method is an abstract method.
	11.5.4.4

	| assembly
	Assembly accessibility
	11.5.4.1

	| famandassem
	Family and Assembly accessibility
	11.5.4.1

	| family
	Family accessibility
	11.5.4.1

	| famorassem
	Family or Assembly accessibility
	11.5.4.1

	| final
	Specifies that this method cannot be overridden by subclasses.
	11.5.4.2

	| hidebysig
	Hide by signature. Ignored by the runtime.
	11.5.4.2

	| newslot
	Specifies that this method shall get a new slot in the virtual method table.
	11.5.4.3

	| pinvokeimpl (<QSTRING> [as <QSTRING>] <pinvAttr>*)
	pinvokeimpl(<DLL name> [as <alias>] <attribute>*)
	11.5.4.5

	| private
	Private accessibility
	11.5.4.1

	| privatescope
	Privatescope accessibility.
	11.5.4.1

	| public
	Public accessibility.
	11.5.4.1

	| rtspecialname
	The method name needs to be treated in a special way by the runtime.
	11.5.4.6

	| specialname
	The method name needs to be treated in a special way by some tool.
	11.5.4.4

	| static
	Specifies that this method is a static method of a type.
	11.5.4.2

	| unmanagedexp
	Marks for exports to unmanaged world.
	11.5.4.5

	| virtual
	Specifies that this method is a virtual method.
	11.5.4.2

11.5.4.1 Accessibility Information

The accessibility attributes are assembly XE "assembly" , famandassem XE "famandassem" , family XE "family" , famorassem XE "famorassem" , private XE "private" , privatescope XE "privatescope" and public XE "public" . These attributes are exclusive. If you do not specify an accessibility for a method, then ILASM inserts one for you, depending upon the visibility of its owner Type, as follows:

· global, private => privatescope
· global, public => public
· non-global, top-level, public => public
· non-global, top-level, private => private
· nested, XXX => XXX (where XXX is any of the above)

Accessibility attributes are described in section 6.3.

11.5.4.2 Method Contract Attributes

Method contract attributes are final XE "final" , hidebysig XE "hidebysig" , static XE "static" , and virtual XE "virtual" . These attributes may be combined, except a method may not be static and virtual at the same time. Only virtual methods may be final and abstract methods may not be final.

final methods may not be overridden by subclasses of this class. This makes sure the functionality provided by the implementing class is not modified by other implementations.

hidebysig specifies that the declared method hides all methods of the parent classes that have a matching method signature. Note that this attribute is ignored by the runtime. The runtime always matches methods by signature. This attribute is intended to let compilers emit additional information, that can be read by the same or other compilers or some other tools. If a compiler intends to hide methods by signature, the hidebysig attribute should be emitted. Some languages use hide by name, where only the name of the method must match for hiding purposes. These languages should not emit hidebysig. If However, since the runtime still uses hiding by signature, compilers of these languages must emit explicit code to reference the intended methods. More about hiding can be found in section 6.2.

You can define a method, including the keyword static. When called, such a method does not expect an implicit this reference as its first argument. Or, you can defined a method, including the virtual keyword. (If neither static nor virtual is specified, the method is called an instance method). Virtual or instance methods do expect an implicit this reference as their first argument. Do not specify the contradictory combination virtual and static.

11.5.4.3 Overriding Behavior

The only attribute in this group is newslot XE "neslot" . newslot can only be used with virtual methods.

By default, a virtual method will override the implementation of a matching virtual method in the superclass. This can be prevented by using the attribute newslot. If newslot is used, the method will not override any method of the superclass.

Calls to the method of the superclasses of this method will be redirected to the implementation of the superclass of this class. Calls to method in this class and its subclasses will be redirected to the new implementation, or to an overriding version of one of the subclasses.

The attribute newslot should be used if a virtual method is declared for the first time in a class hierarchy.

The implementation of the superclass may still be overridden by subclasses by using a MethodImpl with an explicit reference to the implementation of the superclass.

11.5.4.4 Implementation Attributes

The two implementation attributes are abstract XE "abstract" and specialname XE "specialname" . abstract can only be used with non-final virtual methods. These two attributes may be combined.

abstract specifies that the method is not provided and needs to be defined by a subclass. abstract methods can only appear in abstract classes (see section 7.2).

specialname indicates that the name of this method has special meaning to some tools.

11.5.4.5 Interoperation Attributes

These attributes are for interoperation with Windows or classical COM applications. The attributes in this category are pinvokeimpl XE "pinvokeimpl" and unmanagedexp XE "unmanagedexp" . These two attributes may be combined.

pinvokeimpl instructs the runtime to use the platform invoke functionality to invoke an unmanaged method in the specified DLL with the specified export name (see also section 11.6.1.1).

unmanagedexp marks this managed method as exported for use by unmanaged callers, via the legacy Export Address Table in the PE image.

11.5.4.6 Other Attributes

The attribute rtspecialname XE "rtspecialname" indicates that the method name shall be treated in a special way by the runtime. Examples of special names are .ctor (constructor) and .cctor (type initializer).

11.5.5 Implementation Attributes of Methods

Implementation attributes XE "Method attributes:Implementation attributes"

 XE "Implementation attributes" of a method are attributes that provide important additional information to the runtime. They contain information about required special handling by the runtime or more information on the code implemented by the method. Implementation attributes may also contain additional information on interoperation with classical COM.

The following subsections contain additional information on each group of implementation attributes..

	<implAttr> ::=
	Description
	Section

	 forwardref
	Specifies that the body of this method is not specified with this declaration.
	11.5.5.3

	| il
	Specifies that the method contains standard IL code.
	11.5.5.1

	| internalcall /* round trip only */
	Used only for disassembling purposes.
	11.5.5.3

	| managed
	Specifies that the method is a managed method.
	11.5.5.2

	| native
	Specifies that the method contains native code.
	11.5.5.1

	| noinlining
	Specifies that the runtime shall not attempt to inline the method.
	11.5.5.3

	| ole
	Indicates method signature is mangled to return HRESULT, with the return value as a parameter.
	11.5.5.4

	| optil
	Specifies that the method contains OptIL code.
	11.5.5.1

	| runtime
	The body of the method is not defined but produced by the runtime.
	11.5.5.1

	| synchronized
	The method will be executed in a single threaded fashion.
	11.5.5.3

	| unmanaged
	Specifies that the method is unmanaged.
	11.5.5.2

11.5.5.1 Code Implementation Attributes

The code implementation attributes are il XE "il" , native XE "native" , optil XE "optil" , and runtime XE "runtime" . These attributes are exclusive. The default is il XE "il" .

These attributes specify the type of code the method contains.

il specifies that the method body consists of IL code. Unless the method is declared abstract, the body of the method must be provided if il is used.

native indicates that a method was implemented using native code, rather than the device independent IL. native methods only execute on the platform their code targets. native methods may not have a body with instructions but must refer to a native method that declares the body. Typically, the PInvoke functionality (see 11.6.1.1) of the CLR is used to refer to a native method. native method declarations are used to define the signature of the method important for callers and the runtime. In addition, native methods may have custom attributes and other metadata information associated with them.

optil marks that the method contains optimized IL. Optimized IL follows certain restrictions that allow the JIT to compile the IL to native code faster.

runtime specifies that the implementation of the method is automatically provided by the runtime and is primarily used for the constructor and invoke method of delegates.

11.5.5.2 Managed or Unmanaged

The options are either managed XE "managed" or unmanaged XE "unmanaged" . The default is managed.

As the names imply, if managed is specified, the execution of the method will be managed by the CLR. If unmanaged is specified, the code will not be managed by the CLR.

11.5.5.3 Implementation Information

The attributes in this group are forwardref XE "forwardref" , internalcall XE "internalcall" , synchronized XE "synchronized" , and noinlining XE "noinlining" . The attributes may be combined.

forwardref specifies that the body of the method is provided elsewhere –in another module of the same assembly. (This corresponds to a C++ forward declaration)

internalcall is a special token used by the disassembler for some methods and must not be used. The explicit use of internalcall will cause the execution engine to throw a System.Security.SecurityException.

synchronized specifies that the whole body of the method shall be single threaded. If this method is an instance or virtual method a lock on the object will be obtained before the method is entered. If this method is a static method a lock on the class will be obtained before the method is entered. If a lock cannot be obtained the requesting thread will be suspended and placed on a waiting queue until it is granted the lock. This may cause dead locks.

noinlining specifies that the runtime shall not inline this method. Inlining refers to the process of replacing the call instruction with the body of the called method. This may be done by the runtime for optimization purposes.

11.5.5.4 Interoperation

The attribute ole XE "ole" is used for compatibility with unmanaged COM. It instructs the runtime to convert the signature of a method for calls in both directions unmanaged to managed and managed to unmanaged.

The conversion from managed to unmanaged appends the return value of a method to its parameter list as an out, retval parameter with the corresponding pointer type of the return type. The new return type of the method becomes HRESULT. Instead of throwing an exception, the HRESULT value will indicate success or failure.

The conversion from unmanaged to managed is the opposite way.

11.5.6 Scope Blocks

Scope blocks XE "Scope blocks" are syntactic sugar and primarily serve for readability and debugging purposes.

Syntactically, a scope block is enclosed inside braces and recursively contains a <methodBodyItem>.

	<scopeBlock> ::= { <methodBodyItem>* }

A scope block defines the scope in which a local variable is accessible by its name. Scope blocks may be nested, such that a reference of a local variable will be first tried to resolve in the innermost scope block, than at the next level, and so on until the top-most level of the method, is reached. A declaration in an inner scope block hides declarations in the outer layers.

If duplicate declarations are used, the reference will be resolved to the first occurrence. Even though valid IL, duplicate declarations are not recommended.

Scoping does not affect the lifetime of a local variable. All local variables are created (and if specified initialized) when the method is entered. They stay alive until the execution of the method is completed.

The scoping does not affect the accessibility of a local variable by its zero based index. All local variables are accessible from anywhere within the method by their index.

The index is assigned to a local variable in the order of declaration. Scoping is ignored for indexing purposes. Thus, each local variable is assigned the next available index starting at the top of the method. This behavior can be altered by specifying an explicit index, as described by a <localsSignature> as shown in section 11.5.3.3.

Example:

{

.locals (int32 a)

// declares local 0

{

.locals (int32 a)

// declares local 1

ldloc
a

// loads local 1

pop

}

ldloc
a

// loads local 0

pop

ldloc.1

// loads local 1, which is still alive

pop

}

11.5.7 vararg Methods

vararg XE "vararg" methods are methods that may accept a variable number of arguments.

Methods that want to accept a variable number of arguments must have the calling convention vararg. This becomes part of their signature. When such a method is called, you must separate the fixed from the additional parameters in the signature with an ellipsis (see section 11.4.9)

Any number and type of arguments may be passed after the last required argument. The vararg arguments may be accessed by obtaining a handle to the argument list. This is done using the arglist XE "arglist" instruction. The handle can be used to create an instance of the value type System.ArgIterator XE "System.ArgIterator" . The iterator can be used to obtain the arguments using the GetNextArg method. This method returns a typedref XE "teypedref" . Finally, the typedref can be used to obtain a reference to the argument. This is also illustrated in the example at the end of this section.

The GetRemainingCount method of System.ArgIterator can be used to obtain the number of arguments left. If GetNextArg is called after the last vararg argument was returned, System.ArgIterator will throw a System.InvalidOperationException XE "System.InvalidOperationException" .

Calling vararg methods is described in section 11.4.9.

Example:

The following example shows how a vararg method is declared and how the first vararg argument is accessed, assuming that at least one additional argument was passed to the method:

.method public static vararg void MyMethod(int32 required) {

.maxstack 3

.locals init (value class System.ArgIterator it,

int32 x)

ldloca
it

// initialize the iterator

initobj
value class System.ArgIterator

ldloca
it

arglist

// obtain the argument handle

call
instance void System.ArgIterator::.ctor(value class System.RuntimeArgumentHandle)
// call constructor of iterator

/* argument value will be stored in x when retrieved, so load

 address of x */

ldloca
x

ldloca
it

// retrieve the argument, the argument for required does not matter

call
instance typedref System.ArgIterator::GetNextArg()

call
class System.Object System.TypedReference::ToObject(typedref)
// retrieve the object

castclass System.Int32

// cast and unbox

unbox
int32

cpobj
int32

// copy the value into x

// first vararg argument is stored in x

ret

}

11.6 Unmanaged Methods

11.6.1 Calling Unmanaged Methods

There are two primary mechanisms to call unmanaged methods XE "Unmanaged methods" , It Just Works XE "It Just Works"

 XE "IJW" and PInvoke XE "PInvoke" .

It Just Works (IJW) scenarios are designed for programmers who wish to use existing unmanaged data types for interoperation with unmanaged code. The CLR provides very little marshaling support and, since the data types are unmanaged, the programmer is required to deal directly with lifetime and memory management. Users can write their own custom marshaling code to wrap existing unmanaged code if they wish to provide a managed view.

The primary issue in IJW is to guarantee that execution cannot transfer from managed code to unmanaged code (or vice versa) without first executing transition code supplied by the CLR. This transition primarily deals with exception handling and garbage collection. To support this, IJW relies on the following:

· Instances of the type System.ArgIterator are marshaled specially across the managed/unmanaged boundary, so that they appear to unmanaged code as the type required by the C++ va_* macros or functions.

· Function pointers are not marshaled across the boundary. It is the responsibility of the user to convert pointers as needed across the boundary, and the CLR provides a mechanism for doing this conversion. By considering managed/unmanaged to be part of the type of a function pointer, this work can be handled automatically by a compiler.

Platform invoke (PInvoke) is a combination of the transition management provided by IJW with data marshaling similar to that provided by COM Interop. It allows existing APIs to be called from managed code, with automatic conversion between some managed types and their unmanaged equivalents.

11.6.1.1 Platform Invoke

Methods defined in a native DLL may be invoked using the PInvoke (platform invoke) functionality of the CLR. PInvoke will handle everything needed to make the call work. It will automatically switch from managed to unmanaged state and back and also handle necessary conversions. Methods that need to be called using PInvoke are marked as pinvokeimpl XE "pinvokeimpl" . In addition, the methods must have the implementation attriubtes native XE "native" and unmanaged XE "unmanaged" (see 11.5.4.4).

pinvokeimpl takes in parentheses the name of the DLL with any number of PInvoke attributes. After the name of the DLL, an as clause may be inserted that specifies an alias that may be used to call the method. While the name of the method must exactly match the name of the method as declared in the DLL, the alias may be used as an alternative name for the method in IL. This may be useful, since some compilers use cryptic names for methods in DLLs.

	<methAttr> ::=
	Description
	Section

	 pinvokeimpl (<QSTRING> [as <QSTRING>] <pinvAttr>*)
	pinvokeimpl(<DLL name> [as <alias>] <attribute>*)
	

	| …
	
	11.5.4

A method declared with pinvokeimpl may not have a body, since it was declared to be native.

pinvokeimpl methods may be global methods as well as methods of classes. Only static methods may be pinvokeimpl. The CLR PInvoke feature does not support instance or virtual methods.

A call to a pinvokeimpl method is just like any other call to a static method.

Note: The disassembler ildasm may output pinvokeimpl declarations with no DLL name, e.g. when VC++ code is disassembled, and the assembler ilasm does accept pinvokeimpl declaration with no DLL. However, this is invalid IL and the produced code will fail to execute. PEVerify will report pinvokeimpl declarations without a specified DLL as errors.

The following grammar shows the attributes of a pinvokeimpl instruction.

	<pinvAttr> ::=
	Description

	 ansi XE "ansi"
	ANSI character set.

	| autochar XE "autochar"
	Determine character set automatically.

	| cdecl XE "cdecl"
	Standard C style call.

	| fastcall XE "fastcall"
	C style fastcall.

	| lasterr XE "lasterr"
	Indicates that method supports C style last error querying.

	| nomangle XE "nomangle"
	Use the member name as specified – do not search for ‘A’ (ascii) or ‘W’ (widechar) variants in the Win32 DLLs

	| ole XE "ole"
	Indicates method signature is mangled to return HRESULT, with the return value as a parameter.

	| stdcall XE "stdcall"
	Standard C++ style call.

	| thiscall XE "thiscall"
	The method accepts an implicit this pointer.

	| unicode XE "unicode"
	Unicode character set.

	| winapi XE "winapi"
	Pinvoke will use native call convention appropriate to target windows platform.

Example:

The following shows the declaration of the method MessageBeep located in the Windows DLL user32.dll:

.method public static pinvokeimpl("user32.dll" cdecl) int8 MessageBeep(unsigned int32) native unmanaged {}
The above method may be called like any other static method from IL code.

11.6.1.1.1 Name Mangling in DLLs

Some compilers, like VC++, convert human readable names into cryptic names that contain additional information like types, etc. This process is called name mangling XE "Name mangling" .

ilasm does not support automatic name mangling for PInvoke calls. Thus, it is important to use the exact mangled name of the method. The mangled name of the method can be obtained using the dumpbin tool applied to the DLL:

dumpbin /symbol <dllname>

The alias used with pinvokeimpl gives an opportunity to declare explicitly the unmangled name of the method.

11.6.1.2 Via Function Pointers

Unmanaged functions can also be called via function pointers. There is no difference between calling managed or unmanaged functions with pointers. However, the unmanaged function needs to be declared with pinvokeimpl as described in section 11.6.1.1. Calling managed methods with function pointers is described in section 11.4.

11.6.1.3 COM Interop

Unmanaged COM XE "Unmanaged COM" operates primarily by publishing uniquely identified interfaces and then sharing them between implementers (traditionally called “servers”) and users (traditionally called “clients”) of a given interface. It supports a rich set of types for use across the interface, and the interface itself can supply named constants and static methods, but it does not supply instance fields, instance methods, or virtual methods.

The CLR provides mechanisms useful to both implementers and users of existing classical COM interfaces. The goal is to permit programmers to deal with managed data types (thus eliminating the need for explicit memory management) while at the same time allowing interoperability with existing unmanaged servers and clients. COM Interop does not support the use of global functions (i.e. methods that are not part of a managed class), static functions, or parameterized constructors.

· Given an existing classical COM interface definition as a type library, the tlbimp tool produces a file that contains the metadata describing that interface. The types it exposes in the metadata are managed counterparts of the unmanaged types in the original interface.

· Implementers of an existing classical COM interface can import the metadata produced by tlbimp and then write managed classes that provide the implementation of the methods required by that interface. The metadata specifies the use of managed data types in many places, and the CLR provides automatic marshaling (i.e. copying with reformatting) of data between the managed and unmanaged data types.

· Implementers of a new service can simply write a managed program whose publicly visible types adhere to a simple set of rules. They can then run the tlbexp XE "tlbexp" tool to produce a type library for classical COM users. This set of rules guarantees that the data types exposed to the classical COM user are unmanaged types that can be marshaled automatically by the CLR.

· Implementers need to run the RegAsm XE "comreg" tool to register their implementation with classical COM for location and activation purposes – if they wish to expose managed services to unmanaged code

· Users of existing classical COM interfaces simply import the metadata produced by tlbimp XE "tlbimp" . They can then reference the (managed) types defined there and the CLR uses the assembly mechanism and activation information to locate and instantiate instances of objects implementing the interface. Their code is the same whether the implementation of the interfaces is provided using classical COM (unmanaged) code or the CLR (managed) code: the interfaces they see use managed data types, and hence do not need explicit memory management.
· For some existing classical COM interfaces, the CLR execution engine provides an implementation of the interface. In some cases the EE allows the user to specify all or parts of the implementation; for others it provides the entire implementation.

11.6.1.4 Calling from Managed to Unmanaged

From the point of view of an IL code generator, both IJW and PInvoke are handled in the same way as calls to other named methods. There is a call to a method using the ordinary IL mechanisms (a call, callvirt, or jmp instruction) that specifies a destination by way of a metadata token. When resolved at runtime, the metadata token is discovered to be associated with a methoddef that is specially marked that its implementation is unmanaged code. This definition effectively provides two signatures: one for the managed side (indicating how it is being called) and one for the unmanaged side (indicating how it is implemented).

It is the job of the CLR execution engine and any IL-to-native-code compilers to cooperate to make sure that the transition is done correctly, including any possible data marshaling. When the data types are identical in both of the signatures, no marshaling occurs. Where the type as passed by the (managed) caller differs from the type expected by the (unmanaged) receiver, the PInvoke marshaling rules are invoked to convert the data types.

For calls or jumps via a function pointer, the mechanism is slightly different. The ldftn and ldvirtftn instructions construct a pointer to an entry point and the type conveys whether it is a managed or unmanaged entry point. There is a Base Class Library routine (unsafe but known to verification) that takes a function pointer and converts it from any given calling convention to any other, by producing a transition stub as needed.
11.6.1.5 Calls from Unmanaged to Managed

Just as there are two ways to call from managed to unmanaged (direct and via a pointer), there are two ways to call from unmanaged to managed. Since the call is arising in unmanaged code, however, there is no simple way to arrange for a direct call to a managed method. For IJW, the VC compiler and linker arrange that any unmanaged code that tries to call managed code will do so by one of two mechanisms:

· If the managed code is in the same module as the call site, the linker arranges for an entry in a table that represents the managed address, and forces the jump or call to go via that table entry. When the module is loaded, the CLR execution engine is started (because the module has managed code in it) and this table is updated to contain transition thunks for use when calling from unmanaged to managed code (see also 7.8.2).
· If the managed code is in a different module than the call site, the linker uses its existing mechanism to make an entry in the Import Address Table requesting the appropriate unmanaged entry point. The exporting module will have exported this entry point, and made it to point to a table entry (also fixed up by the CLR execution engine) to perform the transition.
The situation is somewhat easier for function pointers. The assumption is that the function pointer is already pointing to a transition function. This will have been generated either because

· The marshaling code saw a managed function pointer or delegate in the managed signature and a pointer to an unmanaged function in the unmanaged signature and so produced the necessary stub, or

· The compiler saw a type mismatch between an attempt to pass or store a pointer to a managed function where a pointer to an unmanaged function was required, so it called the Base Class Library function mentioned earlier to produce the transition function.
11.6.2 Managed Native Calling Conventions (x86)

This section is intended for an advanced audience. It describes the details of a native method call from managed code on the x86 architecture. The information provided in this section may be important for optimization purposes. This section is not important for the further understanding of the CLR and may be skipped.

There are two managed native calling conventions used on the x86. They are described here for completeness and because knowledge of these conventions allows an unsafe mechanism for bypassing the overhead of a managed to unmanaged code transition.

11.6.2.1 Standard 80x86 Calling Convention

The standard native calling convention is a variation on the fastcall convention used by VC. It differs primarily in the order in which arguments are pushed on the stack.

The only values that can be passed in registers are managed and unmanaged pointers, object references, and the built-in integer types I1, U1, I2, U2, I4, U4, I and U. Enums are passed as their underlying type. All floating point values and 8-byte integer values are passed on the stack. When the return type is a value type that can’t be passed in a register, the caller must create a buffer to hold the result and passes the address of this buffer as a hidden parameter.

Arguments are passed in left-to-right order, starting with the this pointer (for instance and virtual methods), followed by the return buffer pointer if needed, followed by the user-specified argument values. The first of these that can be placed in a register is put into ECX, the next in EDX, and all subsequent ones are passed on the stack.

The return value is handled as follows:

· Floating point values are returned on the top of the hardware FP stack.

· Integers up to 32 bits long are returned in EAX.

· 64-bit integers are passed with EAX holding the least significant 32 bits and EDX holding the most significant 32 bits.

· All other cases require the use of a return buffer, through which the value is returned.

In addition, there is a guarantee that if a return buffer is used a value is stored there only upon ordinary exit from the method. The buffer is not allowed to be used for temporary storage within the method and its contents will be unaltered if an exception occurs while executing the method.

Examples:
static System.Int32 f(int32 x)
The incoming argument (x) is placed in ECX; the return value is in EAX

static float64 f(int32 x, int32 y, int32 z)
x is passed in ECX, y in EDX, z on the top of stack; the return value is on the top of the floating point (FP) stack
static float64 f(int32 x, float64 y, float64 z)
x is passed in ECX, y on the top of the stack (not FP stack), z in EDX; the return value is on the top of the FP stack
virtual float64 f(int32 x, int64 y, int64 z)
this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the stack (hence z is top of the stack); the return value is on the top of the FP stack
virtual int64 f(int32 x, float64 y, float64 z)
this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the stack (hence z is on top of the stack); the return value is in EDX/EAX

virtual [mscorlib]System.Guid f(int32 x, float64 y, float64 z)

Since System.Guid is a value type the this pointer is passed in ECX, a pointer to the return buffer is passed in EDX, x is pushed, then y, and then z (hence z is on top the of stack); the return value is stored in the return buffer.
11.6.2.2 Varargs x86 Calling Convention

All user-specified arguments are passed on the stack, pushed in left-to-right order. Following the last argument (hence on top of the stack upon entry to the method body) a special cookie is passed which provides information about the types of the arguments that have been pushed.

As with the standard calling convention, the this pointer and a return buffer (if either is needed) are passed in ECX and/or EDX.

Values are returned in the same way as for the standard calling convention.

11.6.2.3 Fast Calls to Unmanaged Code

Transitions from managed to unmanaged code require a small amount of overhead to allow exceptions and garbage collection to correctly determine the execution context. On an x86 processor, under the best circumstances, these transitions take approximately 5 instructions per call/return from managed to unmanaged code. In addition, any method that includes calls with transitions incurs an 8 instruction overhead spread across the calling method’s prolog and epilog.

This overhead can become a factor in performance of certain applications. For use in unverifiable code only, there is a mechanism to call from managed code to unmanaged code without the overhead of a transition. A “fast native call” is accomplished by the use of a calli instruction which indicates that the destination is managed even though the code address to which it refers is unmanaged. This can be arranged, for example, by initializing a variable of type function pointer in unmanaged code.

Clearly, this mechanism must be tightly constrained since the transition is essential if there is any possibility of a garbage collection or exception occurring while in the unmanaged code. The following restrictions apply to the use of this mechanism:

1. The unmanaged code must follow one of the two managed calling conventions (regular and vararg) that are specified below. In V1, only the regular calling convention is supported for fast native calls.

2. The unmanaged code must not execute for any extended time, since garbage collection cannot begin while executing this code. It is wise to keep this under 100 instructions under all control flow paths.

3. The unmanaged code must not throw an exception (managed or unmanaged), including access violations, etc. Page faults are not considered an exception for this purpose.

4. The unmanaged code must not call back into managed code.

5. The unmanaged code must not trigger a garbage collection (this usually follows from the restriction on calling back to managed code).

6. The unmanaged code must not block. That is, it must not call any OS-provided routine that might block the thread (synchronous I/O, explicitly acquiring locks, etc.) Again, page faults are not a problem for this purpose.

7. The managed code that calls the unmanaged method must not have a long, tight loop in which it makes the call. The total time for the loop to execute should remain under 100 instructions or the loop should include at least one call to a managed method. More technically, the method including the call must produce “fully interruptible native code.” In future versions, there may be a way to indicate this as a requirement on a method.

Note: restrictions 2 through 6 apply not only to the unmanaged code called directly, but to anything it may call.

12 Fields

Fields XE "Fields" are typed memory locations that store the data of a program. The CLR allows the declaration of both instance and static fields. While static fields are associated with a type and shared across all instances, instance fields are associated with an instance of a type. When instantiated, the instance has its own copy of the field.

The CLR also supports global fields, which are fields not declared inside a type. Global fields must be static.

A field is defined by using the .field XE ".field" directive and a field declaration:

	<field> ::= .field <fieldDecl>

The <fieldDecl> has the following parts:

· an optional integer specifying the offset if specific layout of a class is desired

· any number of field attributes (see section 12.2)

· a type

· a name

· and optionally either a <fieldInit> form or a data label

This is also shown by the following grammar.

	<fieldDecl> ::=
	Comments

	 [[<int32>]] <fieldAttr>* <type> <id>

 [= <fieldInit> | at <dataLabel>]
	[<int32>] is byte offset, for explicit layout only, ignored in global and static fields; at <label> specifies the data item label

The optional field offset is ignored for static and global fields. For instances, the field will be stored at the specified offset within the portion of the instance data belonging to this class. Classes that use this feature must be declared explicit (see also section 7.8.1).

Global fields must have a data label associated with them. The data label specifies where the data of the field is located. Static fields of a type may, but do not need to, be assigned a data label.

Example:

The following is an instance variable declaration:

.field private class [.module Counter.dll]Counter counter

12.1 Predefined Attributes of Fields

Predefined attributes XE "Field attributes:Predefined" of a field specify information about accessibility, contract information, interoperation attributes, as well as information on special handling.

The following subsections contain additional information on each group of predefined attributes of a field.

	<fieldAttr> ::=
	Description
	Section

	 assembly
	Assembly accessibility.
	12.1.1

	| famandassem
	Family and Assembly accessibility.
	12.1.1

	| family
	Family accessibility.
	12.1.1

	| famorassem
	Family or Assembly accessibility.
	12.1.1

	| initonly
	Marks a constant field.
	12.1.2

	| literal
	Specifies metadata field. No memory is reserved for this field.
	12.1.2

	| marshal ([<nativeType>])
	Marshaling information.
	12.1.3

	| notserialized
	Field is not serialized with other fields of the class.
	12.1.2

	| private
	Private accessibility.
	12.1.1

	| privatescope
	Privatescope accessibility.
	12.1.1

	| public
	Public accessibility.
	12.1.1

	| rtspecialname
	Special treatment by runtime.
	12.1.4

	| specialname
	Special name for other tools.
	12.1.4

	| static
	Static field.
	12.1.2

12.1.1 Accessibility Information

The accessibility attributes are assembly XE "assembly" , famandassem XE "famandassem" , family XE "family" , famorassem XE "famorassem" , private XE "private" , privatescope XE "privatescope" and public XE "public" . These attributes are exclusive. If you do not specify an accessibility for a field, then ILASM inserts one for you, depending upon the visibility of its owner Type, as follows:

· global, private => privatescope
· global, public => public
· non-global, top-level, public => public
· non-global, top-level, private => private
· nested, XXX => XXX (where XXX is any of the above)

Accessibility attributes are described in section 6.3.

12.1.2 Field Contract Attributes

Field contract attributes are initonly XE "initonly" , literal XE "literal" , static XE "static" and notserialized XE "notserialized" . These attributes may be combined. Only static fields may be literal. The default is an instance field that may be serialized.

static specifies that the field is associated with the type itself rather than with an instance of the type. Static fields can be accessed without having an instance of a class, e.g. by static methods. As a consequence, a static field is shared within an application domain (see the CTS and Remoting specifications) between all instances of a class, and any modification of this field will affect all instances. If static is not specified, an instance field is created.

initonly marks fields which are constant after they are initialized. These fields may only be mutated inside a constructor. If the field is a static field, then it may be mutated only inside the type initializer of the type in which it was declared. If it is an instance field, then it may be mutated only in one of the instance constructors of the type in which it was defined. It may not be mutated in any other method or in any other constructor, including constructors of subclasses.

Note: The CLR may not check whether initonly fields are mutated outside the constructors. The EE need not report any errors if a method changes the value of a constant. However, such code is not valid and an error will be reported by PEVerify.

notserialized specifies that this field is not serialized when an instance of this class is serialized (see section 7.4.2.5). It has no meaning on global or static fields, nor if the class doesn’t have the serializable attribute.

literal specifies that this field represents a constant value. In contrast to initonly fields, literal fields do not exist at runtime. There is no memory allocated for them. literal fields become part of the metadata but cannot be accessed by the code. literal fields are assigned a value by using the <fieldInit> syntax (see section 12.2).

12.1.3 Interoperation Attributes

There is one attribute for interoperation with classical COM applications. The attribute is marshal XE "marshal" and is used for marshalling the field to a native type whenever it is used by unmanaged code and marshalling it back to the managed form such that it can be continue to be used by managed code.

The default marshalling for each type is listed in two appendices (Unmanaged-to-Managed, and vice-versa) – see sections 27 and 28.

12.1.4 Other Attributes

The attribute rtspecialname XE "rtspecialname" indicates that the field name shall be treated in a special way by the runtime.

In contrast to rtspecialname, specialname XE "specialname" indicates that the field name has special meaning to some tools.

12.2 Field Init Metadata

The <fieldInit> metadata XE "Field init metadata" can be optionally added to a field declaration. The use of this feature may not be combined with a data label.

The <fieldInit> information is available only in metadata. It does not have any affect on the actual value of the field and does not create any instructions. Thus, the <fieldInit> option does not initialize the field with any value but puts a value associated with this field into the metadata of the PE file. The field init metadata is typically used with literal fields (see section 12.1.2) or optional parameters (see section 11.5.2).

The following table lists the options for a field init. The type used has to agree with the type of the field. The description column provides additional information.

	<fieldInit> ::=
	Description

	 bytearray XE "bytearray" (<bytes>)
	Array of type U1 (8 bit). <bytes> specifies the actual bytes.

	| float32 XE "float32" (<float64>)
	32 bit floating point number, with the floating point number specified in parentheses. The number needs to fit in 32 bits.

	| float32 (<int32>)
	<int32> is binary representation of float

	| float64 XE "float64" (<float64>)
	64 bit floating point number, with the floating point number specified in parentheses.

	| float64 (<int64>)
	<int64> is binary representation of double

	| int8 XE "int8" (<int8>)
	8 bit integer with the integer specified in parentheses.

	| int16 XE "int16" (<int16>)
	16 bit integer with the integer specified in parentheses.

	| int32 XE "int32" (<int32>)
	32 bit integer with the integer specified in parentheses.

	| int64 XE "ing64" (<int64>)
	64 bit integer with the integer specified in parentheses.

	| <QSTRING>
	String. <QSTRING> is stored as ASCII

	| wchar XE "wchar*" (<QSTRING>)
	String. <QSTRING> is stored as Unicode.

Example:

The following example shows a typical use of this:

.field public static literal value class ErrorCodes no_error = int8(0)
The variable is a literal variable for which no memory is allocated. However, tools and compilers can look up the value.

12.3 Embedding Data in a PE File

 XE "Global data" CLR allows programs to store data in a PEFile.

There are several ways to declare a data field that is stored in a PE file. In all cases, the .data XE ".data" directive is used.

Data can be embedded in a PE file by using the .data directive at the top-level.

	<decl> ::=
	Section

	 .data <datadecl>
	

	| …
	4.7

Data may also be declared as part of a class:

	<classMember> ::=
	Section

	 .data <datadecl>
	

	| …
	7.5

Yet another alternative is to declare data inside a method:

	<methodBodyItem> ::=
	Section

	 .data <datadecl>
	

	| …
	11.5.3

In all cases, the data should be declared with the entity in which it is used. E.g., data used only by a method should be declared in that method. Regardless of where the data is declared, it is accessible anywhere inside the assembly.

12.3.1 Data Declaration

The data declaration of a .data directive contains the optional attribute tls XE "tls" to specify thread local storage XE "Thread local storage" (see below). Further, it contains an optional data label and the body which defines the actual data. A data label must be used if the data shall be accessed by the code.

	<dataDecl> ::= [tls] [<dataLabel> =] <ddBody>

Each PE file has a particular section whose initial contents are copied whenever a new thread is created. This section is called thread local storage. Marking data as tls XE "tls" causes the data to be put in the part of the PE File.

The body consists either of one data item or a list of data items in braces. A list of data items is similar to an array.

	<ddBody> ::=

	 <ddItem>

	| { <ddItemList> }

A list of items consists of any number of items:

	<ddItemList> ::= <ddItem> [, <ddItemList>]

The list may be used to declare multiple data items associated with one label. The items will be laid out in the order declared. The first data item will be accessible directly through the label. To access the other items, pointer arithmetic needs to be used, adding the size of each data item to get to the next one in the list. The use of pointer arithmetic will make the application not verifiable.

A data item declares the type of the data and provides the data in parentheses. If a list of data item contains items of the same type and initial value, the grammar below can be used as a short cut for some of the types. The number of times the item shall be replicated is simply put in brackets after the declaration. Note that the data is not accessible in a verifiable way.

	<ddItem> ::=

	 & (<id>)

	| bytearray (<bytes>)

	| char * (<QSTRING>) //ASCII encoded

	| float32 [(<float64>)] [[<int32>]]

	| float64 [(<float64>)] [[<int32>]]

	| int8 [(<int8>)] [[<int32>]]

	| int16 [(<int16>)] [[<int32>]]

	| int32 [(<int32>)] [[<int32>]]

	| int64 [(<int64>)] [[<int32>]]

	| wchar * (<QSTRING>) //Unicode encoded

Example:
The following declares an int32:

.data theInt = int32(123)

12.3.2 Accessing Data

 XE "Accessing data"

 XE "Global data:Accessing" The data can be accessed through a static variable. A static variable, either global or a member of a type, needs to be declared at the position of the data. The syntax for this is as follows:

	<fieldDecl> ::= <fieldAttr>* <type> <id> at <dataLabel>

This is similar to a regular <fieldDecl>. After the at XE "at" the label pointing to the location at which the data is stored is inserted. One of the field attributes must be static.

The data can then be accessed through the static variable. The variable may be accessed also by other modules or assemblies.

To export the data to the unmanaged world, the static variable needs to appear in a type that is exported.

Example:

The following accesses the data declared in the example of section 12.3.1. First a static variable needs to be declared for the data, e.g. a global static variable:

.field public static int32 myInt at theInt

Then the static variable can be used to load the data:

ldsfld int32 myInt

// data on stack

12.3.3 Unmanaged Thread-local Storage

 XE "Thread local storage:Unmanaged" There are two mechanisms for dealing with thread-local storage (tls XE "tls"): an unmanaged mechanism and a managed mechanism. The unmanaged mechanism has a number of restrictions which are carried forward directly into the CLR. For example, the amount of thread local storage is determined when the PE file is loaded and cannot be expanded. The amount is computed based on the static dependencies of the PE file, DLLs that are loaded as a program executes cannot create their own thread local storage through this mechanism. The managed mechanism, which does not have these restrictions, is described in the Base Class Library documentation.

For unmanaged tls XE "tls" there is a particular native code sequence that can be used to locate the start of this section for the current thread. The CLR respects this mechanism. That is, when a reference is made to a static variable with a fixed RVA in the PE file and that RVA is in the thread-local section of the PE, the native code generated from the IL will use the thread-local access sequence.

This has two important consequences:

· A static variable with a specified RVA must reside entirely in a single section of the PE file. The RVA specifies where the data begins and the type of the variable specifies how large the data area is.

· When a new thread is created it is only the data from the PE file that is used to initialize the new copy of the variable. There is no opportunity to run the class initializer. For this reason it is probably wise to restrict the use of unmanaged thread local storage to the primitive numeric types and value types with explicit layout that have a fixed initial value and no class initializer.

12.4 Initialization of Static Data

 XE "Initialization of static data" Many languages that support static data (i.e. variables that have a lifetime that is the entire program) provide for a means to initialize that data before the program begins running. There are three common mechanisms for doing this, and each is supported in the CLR.

12.4.1 Data Known at Link Time

When the correct value to be stored into the static data is known at the time the program is linked (or compiled for those languages with no linker step), the actual value can be stored directly into the PE file, typically into the .data area (see section 12.3). References to the variable are made directly to the location where this data has been placed in memory, using the OS supplied fix-up mechanism to adjust any references to this area if the file loads at an address other than the one assumed by the linker.

In the CLR, this technique can be used directly if the static variable has one of the primitive numeric types or is a value type with explicit class layout and no embedded references to managed objects. In this case the data is laid out in the .data area as usual and the static variable is assigned a particular RVA (i.e. offset from the start of the PE file) by using a data label with the field declaration (using the at syntax).

This mechanism, however, does not interact well with the CLR notion of an application domain (see the CTS specification). An application domain is intended to isolate two applications running in the same OS process from one another by guaranteeing that they have no shared data. Since the PE file is shared across the entire process, any data accessed via this mechanism is visible to all application domains in the process, thus violating the application domain isolation boundary.

12.4.2 Data Known at Load Time

When the correct value is not known until the PE file is loaded (for example, if it contains values computed based on the load addresses of several PE files) it is possible to supply arbitrary code to run as the PE file is loaded and while the OS holds a process-wide lock.

 This mechanism, while available in the CLR, is strongly discouraged. The details are provided in the File Format specification.

12.4.3 Data Known at Run Time

When the correct value cannot be determined until class layout is computed, the user must supply code as part of a type initializer to initialize the static data. The guarantees about class initialization are covered in section 7.6.7.1. As will be explained below, global statics are modeled in the CLR as though they belonged to a class, so the same guarantees apply to both global and class statics.

Because the layout of managed classes need not occur until a class is first referenced, it is not possible to statically initialize managed classes by simply laying the data out in the PE file. Instead, there is a class initialization process that proceeds in the following steps:

1. All static variables are zeroed.

2. The user-supplied class initialization procedure, if any, is invoked as described in section 7.8.2.

Within a class initialization procedure there are several techniques:

· Generate explicit code that stores constants into the appropriate fields of the static variables. For small data structures this can be efficient, but it requires that the initializer be JITted, which may prove to be both a code space and an execution time problem.

· Box value types. When the static variable is simply a boxed version of a primitive numeric type or a value type with explicit layout, introduce an additional static variable with known RVA that holds the unboxed instance and then simply use the box instruction to create the boxed copy.

· Create a managed array from a static native array of data. This can be done by marshaling the native array to a managed array. The specific marshaler to be used depends on the native array. E.g., it may be a safearray.

· Default initialize a managed array of a value type. The .NET SDK Base Class Library will provide a method that will call the default constructor (or zero the storage if there is no default constructor) for every element of an array of unboxed value types (called System.Runtime.CompilerServices.InitializeArray)

· Use Base Class Library deserialization. The .NET SDK Base Class Library provides serialization and deserialization services. These services can be found in the System.Runtime.Serialization namespace. An object can be converted to a serialized form, stored in the data section and accessed using a static variable with known RVA of type unsigned int8[]. The corresponding deserialization mechanism can then be used in the class initializer.

13 Properties

Properties XE "Properties" can be thought of as smart fields. Rather than just being a field that contains a value, properties are implemented by a collection of methods. Every property represents a certain value. Methods associated with this property retrieve or change this value. Typically, a property is associated with a field that stores the value. However, the value of the property may also be computed on the fly by methods.

The CLR supports the declaration of properties. From the point of view of the runtime, properties are only metadata, they associate some methods and optionally a field together. The property declaration does not have any meaning at runtime. However, the metadata can be used by compilers and other tools to inspect the property and understand what methods are associated with the property. E.g., the property declaration describes what method needs to be called in order to obtain the value of the property.

Typically, properties have a getter and a setter XE "Getter"

 XE "Setter" . The getter returns the current value of the property, while the setter updates the value of the property with a new value. Some higher level programming languages implement the getter the same way as an access to a field and the setter the same way as an assignment to a field. However, there is no such support at the runtime level. However, the metadata describes what method will implement the functionality of the getter and what method will implement the functionality of the setter.

The CLR supports static, instance, and virtual properties. While static properties are only associated with the type in which they are declared, instance and virtual properties are associated with an instance of the type in which they are declared.

Properties have two major advantages over fields. The first advantage is that behavior is associated with the access and updating of a value. This can be used to abstract the representation of the value and do additional computation and validation when the value is accessed or updated. Properties also give more control over restricting what values are stored when and by whom.

Virtual properties allow their getters and setters to be implemented via virtual methods. As a consequence, these methods may be overriden by subclasses and their behavior may be modified in an object oriented fashion to do more sophisticated or specialized work. Subclasses also get a chance to interrupt when a value is retrieved or updated.

In addition to the setters and getters, properties may also have other methods associated with them.

It may seem that method calls to obtain a value may be much slower than direct access to a field. However, in reality the IL-to-native code compiler of the runtime will optimize properties, so that for trivial getters and setters there is no performance loss.

13.1 Declaring properties

 XE "Properties:Declaration" A property is declared by the using the .property XE ".property" directive, followed by a property head and property members in braces. Properties may only be declared inside of types.

	<classMember> ::=
	Section

	 .property <propHead> { <propMember>* }
	

	| …
	7.2

Even though it is typical that the setters and getters of the property come from the type which declares the property, this is not necessary.

13.1.1 Property Head

 XE "Properties:Head" The property head contains a calling convention (see section 11.4.1), a type and a name, and parameter declarations in parentheses.

The property head may contain the keywords specialname or rtspecialname. specialname marks the name of the property for other tools, while rtspecialname marks the name of the property as special for the runtime.

While in theory there need be no relationship between the signature of a property and the methods that implement it, in practice the declaration of the property must match the declaration of the getter method. The calling convention, type, and parameters of a property have to be the same as they are defined for the get method.

	<propHead> ::=

	 [specialname|rtspecialname]* <callConv> <type> <id> (<parameters>)

13.1.2 Property Members

 XE "Properties:Members" A property may contain any number of property members in its body. The following table shows these and provides short descriptions for them:

	<propMember> ::=
	Description
	Section

	 .backing <type> <id>
	Backing field of the property.
	

	| .custom <customDecl>
	Custom attribute.
	17

	| .get <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
	Specifies the getter for the property.
	

	| .other <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
	Specifies a method for the property other than the getter or setter.
	

	| .set <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
	Specifies the setter for the property.
	

	| <externSourceDecl>
	.line or #line
	3.7

As described above, .backing XE ".backing"

 XE "Backing field" specifies the field in the class that is associated with this property, by its type and name. A property does not need to have a backing field, but if it has such a field it should be specified in the property declaration. The backing field has to be defined in the same type as the property itself, otherwise it cannot be specified in the metadata. The field should be marked with specialname in its declaration to highlight it for tools and compilers.

.getspecifies the getter method for this property with a MethodRef. The method needs to be defined in the type specified by <typeSpec> or in this class. Only one get method may be specified for a property. The <callConv>, <type> and parameters of the get method, in practice, should be the same as those specified in the property head. The get method should be marked with specialname in its declaration to highlight it for tools and compilers.

.set specifies the setter method for this property using a MethodRef, similar to the way the getter is specified. A property may have only one setter. The set method should be marked with specialname in its declaration to highlight it for tools and compilers.

.other XE ".other" can be used to specify other methods associated with this property. If the other methods have a special semantics, the implementer of the property needs to document these and used appropriate naming conventions.

In addition, custom attributes (see section 16) or source line declarations may be specified.

Example:

This example shows the declaration of the property used in the example in section Fehler! Verweisquelle konnte nicht gefunden werden..

.class public auto autochar MyCount extends [mscorlib]System.Object {

.field private specialname int32 count

// the backing field

.method virtual hidebysig public specialname instance int32 get_Count() {

// body of getter

}

.method virtual hidebysig public specialname instance void set_Count(int32 newCount) {

// body of setter

}

.method virtual hidebysig public instance void reset_Count() {

// body of refresh method

}

// the declaration of the property

.property int32 Count() {

.backing int32 count

.get instance int32 get_Count()

.set instance void set_Count(int32)

.other instance void reset_Count()

}

} // end of class MyCount
14 Events

An event XE "Events" is the change of state of an object at a particular time. Any non-trivial application reacts to events. Examples of events are hardware events, like keyboard strokes or mouse movements, or software events, like selecting a menu item.

Events become very important in a multi-tasking environment, where many processes and their threads share the same processor resources. Many applications need to show some behavior when an event occurs, but do not do any computation when no event occurred. It is inappropriate to loop and keep checking whether the state of an object changed. This technique wastes huge amounts of processor resources. In a complex system an event model that enables applications to efficiently detect events is a necessity.

This section describes the event model of the CLR and shows how applications may observe and declare events. The CLR has built-in support for events in its metadata. This allows a consistent event model across all platforms and languages that target the CLR. The CLR event model makes it possible for an event to be declared in one language and observed by an application that is written in another language.

Events are similar to properties in the sense that they are pure metadata elements. However, the metadata description of events is powerful enough to inform observers as well as event sources of how the event is used. Similar to properties, events have a number of methods associated with them. These methods have a special semantics and implement a certain behavior that is defined by the CLR event model.

An event source XE "Event source" is the object where an event may occur. If an event occurs, the event source fires the event. An event has a special method associated with it that fires the event.

An event observer XE "Event observer" is an object that waits for an event and presumably shows some behavior if the event occurs. To do this, an observer needs to listen to an event. An observer may start listening to an event by adding itself onto the list of observers for the event. If the observer wants to discontinue listening to an event, it may remove itself from this list. An event has special methods associated with it that add an observer to the event and remove an observer from the event.

When an event is fired, the observer is notified that an event is called through a method call. A method that is dedicated to be called whenever the event is fired is called an event handler XE "Event handler" . When an observer starts listening to an event, it needs to register an event handler with the event source.

The CLR supports both static and instance events. While static events are associated with a type, instance events are associated with an instance of the type.

14.1 Implementing Events XE "Events:Implementation"
The event source needs to be able to call the event handler of the observer. This is done using delegates (see section 10.5), which specify the signature of the event handler that must be implemented by the observer.

Delegates not only provide an ideal way of abstracting the observer’s reference to event handler, they also provide additional functionality. Usually, an event will be listened to by several observers at a time and the event source needs to be prepared to be able to handle multiple observers. While the event source may implement behavior to handle multiple observers, delegates provide a standard mechanism--multicast delegates. Multicast delegates abstract the code involved in combining various delegates. When the event is fired all handlers are notified with just one call to the multicast delegate. The event source may define its own delegate type or use the delegate System.EventHandler XE "System.EventHandler" . The Invoke method of the System.EventHandler delegate takes two parameters, the event source and data associated with the event.

14.2 Observing Events

Example:

This example shows how a timer event source is created and an observer added to the timer event.

Assume the timer is needed by a class called Counter. The following declares the needed fields in the sample class Counter:

.field private class [System.Timers]System.Timers.Timer timer

.field private class [mscorlib]System.EventHandler timerEventHandler

The following is the declaration of the event handler:

.method virtual hidebysig private void instance onTick(class System.Object, class [mscorlib]System.EventArgs) il managed {

// body of event handler

}

The method below adds this class to the timer even using the handler above:

.method virtual hidebysig famorassem instance void SetupTimer() il managed {

.maxstack 3

// create the timer

ldarg.0

ldc.r8
1000

// 1000 ms

newobj
instance void [System.Timers]System.Timers.Timer::.ctor(float64)

stfld
class [System.Timers]System.Timers.Timer Counter::timer

// create the delegate

ldarg.0

// load this pointer, needed 3 times

dup

// duplicate top of stack, 2 copies on stack

dup

// duplicate another time, 3 copies on stack

ldvirtftn instance void Counter::onTick(class System.Object, class [mscorlib]System.EventArgs)

newobj
instance void [mscorlib]System.EventHandler::.ctor(class System.Object, int32)

stfld
class [mscorlib]System.EventHandler Counter::timerEventHandler

// add this observer to the time event

ldarg.0

ldfld
class [System.Timers]System.Timers.Timer Counter::timer

ldarg.0

ldfld
class [mscorlib]System.EventHandler Counter::timerEventHandler

call
instance void [System.Timers]System.Timers.Timer::add_Tick(class [mscorlib]System.EventHandler)

ret

}
When done, the observer should be removed from the event.

14.3 Declaring Events

 XE "Events:Declaration" Events are declared inside types with the .event directive. Following the directive is an event head and any number of event members.

	<classMember> ::=
	Section

	 .event <eventHead> { <eventMember>* }
	

	| …
	7.2

Even though it is typical that the members of the event are declared in the type which declares the event, this is not necessary.

14.3.1 Event Head

The event head contains the type and a name for the event.

	<eventHead> ::=

	 [specialname] [rtspecialname] [<typeSpec>] <id>

If the event was implemented using delegates, the type refers to the type specification of the delegate. Otherwise, the type should refer to a type that specifies the signature of the handler for the event.

The event head may contain the keywords specialname or rtspecialname. specialname marks the name of the property for other tools, while rtspecialname marks the name of the event as special for the runtime.

14.3.2 Event Members

The grammar below shows the various members of an event:

	<eventMember> ::=
	Description
	Section

	 .addon <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
	Add method for event.
	

	| .custom <customDecl>
	Custom attribute.
	16

	| .fire <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
	Fire method for event.
	

	| .other <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
	Other method.
	

	| .removeon <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
	Remove method for event.
	

	| <externSourceDecl>
	.line or #line
	3.7

Even though not required an event should at least provide an add and a remove method.

The .addon XE ".addon" directive specifies the add method by providing a MethodRef. If the <typeSpec> is not specified, the method is assumed to be in the same type as the event. The add method may take any parameters, but typically it will take at least a reference to the event handler of the observer, e.g. in form of a delegate. The type of the parameter accepting the event handler should be same as the type used in the event head. The accessibility of the add method restricts the observers that may add themselves to the event. If this should be unrestricted, public needs to be used. The add method should be marked with specialname in its declaration to highlight it for tools and compilers.

The .removeon XE ".removeon" directive specifies the remove method by providing a MethodRef similar to the .addon directive. The remove method may also take any parameters, but typically it will take at least a reference to the event handler to be removed. This is the same reference that was used with the add method. The accessibility of the remove method should be the same as the accessibility of the add method. The remove method should be marked with specialname in its declaration to highlight it for tools and compilers.

The .fire XE ".fire"

 XE "Events:Firing" directive is used to specify the fire method of the event. It also uses a MethodRef to refer to the implementation similar to the .addon and .removeon directives. The .fire directive is not required but should be provided if possible. The accessibility of the fire method determines which types may fire the event. If only the type that declares the fire method should be able to fire the event, the fire method needs to be private. The fire method should be marked with specialname in its declaration to highlight it for tools and compilers.

The implementation of the event will make use of one or more fields to store the observers. It is important that the fields that store information about the observers remain private or at most family. This will make sure that no unauthorized objects remove observers by using the fields or fire the event without the control of the event source. However, firing the event means notifying the observers, which makes access to them necessary. The fire method gives other objects the opportunity to request that an event is fired without the event having to expose its underlying data structures. In addition, the fire method abstracts the specific implementation of the event.

An event may contain any number of other method specified with the .other XE ".other" directive. From the point of view of the runtime, these methods are only associated with each other through the event. If they have special semantics, this needs to be documented by the implementer.

Events may also have custom attributes (17) associated with them and they may declare source line information.

Example:

The following example shows the declaration of an event, its corresponding delegate, and typical implementations of the add, remove, and fire method of the event. The event and the methods are declared in a class called Counter.

// the delegate

.class private sealed auto autochar TimeUpEventHandler extends [mscorlib]System.MulticastDelegate {

.method public hidebysig specialname rtspecialname instance void .ctor(class System.Object object, int32 'method') runtime managed {}

.method public hidebysig virtual instance void Invoke() runtime managed {}

.method public hidebysig newslot virtual instance class [mscorlib]System.IAsyncResult BeginInvoke(class [mscorlib]System.AsyncCallback callback, class System.Object object) runtime managed {}

.method public hidebysig newslot virtual instance void EndInvoke(class [mscorlib]System.IAsyncResult result) runtime managed {}

}

// the class that declares the event

.class public auto autochar Counter extends [mscorlib]System.Object {
// field to store the handlers, initialized to null

.field private class TimeUpEventHandler timeUpEventHandler

// the event declaration

.event TimeUpEventHandler startStopEvent {

.addon instance void add_TimeUp(class TimeUpEvent 'handler')

.removeon instance void remove_TimeUp(class TimeUpEvent 'handler')

.fire instance void fire_TimeUpEvent()
}

// the add method, combines the handler with existing delegates

.method public hidebysig virtual specialname instance void add_TimeUp(class TimeUpEventHandler 'handler') {

.maxstack 4

ldarg.0

dup

ldfld
class TimeUpEventHandler Counter::timeUpEventHandler

ldarg
'handler'

call
class[mscorlib]System.Delegate [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

castclass TimeUpEventHandler

stfld
class TimeUpEventHandler Counter::timeUpEventHandler

ret

}

// the remove method, removes the handler from the multicast delegate

.method virtual public specialname void remove_TimeUp(class TimeUpEventHandler 'handler') {

.maxstack 4

ldarg.0

dup

ldfld
class TimeUpEventHandler Counter::timeUpEventHandler

ldarg
'handler'

call
class[mscorlib]System.Delegate [mscorlib]System.Delegate::Remove(class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

castclass TimeUpEventHandler

stfld
class TimeUpEventHandler Counter::timeUpEventHandler

ret

}

// the fire method

.method virtual family specialname void fire_TimeUpEvent() {

.maxstack 3

ldarg.0

ldfld
class TimeUpEventHandler Counter::timeUpEventHandler

callvirt instance void TimeUpEventHandler::Invoke()

ret

}

}
// end of class Counter

15 Exception Handling

This section is a brief summary of the CLR exception handling XE "Exceptions" . A more detailed description of exception handling can be found in the Architecture specification.

The CLR supports an exception handling model based on the idea of exception objects and protected blocks of code. When an exception occurs, an object is created to represent the exception. All exceptions objects are instances of some class (i.e. they can be boxed value types, but not pointers, unboxed value types, etc.). Users can create their own exception classes, typically by subclassing System.Exception.

15.1 SEH Blocks

A Structured Exception Handling (SEH) XE "SEH blocks" block, called <sehBlock> in the grammar, may appear in a method as shown by the following grammar:

	<methodBodyItem> ::=
	Section

	 <sehBlock>
	

	| …
	11.5.3

A SEH block consists of a protected block (try block), and one or more handlers, called <sehClause> in the grammar.

	<sehBlock> ::=

	 <tryBlock> <sehClause> [<sehClause>*]

15.1.1 Protected Blocks

A protected block XE "Protected blocks" is declared with the .try XE ".try" directive. There are two ways to define a protected block.

The first way simply uses a scope block (see section 11.5.6) after the .try directive that contains the instructions to be protected.

In the second way, the protected instructions are enclosed by two labels. The first label is defined at the first instruction to be protected, while the second label is defined at the first instruction that does not need to be protected, i.e. after the last instruction that needs to be protected.

There is yet another way permitted by the syntax, but only to be used by disassemblers for enabling round tripping of code. Instead of the labels, the addresses the labels represent may be used.

The three ways are summarized in the grammar below:

	<tryBlock> ::=
	Descriptions

	 .try <int32> to <int32>
	For disassembler only

	| .try <label> to <label>
	Second label is exclusive, pointing to first instruction after the try block; both labels must be already defined in the preceding code

	| .try <scopeBlock>
	<scopeBlock> contains the instructions to be protected

Protected blocks may be nested inside each other. Each protected block has one and only one handler associated with it. If multiple handlers are needed to cover a certain set of instructions nested protected blocks need to be used.

There are two ways to leave a protected block, by using the leave XE "leave" instruction or with an exception. In particular, a protected block may not be left with a branch or ret instruction, nor are tail calls or jumps allowed inside a protected block.

The leave instruction takes a code label that points to the address of the next instruction to execute after the protected block is left. If protected blocks are nested, a single leave instruction can be used to leave all protected blocks at once.

If an exception occurs inside the protected block, the CLR will search for an appropriate handler and, if such a handler can be found, transfer control to the handler.

Note: The assembler ilasm requires labels used to specify a protected block to be declared before the .try directive.

15.1.2 Handlers

 XE "Exceptions:Handling" There are four kinds of handlers for protected blocks. A single protected block can have exactly one handler associated with it. If more than one handler needs to be used, nested protected blocks need to be declared. There are four different kinds of handlers:

1. A finally handler which is always executed whenever the protected block is left, regardless of whether by normal control flow or with an exception.

2. A fault handler which is always executed if an exception occurs, but not on completion of normal control flow.

3. A type-filtered handler (catch) that handles any exception of a specified class or any of its sub-classes.

4. A user-filtered handler (filter) that runs a user-specified set of IL instructions to determine whether the exception should be handled or not.

The handlers are specified by the following grammar.

	<sehClause> ::=

	 catch <typeReference> <handlerBlock>

	| fault <handlerBlock>

	| filter <int32> <handlerBlock> /* for round tripping only */

	| filter <label> <handlerBlock>

	| finally <handlerBlock>

When an exception occurs, the EE will fix the state of the thread that caused the exception, so that the call and evaluation stacks will be kept unmodified. These stacks can be inspected by handlers to determine the cause of an exception. The EE will then try to find an exception handler which matches the object being thrown..

There are two classes of handlers, exception resolving handlers and exception observing handlers. Exception resolving handlers may, but do not need to, resolve an exception so that normal control flow may continue. catch and filter handlers are exception resolving handlers. finally and fault handlers only observe exceptions in the sense that they show behavior when an exception occurs but do not resolve the exception.

The handlers will be visited starting at the deepest nested one and then going to the enclosing one, step by step. If a method does not define an appropriate handler that resolves the exception, the next method on the class stack will be inspected. However, this process does not modify the call or evaluation stack fixed when the exception occurred.

What if we reach the last method on the call stack without finding a handler? The behavior in this case, at the moment, is implementation-defined. It may depend upon the kind of thread that threw the exception:

· main thread (ie corresponding to the main method in a managed image)

· user-created, managed threads

· threads which started life in unmanaged code, and transitioned into managed code paths

· a task that was enqueued to be run by a thread in the pool of managed worker threads

· the finalizer thread (where the thread that created the objects being finalized may well have ceased to exist)

Moreover, the situation is complicated by any user-registered handlers that field otherwise uncaught exceptions, and which version of the CLR image is being run (eg, a regular, retail build or a developer edition that supports more careful checking). Possible options for what to do on an unhandled exception include: emit a stack trace to the console, or a file; attach a debugger to the thread; prompt the user for appropriate action; write an event to a system-supplied ‘event log’, etc. These issues will be resolved during Beta-2.
The following grammar shows a handler block XE ".handler" :

	<handlerBlock> ::=
	Description

	 handler <int32> to <int32>
	For disassembler only

	| handler <label> to <label>
	Second label is exclusive, pointing to first instruction after the handler block; both labels must be already defined in the preceding code

	| <scopeBlock>
	<scopeBlock> contains the instructions of the handler block

In the above grammar, the labels enclose the instructions of the handler block. Alternatively, the handler block is just a scope block. The option with the integers is intended for the round tripping use only.

Each handler has a specific instruction that is used to exit the handler. It is illegal to exit a handler with an instruction other the specific instruction. Specifically, it is illegal to return from a handler or branch outside a handler. It is also illegal to execute a tail call from a handler or jump to a different method from a handler. See the Architecture specification for details.

It is also possible that the handler itself causes a new exception. Such an exception will exit the handler and continue the search for another appropriate handler.

Note: The assembler ilasm requires labels used to specify a protected block to be declared before the declaration of the handlers.

The following sections add more details to each type of exception handler.

15.1.2.1 Finally Handler

As noted above, the finally XE "finally" handler is executed whenever its protect block is left. A finally handler may be used to execute code that must always be executed and is usually code used to clean up state, like closing a file.

The finally handler is exited with the endfinally XE "endfinally" instruction. If the protected block was left with a leave instruction, execution will resume with the instruction indicated by the label used with the leave instruction after executing any enclosing finally XE "finally" clauses. Otherwise, if the protected block was left with an exception, the EE will continue to search for a resolving handler.

Note: endfinally and endfault are synonyms for each other and represent the same instruction.

Example:
The following code uses scope blocks to mark the protected block and handler.

.try {

// protected instructions

leave exitTry

} finally {

// instructions in finally handler

endfinally

}

15.1.2.2 Fault Handler

The fault XE "fault" handler is similar to the finally handler, but will only be executed if an exception occurred. If the protected block was left with the leave instruction, the fault handler will be skipped.

A fault handler may be exited with the endfault XE "endfault" instruction. The endfault instruction will let the EE continue to search for a resolving handler.

Note: endfinally and endfault are synonyms for each other and represent the same instruction.

Example:

The following code uses labels to mark the protected block and handler.

.method public static void m() {

startTry:

// protected instructions

leave
exitSEH

endTry:

startFault:

// instructions to be executed in case of an fault

endfault

endFault:

// the SEH declaration

.try startTry to endTry fault handler startFault to endFault

exitSEH:

// unprotected instructions

}

15.1.2.3 Type-Filtered Handler

If a type-filtered handler is associated with a protected block and the protected block is left with an exception, then the EE will check whether the type of the exception objection is equal to or a subtype of the type the type-filtered handler expects.

If the type matches, the code associated with the handler will be executed. Otherwise, the EE will continue to search for the next handler.

A type-filter is declared using the catch XE "catch" keyword. Following the catch keyword is a reference to the type of exception object that the handler expects. After the handler block follows similar to other handlers.

When the type-filtered handler is entered, the EE will automatically push the exception object onto the stack. The handler may inspect this exception object and do operations on it. However, the handler is responsible for popping the exception object from the stack.

A type-filtered handler may be exited in one of two ways, in addition to the third way of causing a new exception. The first way is using a leave XE "leave" instruction. Similar to the case with protected blocks, the leave instruction takes a label as part of the instruction that points to the next instruction to be executed after the exception after executing any enclosing finally XE "finally" clauses. The next instruction must be outside the protected block from which the exception originated. It is not possible to resume execution using a type-filtered handler.

When the leave instruction is executed, the EE will treat the exception as resolved and restore the normal condition in the system.

The second way to exit a type-filtered handler is by not resolving the exception. This is done with the rethrow XE "rethrow" instruction. The rethrow instruction throws the exception that caused the handler to be executed again. The rethrow instruction expects the exception object on the stack when it is executed. After the rethrow instruction is executed the EE will continue its search for a handler that resolves the exception.

Example:

.try {

// protected instructions

leave
exitSEH

} catch [mscorlib]System.FormatException {

// pop the exception object (or inspect it)

pop

// other handler instructions

leave
exitSEH
// leave the catch

}

15.1.2.4 User-Filtered Handler

While for type-filtered handler the EE checks whether the handler should be executed, a user-filtered handler provides its own code that checks whether the exception should be handled by a particular handler.

The user-filtered handler is declared using the filter XE "filter" syntax and consists of two parts. The first part is a label that points to code that checks whether the exception should be handled. The second part is the handler block itself.

The user defined filter is a block of code inside the method that contains the protected block, even though the filter may call another method. The EE will automatically push the exception object onto the stack for the user defined filter for inspection. However, the filter is responsible itself to pop the exception object from the stack. The filter may also inspect the state of the evaluation stack and local variables or other data that will help it to make the decision. When the filter has decided whether to accept the exception or not, it needs to return using the endfilter XE "endfilter" instruction.

The endfilter instruction expects an argument on the stack that defines whether this method will handle the exception or not. In general there three answers, but the first version of the CLR only honors two of those answers.

The two possible values are:

· EXCEPTION_CONTINUE_SEARCH (= 0): Indicates that the handler cannot process this exception and that the EE should offer the exception to the next handler on the list.

· EXCEPTION_EXECUTE_HANDLER (= 1): Indicates that the handler can process the exception and that the EE should halt the search for any other handlers and use the code at this handler’s handler offset to process the exception.

Readers familiar with exception handling will know that the third answer is EXEPTION_CONTINUE_EXECUTION, which instructs the EE to ignore the exception and continue with the next instruction after the instruction the caused the exception in the protected block. This third possibility may be supported in future versions of the CLR.

If the user-defined filter causes a new exception, which escapes the filter block (ie, it is not caught by a handler inside the filter), CLR will ignore that exception. The result of the filter is made to appear as it having returned EXCEPTION_CONTINUE_SEARCH

If the answer of the filter was EXCEPTION_EXECUTE_HANDLER, the EE terminates the first pass of exception handling, and arranges that the second pass will give control to the handler block associated with the user filtered handler. This handler block is very similar to the handler block of a type-filtered handler. The EE will automatically push a reference to the exception object onto the stack, which the handler must pop itself from the stack.

Similar to the handler block of a type-filtered exception handler, the handler is exited either with a leave XE "leave instruction, or with a rethrow XE "rethrow" instruction. The handler is also exited if it causes a new exception itself.

If the leave instruction is used, the EE will treat the exception as resolved and restore normal conditions. The leave instruction takes a label that points to the address of the next instruction to execute after executing any enclosing finally XE "finally" clauses. This instruction must be outside the protected block that caused the exception.

If the handler block is exited with a rethrow instruction, the EE will throw the same exception again and continue its search. The rethrow instruction expects an object on the stack, which will be treated as the exception to throw.

Example:

.method public static void m () {
br
start

// jump over user defined filter

check_exception:

// this is the user defined filter

pop
// pop exception object or inspect

// other filter instructions

ldc.i4.1

// EXCEPTION_EXECUTE_HANDLER

endfilter
// return answer to EE

// end of user defined filter

start:

.try {

// protected instructions

leave
exitSEH

} filter check_exception {

pop
// pop exception object or inspect

// other handler instructions

leave
exitSEH
// leave the handler
}

}

15.2 Throwing an Exception

An exception XE "Exceptions:Throwing" is thrown using the throw XE "throw" instruction. The throw instruction expects the exception object on the stack. This object can be an instance of any class, but typically is an instance of System.Exception XE "System.Exception" or one of its subclasses.

CLS compliant languages must throw an exception object that is an instance of System.Exception or one of its subclasses.

The Architecture Specification describes in detail how and exception is thrown. In summary, the CLR exception system does two passes on the call stack to handle user-filtered exceptions. The first pass will search for user defined filters or type filters and if one is found execute that filter. During this pass no finally or fault handlers are executed. The second pass calls the finally and fault handlers, and then the selected filter’s handler. This behavior gives the user defined filter more flexibility for its decisions.

Example:
The following code throws the NonPositiveNumberException, a nested class that declares the custom exception inside the class CounterTextBox.

// create the an instance of the exception

newobj instance void CounterTextBox/NonPositiveNumberException::.ctor()
throw

// throw the exception
16 Declarative Security

 XE "Declarative security" The CLR has a sophisticated security system. More information about the security system can be found Security Guide. Programs may specify what permission they need in order to run correctly. However, this feature is currently not available for IL assembly code. It is planned for Beta-2.

The following grammar is for round tripping use only. It will be used by ildasm to display code compiled from other languages.

	<securityDecl> ::=

	 .capability <secAction> = (<bytes>)

	| .permission <secAction> <typeReference> (<nameValPairs>)

In .permission XE ".permission" , <typeReference> specifies the permission class and <nameValPairs> show the settings. In .capability XE ".capability" the bytes show the serialized version of the security settings. The following values for <secAction> can be displayed by ILDASM:

	<secAction> ::=
	Description

	 assert
	Assert permission so callers don’t need it.

	| demand
	Demand permission of all callers.

	| deny
	Deny permission so checks will fail.

	| inheritcheck
	Demand permission of a subclass.

	| linkcheck
	Demand permission of caller.

	| permitonly
	Reduce permissions so check will fail.

	| prejitdeny
	Persisted grant set at prejit time.

	| prejitgrant
	Persisted denied set at prejit time.

	| reqmin
	Request minimum permissions to run.

	| reqopt
	Request optional additional permissions.

	| reqrefuse
	Refuse to be granted these permissions.

	| request
	Hint that permission may be required.

	<nameValPairs> ::= <nameValPair> [, <nameValPair>]*

	<nameValPair> ::= <SQSTRING> = <SQSTRING>

17 Custom Attributes

Custom attributes XE "Custom attributes" add user-defined annotations to the metadata. Custom attributes allow an instance of a type to be stored with any element of the metadata. This mechanism can be used to store application specific information at compile time and access it either at runtime or when another tool reads the metadata. While any user-defined type can be used as an attribute it is expected that most attributes will be instances of types whose parent is System.Attribute XE "System.Attribute" . The CLR predefines some attribute types and uses them to control runtime behavior. Some languages predefine attribute types to represent language features not directly represented in the CTS. Users or other tools are welcome to define and use additional attribute types.

Custom attributes are declared using the directive .custom XE ".custom" . Followed by this directive is the method declaration for a class constructor, optionally followed by a <bytes> in parentheses:

	<customDecl> ::=

	 <ctor> [= (<bytes>)]

For example:

.custom instance void myAttribute::.ctor(bool, bool) = (01 00 00 01 00 00)

Custom attributes can be attached to any item in metadata, except a custom attribute itself. Commonly, custom attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields, properties and events (the custom attribute is attached to the immediately preceding declaration)

The <bytes> item is not required if the constructor takes no arguments. In these cases, all that matters is the presence of the custom attribute.

If the constructor takes parameters, then you must specify their values in the <bytes> item. The format for this ‘blob’ is defined in the Metadata API specification.

Example:

The following example shows a class that is marked with the System.SerializableAttribute and a method that is marked with the System.Runtime.Remoting.OneWayAttribute. The keyword serializable corresponds to the System.SerializableAttribute.

.class public MyClass {

.custom [mscorlib]System.SerializableAttribute

.method public static void main() {

.custom [mscorlib]System.Runtime.Remoting.OneWayAttribute

ret

}

}

17.1 CLS Conventions: Custom Attribute Usage

In order to allow languages to provide a consistent view of custom attributes across language boundaries, a set of conventions is very helpful. The Base Class Library provides support for several different conventions defined by the CLS:

· Attributes must be instances of the class System.Attribute, which provides static methods to test whether attributes exist on a metadata element and retrieve their value if so.

· The use of a particular attribute class may be restricted in various ways by placing an attribute on the attribute class. The System.AttributeUsageAttribute XE "System.AttributeUsageAttribute" is used to specify these restrictions:

· What kinds of constructs (types, methods, assemblies, etc.) may have the attribute applied to them. By default, instances of an attribute class can be applied to any construct. This is specified by setting the value of the ValidOn property of System.AttributeUsageAttribute. Several constructs may be combined.

· Multiple instances of the attribute class can be applied to a given piece of metadata. By default, only one instance of any given attribute class can be applied to a single metadata item. The AllowMultiple property of the attribute is used to specify the desired value.

· Do not inherit the attribute when applied to a type. By default, any attribute attached to a type should be inherited to types that derive from it. If multiple instances of the attribute class are allowed, the inheritance performs a union of the attributes inherited from the parent and those explicitly applied to the child type. If multiple instance are not allowed, then an attribute of that type applied directly to the child overrides the attribute supplied by the parent. This is specified by setting the Inherited property of System.AttributeUsageAttribute to the desired value.

Notice that, since these are CLS rules and not part of the CTS itself, tools are required to specify explicitly the custom attributes they intend to apply to any given metadata item. That is, compilers or other tools that generate metadata must implement the allow multiple and inherit rules. The EE and reflection do not supply attributes automatically.

17.2 Attributes Used by the Runtime

The metadata engine implements two sorts of Custom Attributes, called (genuine) Custom Attributes (CA), and Pseudo Custom Attributes (PCA). CAs and PCAs are treated differently, as follows:

· A CA is stored directly into the metadata. The “blob” which holds its defining data is not checked or parsed. That “blob” can be retrieved later.

· A PCA is recognized because its name is one of a handful of hard-wired PCAs. The engine parses its blob and uses this information to set bits and/or fields within the metadata tables. The engine then totally discards the blob, such that it cannot be retrieved later.

PCAs therefore serve to capture user directives, using the same familiar syntax the compiler provides for regular CAs, but these user directives are then stored into the more space-efficient form of metadata tables. Tables are also faster to check at runtime than (genuine) CAs. An example of a PCA is the SerializableAttribute. If the compiler specifies this PCA for a class, then the metadata engine simply defines the class to be serializable.

Many CAs are invented by higher layers of software. They are stored and returned by the EE, without knowing or caring what they mean. But all PCAs, plus a handful of regular CAs are of special interest to compilers and to the Runtime. An example of such distinguished CAs is System.Reflection.DefaultMemberAttribute. This is stored in metadata as a regular CA blob, but reflection uses this CA when called to invoke the default member (property) for a class.

The following subsections lists all of the PCAs and distinguished CAs, where distinguished means that the runtime and/or compilers pay direct attention to them.

Note that it is a Frameworks design guideline that all CAs should be named to end with “Attribute”. The runtime does not care about this convention.

For further details on these special CAs, consult the Base Class Library, or appropriate specs in the area that each covers.

17.2.1 Pseudo Custom Attributes

 XE "Pseudo Custom Attributes" The Metadata engine checks for the following CAs, as part of the processing of the DefineCustomAttribute method. The check is solely on their name, e.g. “DllImportAttribute”. If a name match is found, the metadata engine parses the blob argument and sets bits and/or fields within the metadata tables. It then discards the blob. All these attributes are part of the System namespace, and should indicate the ilasm syntax, if any, they correspond to.

	Attribute
	Description

	NonSerializedAttribute
	

	SerializableAttribute
	

17.2.2 Attributes Defined by the CLS

 XE "Custom Attributes:Defined by CLS" The CLS specifies certain custom attributes and requires that conformant languages support them. These attributes are located under System.

	Attribute
	Description

	AttributeUsageAttribute
	Used to specify how an attribute is intended to be used.

	ObsoleteAttribute
	Indicates that an element is not to be used.

	CLSCompliantAttribute
	Indicates whether or not an element is declared to be CLS compliant through an instance field on the attribute object.

17.2.3 Custom Attributes for JIT Compiler and Debugger

 XE "Custom Attributes:Defined by JIT and Debugger" The CAs that control runtime behavior of the JIT-compiler and the debugger can be found in System.Diagnostics.

	Attribute
	Description

	DebuggableAmbivalentAttribute
	

	DebuggableAttribute
	

	DebuggerHiddenAttribute
	

	DebuggerStepThroughAttribute
	

17.2.4 Custom Attributes for Reflection

 XE "Custom Attributes:Defined by Reflection" The following CA in System.Reflection is used by reflection’s invoke call:

	Attribute
	Description

	DefaultMemberAttribute
	Defines the member of a type that is the default member used by InvokeMember.

17.2.5 Custom Attributes for Remoting

 XE "Custom Attributes:Defined by Remoting" CAs that affect behavior of remoting can be found in System.Runtime.Remoting.

	Attribute
	Description

	ContextAttribute
	Root for all context attributes.

	OneWayAttribute
	

	Synchronization
	

	ThreadAffinity
	Refinement of Synchronized Context.

17.2.6 Custom Attributes for Security

 XE "Custom Attributes:Defined by Security" The following CAs affect the security checks performed upon method invocations at runtime.

The CAs in the following table can be found in System.Security.

	Attribute
	Description

	DynamicSecurityMethodAttribute
	

	SuppressUnmanagedCodeSecurityAttribute
	

	UnverifiableCodeAttribute
	

The CAs in this table can be found in System.Security.Permissions.

	Attribute
	Description

	CodeAccessSecurityAttribute
	This is the base attribute class for declarative security using custom attributes.

	EnvironmentPermissionAttribute
	Custom attribute class for declarative security with EnvironmentPermission.

	FileDialogPermissionAttribute
	Custom attribute class for declarative security with FileDialogPermission.

	FileIOPermissionAttribute
	Custom attribute class for declarative security with FileIOPermission.

	IsolatedStorageFilePermissionAttribute
	Custom attribute class for declarative security with IsolatedStorageFilePermission.

	IsolatedStoragePermissionAttribute
	Custom attribute class for declarative security with IsolatedStoragePermission.

	PermissionSetAttribute
	Allows declarative security actions to be performed against permission sets rather than individual permissions.

	PrincipalPermissionAttribute
	A PrincipalPermissionAttribute can be used to declaratively demand that users running your code belong to a specified role or have been authenticated.

	PublisherIdentityPermissionAttribute
	Custom attribute class for declarative security with PublisherIdentityPermission.

	ReflectionPermissionAttribute
	Custom attribute class for declarative security with ReflectionPermission.

	RegistryPermissionAttribute
	

	SecurityAttribute
	This is the base attribute class for declarative security from which CodeAccessSecurityAttribute is derived.

	SecurityPermissionAttribute
	

	SiteIdentityPermissionAttribute
	Custom attribute class for declarative security with SiteIdentityPermission.

	StrongNameIdentityPermissionAttribute
	Custom attribute class for declarative security with StrongNameIdentityPermission.

	UIPermissionAttribute
	Custom attribute class for declarative security with UIPermission.

	ZoneIdentityPermissionAttribute
	Custom attribute class for declarative security with ZoneIdentityPermission.

17.2.7 Custom Attributes for TLS

 XE "Custom Attributes:Defined for thread local storage" A CA that denotes a TLS (thread-local storage, see section 12.3.3) field can be found in System.

	Attribute
	Description

	ThreadStaticAttribute
	Provides for type member fields that are relative for the thread.

17.2.8 Custom Attributes for the Assembly Linker

 XE "Custom Attributes:Defined for the assembly linker" The following CAs are used by the al tool to transfer information between modules and assemblies (they are temporarily attached to a TypeRef to a class called AssemblyAttributesGoHere) then merged by al and attached to the assembly. These attributes can be found in System.Runtime.CompilerServices.

	Attribute
	Description

	AssemblyCultureAttribute
	

	AssemblyDelaySignAttribute
	

	AssemblyKeyFileAttribute
	

	AssemblyKeyNameAttribute
	

	AssemblyOperatingSystemAttribute
	

	AssemblyProcessorAttribute
	

	AssemblyVersionAttribute
	

17.2.9 Attributes Provided for Interoperation with COM

 XE "Custom Attributes:Defined for language interop" There are a number of custom attributes for interoperation with COM 1.x and classical COM. These attributes are located under System.Runtime.InteropServices in the class hierarchy. More information can also be found in the Base Class Library specification.

These attributes are shown in the following table.

	Attribute
	Description

	ComAliasNameAttribute
	Applied to a parameter or field to indicate the COM alias for the parameter or field type.

	ComConversionLossAttribute
	

	ComEmulateAttribute
	Used on a class to indicate that the class is an emulator class for another .NET Framework class.

	ComImportAttribute
	Used to indicate that a class or interface definition was imported from a COM type library.

	ComRegisterFunctionAttribute
	Used on a method to indicate that the method should be called when the assembly is registered for use from COM.

	ComSourceInterfacesAttribute
	Identifies the list of interfaces that are sources of events for the class.

	ComUnregisterFunctionAttribute
	Used on a method to indicate that the method should be called when the assembly is unregistered for use from COM.

	ComVisibleAttribute
	Can be applied to an individual type or to an entire assembly to control COM visibility.

	DispIdAttribute
	Custom attribute to specify the COM DISPID of a Method or Field.

	DllImportAttribute
	Used to indicate that a method is implemented as a PInvoke method in unmanaged code.

	FieldOffsetAttribute
	Used along with the System.Runtime.InteropServices. StructLayoutAttribute.LayoutKind set to explicit to indicate the physical position of each field within a class.

	GuidAttribute
	Used to supply the GUID of a class, interface or an entire type library.

	HasDefaultInterfaceAttribute
	Used to specify that a class has a COM default interface.

	IdispatchImplAttribute
	

	ImportedFromTypeLibAttribute
	Custom attribute to specify that a module is imported from a COM type library.

	InAttribute
	Used on a parameter or field to indicate that data should be marshaled in to the caller.

	InterfaceTypeAttribute
	Controls how a managed interface is exposed to COM clients (IDispatch derived or IUnknown derived).

	MarshalAsAttribute
	This attribute is used on fields or parameters to indicate how the data should be marshaled between managed and unmanaged code.

	MethodImplAttribute
	

	NoComRegistrationAttribute
	Used to indicate that an otherwise public, COM-creatable type should not be registered for use form COM applications.

	NoIDispatchAttribute
	This attribute is used to control how the class responds to queries for an IDispatch Interface.

	OutAttribute
	Used on a parameter or field to indicate that data should be marshaled out from callee back to caller.

	PreserveSigAttribute
	Used to indicate that hresult/retval signature transformation that normally takes place during Interop calls should be suppressed.

	ProgIdAttribute
	Custom attribute that allows the user to specify the prog ID of a .NET Framework class.

	StructLayoutAttribute
	Typically the runtime controls the physical layout of the data members of a class.

	TypeLibFuncAttribute
	Contains the FUNCFLAGS that were originally imported for this function from the COM type library.

	TypeLibTypeAttribute
	Contains the TYPEFLAGS that were originally imported for this type from the COM type library.

	TypeLibVarAttribute
	Contains the VARFLAGS that were originally imported for this variable from the COM type library.

18 IL Instructions

18.1 Overview

This section lists and describes all IL instructions by category. A more detailed description of the instructions can be found in the IL Instruction Set specification.

The CLR uses the model of a stack machine. Each method has an evaluation stack on which arguments to instructions are pushed. The instructions will pop these instructions and push the results onto the stack. More about the architecture of the CLR can be found in the Architecture specification.

The execution of instructions can cause an exception. The possible exceptions are described in this section and the detailed list can also be found in the IL Instruction Set specification.

Any instruction can throw the general System.ExecutionEngineException XE "System.ExecutionEngineException" . This exception is thrown when an error internal to the EE occurs.

The Architecture specification gives details on exceptions and rules for valid IL sequences and verifiable code.

All instructions have an opcode that identifies them to the JIT compiler. Many instructions also accept additional data as part of the instruction. This is different from arguments to the instruction. While the arguments are on the stack, the additional data is integrated into the instruction directly following the opcode. Thus, each instruction has a certain syntax that describes how it needs to be used. A description of the integrated data for each instruction can be found in this section and a summary of the grammar in Appendix B (section 20).

Some instructions have a prefix instruction associated with the them. A prefix instruction is a separate instruction with its own opcode but qualifies the following instruction in a certain way. A specific prefix instruction can only be used before selected instructions as described in the next sections. The names of all prefix instructions end with a dot (“.”).

Some instructions also have a suffix associated with them. Unlike a prefix instruction, a suffix is not a separate instruction. A suffix starts with a dot (“.”). The following sections point out which instructions have what suffixes associated with them. Often, the suffix specifies the size of the data the instruction deals with and/or includes a small constant number that is encoded efficiently using the suffix.

The general instruction syntax is as follows:

	<instr> ::=

	 <instruction>[.ovf][.un]

	| <prefixInstruction>

<instruction> specifies the desired instruction. The suffix .ovf specifies that the instruction checks for overflow. The suffix .un specifies that the instruction treats its operands on the stack as unsigned values. The optional suffixes can only be used with specific instructions as shown in the following sections.

The following grammar shows various which suffixes can be used to selected instructions.

	<2bitNumSuffix> ::=

	 0

	| 1

	| 2

	| 3

	<constNumSuffix> ::=

	 4

	| 5

	| 6

	| 7

	| 8

	| M1

	| m1

	| <2bitNumSuffix>

M1 or m1means “minus one”.

	<typeSuffix> ::=

	 i

	| i1

	| i2

	| i4

	| i8

	| r4

	| r8

	| ref

	<exTypeSuffix> ::=

	 <typeSuffix>

	| u

	| u1

	| u2

	| u4

	| u8

The following sections describe:

· Numeric and Logical Operations (18.2)

· Control flow instructions (18.3)

· Instructions that move data (18.4)

· Object management instructions (18.5)

18.2 Numeric and Logical Operations

Many MSIL operations take numeric operands on the stack. These fall into several different categories, depending on how they deal with the types of the operands. The following operand tables summarize the legal operand types and the resulting type. Notice that the type referred to here is the type as tracked by the CLR rather than the more detailed types used by tools such as the MSIL verifier. The types tracked by the CLR are: I4, I8, I, F, O, &, and * (see section 5.3 for the definition of & and *)

Table 1: Binary Numeric Operations

A op B (used for add, div, mul, rem, and sub, applies to all instructions unless specific instructions are specified in the table). The shaded uses are not verifiable, while items marked “-“ indicate incorrectly formed MSIL sequences.
	B’s type
A’s type
	I4
	I8
	I
	F
	&
	O
	*

	I4
	I4
	-
	I
	-
	& (add)
	-
	* (add)

	I8
	-
	I8
	-
	-
	-
	-
	-

	I
	I
	-
	I
	-
	& (add)
	-
	* (add)

	F
	-
	-
	-
	F
	-
	-
	-

	&
	& (add, sub)
	-
	& (add, sub)
	-
	I (sub)
	-
	I (sub)

	O
	-
	-
	-
	-
	-
	-
	-

	*
	* (add, sub)
	-
	* (add, sub)
	-
	I (sub)
	-
	I (sub)

Table 2: Unary Numeric Operations

Used for the neg instruction. All these uses of this instruction are verifiable.

	Operand Type
	I4
	I8
	I
	F
	&
	O
	*

	Result Type
	I4
	I8
	I
	F
	-
	-
	-

Table 3: Binary Comparison or Branch Operations

These return a boolean value or branch based on the top two values on the stack. Used for beq, bge, bge.un, bgt, bgt.un, ble, ble.un, blt, blt.un, bne, bne.un, ceq, cgt, cgt.un, clt, clt.un. Items marked “(” indicate that all instructions are valid. Items marked “-” indicate invalid MSIL sequences. If only a subset of instructions are permitted, the valid instructions are shown in the corresponding cell.
	
	I4
	I8
	I
	F
	&
	O
	*

	I4
	(
	-
	(
	-
	-
	-
	-

	I8
	-
	(
	-
	-
	-
	-
	-

	I
	(
	-
	(
	-
	beq[.s], bne.un[.s], ceq
	-
	beq[.s], bne.un[.s], ceq

	F
	-
	-
	-
	(
	-
	-
	-

	&
	-
	-
	beq[.s], bne.un[.s],ceq
	-
	((Note)
	-
	((Note)

	O
	-
	-
	-
	-
	-
	beq[.s], bne.un[.s], ceq
	-

	*
	-
	-
	beq[.s], bne.un[.s], ceq
	-
	((Note)
	-
	((Note)

Note: Except for beq, bne.un (or short versions) or ceq these combinations only make sense if both operands are known to be pointers to elements of the same array (CLR does not check this constraint – it’s the responsibility of the compiler to ensure it holds)

Table 4: Integer Operations

These operate only on integer types. Used for and, div.un, not, or, rem.un, shl, shr, xor. The div.un and rem.un instructions treat their arguments as unsigned integers and produce the bit pattern corresponding to the unsigned result. As described in the CLR Specification, however, the CLR makes no distinction between signed and unsigned integers on the stack. The not instruction is unary and returns the same type as the input. The shl and shr instructions return the same type as their first operand and their second operand must be of type U. All items marked “-“ indicate incorrectly formed MSIL sequences, while the others are verifiable.
	
	I4
	I8
	I
	F
	&
	O
	*

	I4
	I4
	-
	I
	-
	-
	-
	-

	I8
	-
	I8
	-
	-
	-
	-
	-

	I
	I
	-
	I
	-
	-
	-
	-

	F
	-
	-
	-
	-
	-
	-
	-

	&
	-
	-
	-
	-
	-
	-
	-

	O
	-
	-
	-
	-
	-
	-
	-

	*
	-
	-
	-
	-
	-
	-
	-

Table 5: Overflow Arithmetic Operations

These operations generate an exception if the result cannot be represented in the target data type. Used for add.ovf, add.ovf.un, mul.ovf, mul.ovf.un, sub.ovf, sub.ovf.un The shaded uses are not verifiable, while items marked “-“ indicate incorrectly formed MSIL sequences.
	
	I4
	I8
	I
	F
	&
	O
	*

	I4
	I4
	-
	I
	-
	& add.ovf.un
	-
	* add.ovf.un

	I8
	-
	I8
	-
	-
	-
	-
	-

	I
	I
	-
	I
	-
	& add.ovf.un
	-
	* add.ovf.un

	F
	-
	-
	-
	-
	-
	-
	-

	&
	&
add.ovf.un, sub.ovf.un
	-
	&
add.ovf.un, sub.ovf.un
	-
	I sub.ovf.un
	-
	I sub.ovf.un

	O
	-
	-
	-
	-
	-
	-
	-

	*
	*
add.ovf.un, sub.ovf.un
	-
	*
add.ovf.un, sub.ovf.un
	-
	I
sub.ovf.un
	-
	I sub.ovf.un

Table 6: Conversion Operations

These operations convert from one numeric type to another. The result type is guaranteed to be representable as the data type specified as part of the operation (i.e. the conv.u2 instruction returns a value that can be stored in a U2). The stack, however, can only store values that are a minimum of 4 bytes wide. Used for the conv.<to type>, conv.ovf.<to type>, and conv.ovf.<to type>.un instructions. The shaded uses are not verifiable, while items marked “-“ indicate incorrectly formed MSIL sequences.

	Output
Operand
	I1/U1
I2/U2
	I4/U4
	I8
	U8
	I

	I4
	Truncate1
	No-op
	Sign extend
	Zero extend
	Sign extend

	I8
	Truncate1
	Truncate1
	No-op
	No-op
	Truncate1

	I
	Truncate1
	Truncate1
	Sign extend
	Zero extend
	No-op

	F
	Trunc to 02
	Trunc to 02
	Trunc to 02
	Trunc to 02
	Trunc to 02

	&
	-
	-
	-
	Stop GC Tracking
	-

	O
	-
	-
	-
	-
	-

	*
	-
	-
	-
	Zero extend
	-

	Output
Operand
	U
	All R Types

	I4
	Zero extend
	To Float

	I8
	Truncate1
	To Float

	I
	No-op
	To Float

	F
	Trunc to 02
	Change Precision3

	&
	Stop GC Tracking
	-

	O
	-
	-

	*
	No-op
	-

Note 1: “Truncate” means that the number is truncated (i.e. the higher-order bits are set to zero) to the desired size. If the destination type is signed, the most-significant bit of the truncated value is then sign-extended to fill the full output size. Thus, converting 257 (0x101) to I1 or U1 yields 1, but truncating 129 (0x81) to U1 yields 129 (0x81) while truncating it to I1 yields –126 (0xF...F81)

Note 2: “Trunc to 0” means that the floating point number will be converted to an integer by truncation toward zero. Thus 1.1 is converted to 1 and –1.1 is converted to –1.

Note 3: Converts from the current precision available on the evaluation stack to the precision specified by the instruction. If the stack has more precision than the output size the conversion is performed using the IEEE 754 “round to nearest” mode to compute the low order bit of the result.

18.3 Control Flow

The operations described in the following sections alter the normal flow of control from one IL instruction to the next. There are three main ways to alter the control flow:

1. branch instructions

2. procedure calls

3. exceptions

Branch instructions can be further subdivided into unconditional and conditional branches. There are unary, binary, and multi-way conditional branch instructions. Branch instructions can only branch to a label within the current block of code, e.g. they cannot branch to a location outside the current method or a protected block.

Branch instructions take in addition to their operands on the stack a label as an argument to which the control flow shall be redirected if the branch condition is met.

18.3.1 Unconditional Branch Instructions

The .s suffix indicates that the distance can be expressed in a signed 8-bit number (distances are in bytes from the end of the current instruction). See also the leave and leave.s instructions in Section 18.3.5.

br XE "br"

branch within current method or protected block
br.s XE "br.s"

branch within current method or protected block
18.3.2 Unary Compare-and-Branch and Multi-Way Branch Instructions

These instructions branch depending on the value of the topmost stack item. The .s suffix indicates that the distance can be expressed in a signed 8-bit number (distances are in bytes from the end of the current instruction).

brfalse XE "brfalse"
branch if false (i.e. zero)
brfalse.s XE "brfalse.s"
branch if false (i.e. zero)
brinst XE "brinst"
branch if non-null object reference
brinst.s XE "brinst.s"
branch if non-null object reference
brnull XE "brnull"
branch if null object reference

brnull.s XE "brnull.s"
branch if null object reference
brtrue XE "brtrue"
branch if not false (i.e. not zero)
brtrue.s XE "brtrue.s"
branch if not false (i.e. not zero)
brzero XE "brzero"
branch if zero
brzero.s XE "brzero.s"
branch if zero

switch XE "switch"
multi-way 0-based branch depending on value on top of evaluation stack

18.3.3 Binary Compare-and-Branch Instructions

These operations compare the top two elements on the evaluation stack and branch if a specific condition is true. They can be considered abbreviations for sequences of instructions using the binary comparison instructions followed by either a brtrue (or brtrue.s) or a brfalse (or brfalse.s) instruction. The .s suffix indicates that the distance can be expressed in a signed 8-bit number (distances are in bytes from the end of the current instruction).

beq XE "beq"

based on ceq and brtrue
beq.s XE "beq.s"

based on ceq and brtrue.s
bge XE "bge"

based on clt and brfalse
bge.s XE "bge.s"

based on clt and brfalse.s
bge.un XE "bge.un"
based on clt.un and brfalse
bge.un.s XE "bge.un.s"
based on clt.un and brfalse.s
bgt XE "bgt"

based on cgt and brtrue
bgt.s XE "bgt.s"

based on cgt and brtrue.s
bgt.un XE "bgt.un"
based on cgt.un and brtrue
bgt.un.s XE "bgt.un.s"
based on cgt.un and brtrue.s
ble XE "ble"

based on cgt and brfalse
ble.s XE "ble.s"

based on cgt and brfalse.s
ble.un
 XE "ble.un"
based on cgt.un and brfalse
ble.un.s XE "ble.un.s"
based on cgt.un and brfalse.s
blt XE "blt"

based on clt and brtrue
blt.s XE "blt.s"

based on clt and brtrue.s
blt.un
 XE "blt.un"
based on clt.un and brtrue
blt.un.s XE "blt.un.s"
based on clt.un and brtrue.s
bne.un XE "bne.un"
based on ceq.un and brfalse
bne.un.s XE "bne.un.s"
based on ceq.un and brfalse.s
18.3.4 Procedure Call and Related Instructions

These instructions move the flow of control to another procedure. See also callvirt and ldvirtftn in section 18.5.

call XE "call"
call a method specified by type, name, and signature
calli XE "calli"
call a method specified by function pointer
jmp XE "jmp"
branch with current arguments to another method
jmpi XE "jmpi"
branch with current arguments to another method using function pointer
ldftn XE "ldftn"
create function pointer from type, name, and signature
ret XE "ret"
return from the current method, possibly returning a value
tail. XE "tail."
Convert subsequent instruction to a tail call version (drop current stack frame before call)

18.3.5 Exception Handling

The following instructions specify the control flow of exceptional code. The .s suffix indicates that the distance can be expressed in a signed 8-bit number (distances are in bytes from the end of the current instruction).

endfault XE "endfault"
mark end of a fault handler

endfilter XE "endfilter"
mark end of a filter handler
endfinally XE "endfinally"
mark end of a finally handler
leave XE "leave"

unconditional branch that may exit a try block

leave.s XE "leave.s"
unconditional branch that may exit a try block
rethrow XE "rethrow"
throw exception again (out of a catch handler)
throw XE "throw"

throw an exception

18.3.6 Other Control Flow Instructions

The instructions in this section are considered to be instructions that belong to the group of control flow instructions, however do not belong to any of the above sections.

break XE "break"

invoke debugger if attached

ckfinite XE "ckfinite"
check that the top of stack is a finite floating point number, generating a
System.ArithmeticException XE "System.ArtihmeticException" if the value is a NaN or an infinity
nop XE "nop"

ignored

18.4 Moving Data

The instructions presented in this sections may be used to move data from one location to another.

Method arguments and locals are numbered in increasing order starting with 0, unless explicit values are assigned (see section 11.5.6). Argument 0 is the this pointer for instance and virtual methods. Valid IL requires that any argument or local is used consistently, always containing either an integer, floating point number, class, or instance of a specific value class.

arglist XE "arglist"
returns handle to current argument list on stack (for vararg methods, see section 11.5.7)
cpblk XE "cpblk"

copy block of data from one part of memory to another (not verifiable).
dup XE "dup"

duplicate top element of evaluation stack
initblk
 XE "initblk"
zero block of data in memory (not verifiable).
ldarg XE "ldarg" , ldarg.<2bitNumSuffix> XE "ladarg.<2bitNumSuffix>" , ldarg.s XE "ldarg.s"

load argument onto evaluation stack. ldarg.0 through ldarg.3 are short encodings for accessing the first four arguments. ldarg.s is used for arguments numbered 4 through 255.

ldarga, ldarga.s XE "ldarga"

load address of an argument. ldarga.s is used for arguments 0 through 255

ldc.i4 XE "ldc.i4" , ldc.i4.<constNumSuffix> XE "ldc.i4.<constNumSuffix>" , ldc.i4.s XE "ldc.i4.s"
load constant as a 4-byte signed integer onto the evaluation stack. There is a short encoding for constants –1 (denoted “m1”) through 8. ldc.i4.s is for encoding constants that fit, signed, in one byte.

ldc.i8 XE "ldc.i8"

load an 8-byte integer constant onto the evaluation stack
ldc.r4 XE "ldc.r4"

load a 32-bit floating point constant onto the evaluation stack
ldc.r8 XE "ldc.r8"

load a 64-bit floating point constant onto the evaluation stack
ldind.<exTypeSuffix> XE "ldind.<exTypeSuffix>"
load indirect through a pointer, type of data loaded is specified as a suffix to the instruction (not verifiable).

ldloc XE "ldloc" , ldloc.<2bitNumSuffix> XE "ldloc.<2bitNumSuffix>" , ldloc.s XE "ldloc.s"
load value of a local variable (numbered from 0) onto the evaluation stack. There are special small encodings for locals 0 through 3. ldloc.s is used for locals 4 through 255.

ldloca, ldloca.s XE "ldloca"

load address of local variable onto stack; ldloca.s is used for locals 0 through 255

 XE "ldloca.s" ldnull XE "ldnull"

load the null object reference
localloc XE "localloc"
allocate space for additional locals, dynamically. The evaluation stack must be empty when this instruction is executed.

pop XE "pop"

remove the top item from the evaluation stack
starg XE "starg" ,
starg.s

store top of evaluation stack into an argument; starg.s is used XE "starg.s" for arguments 0 through 255

stind.<typeSuffix> XE "stind.<typeSuffix>"
store the top of the evaluation stack into the address specified by a pointer, which is the second item on the stack. The type of data stored is specified by the suffix to the instruction. Valid IL requires that the suffix corresponds to the basic type (integer, float, object) of the value on the top of the stack. (Not verifiable).

stloc XE "stloc" , stloc.<2bitNumSuffix> XE "stloc.<2bitNumSuffix>" , stloc.s XE "stloc.s"
store the top of the evaluation stack into a local variable. There are short encodings for locals 0 through 3. stloc.s is used for locals 4 through 255.

unaligned. XE "unaligned"
Indicates that the subsequent operation may reference data that is not aligned to the natural size of the target machine. Valid only before ldind.<exTypeSuffix>, stind.<typeSuffix>, ldfld, stfld, ldobj, stobj, initblk, or cpblk.

volatile. XE "volatile."
Indicates that the subsequent operation my reference data that is read or written asynchronously. Valid only before ldind, stind, ldfld, ldsfld, stfld, stsfld, ldobj, stobj, initblk, or cpblk.
18.5 Object Management

The IL instruction set has direct support for creating objects, zero-based one-dimensional arrays, typed-references, and strings. It also supports casting between object types with runtime type checking, copying instances of value types, accessing fields of classes and value types, and converting between the boxed and unboxed forms of value types.

box XE "box"
convert an unboxed (copy-by-value) instance of a value type into the boxed (copy-by-reference) version by allocating a System.Object on the heap.

callvirt XE "callvirt"
call a virtual method given an object and arguments on the evaluation stack and the types, name, and signature of the virtual method as direct arguments. If the object is null a System.NullReferenceException XE "System.NullReferenceException" is thrown.

castclass XE "castclass"
convert an object to any of its parent classes, specified as part of the instruction, or raise System.InvalidCastException XE "System.InvalidCastException" .

cpobj XE "cpobj"

copy an instance of a value type from one location to another. The top of the evaluation stack points to the source object and the next-to-top points to the destination.

initobj XE "initobj"

zero the contents of a value type. The top of the stack is the address of the instance to be zeroed.

isinst XE "isinst"

the top of the stack must be an object reference and a type is passed as a direct argument. If the top of the stack is an instance of that type it is left on the stack, otherwise it is replaced by a null object reference. In either case, it is guaranteed that the top of the stack can be considered to be of the specified type.
ldelem.<exTypeSuffix> XE "ldelem.<exTypeSuffix>"
load an element out of a zero-based, one-dimensional array, with range and type checking. The type of the array must match the suffix of the instruction or a System.ArrayTypeMismatchException XE "System.ArrayTypeMismatchException" is raised. An out of range subscript results in a System.IndexOutOfRangeException XE "System.IndexOutOfRangeException" , while an attempt to access an element of the null array results in a System.NullReferenceException XE "System.NullReferenceException" .

ldelema XE "ldelema"
load the address of an element of a zero-based, one-dimensional array, with range and type checking. The index is the top operand on the stack, the array is the second on the stack. The type is expected as a direct argument to the instruction.

ldfld XE "ldfld"
load the contents of a field of an object.

ldflda XE "ldflda"
load the address of a field of an object

ldlen XE "ldlen"

load the length of a zero-based, one-dimensional array.
ldobj XE "ldobj"

load an instance of a value type onto the evaluation stack. The top of the evaluation stack is a pointer to the instance.
ldsfld XE "ldsfld"

load the contents of a static field of a class onto the evaluation stack.
ldsflda XE "ldsflda"

load the address of a static field of a class onto the evaluation stack.
ldstr XE "ldstr"

load a literal instance of System.String onto the evaluation stack.
ldtoken XE "ldtoken"

load a token representing a type, field, or method onto the evaluation stack. The instruction returns an unmanaged pointer type I (32- or 64-bits, depending on platform) and can be used for efficient type comparisons, method lookup, etc.
ldvirtftn XE "ldvirtftn"
load a function pointer that references the implementation, in a given object, of a particular virtual method. This function pointer can then be used with the calli instruction. The method is computed at the time the ldvirtftn instruction is executed, not when the calli occurs (i.e. it returns a function pointer, not a C++ “pointer to virtual function”).

mkrefany
 XE "mkrefany"
make a typed reference (runtime typed pointer to memory). A pointer to memory is passed on the top of the stack, and the type of data stored at that location is passed as part of the instruction itself. Verification requires that the type specified in the instruction and the type of the pointer match, and verification will fail if it cannot show this to be true. Thus, only stylized uses of mkrefany are verifiable.
newarr XE "newarr"

allocate and zero-initialize a zero-based, one-dimensional array. The top of the evaluation stack specifies the total number of elements in the array, and the instruction itself specifies the data type of the elements.
newobj XE "newobj"

allocate and initialize an object. The initializer (see Section 7.6.5) to call is specified as part of the instruction itself. The arguments, if any, to that initializer must be on the evaluation stack.
refanytype XE "refanytype"
given a typed reference on the evaluation stack, extract the type of the pointer from it. This will be the same value that would have been computed by a ldtoken instruction given the type used when the typed reference was created using mkrefany.
refanyval XE "refanyval"

given a typed reference on the evaluation stack, extract the pointer from it. See also mkrefany.
sizeof XE "sizeof"

returns the size in bytes of an instance of a value type. The value type is specified as part of the instruction.
stelem.<typeSuffix> XE "stelem.<typeSuffix>"
store an item into an element of an array, with type and range checking. The type is specified by the suffix of the instruction and (for stelem.ref) the object itself; any mismatch results in a System.ArrayTypeMismatchException. XE "System.ArrayTypeMismatchException" The top of the stack contains the value to be stored. The second item on the stack is the index, an unsigned integer. A System.IndexOutOfRangeException XE "System.IndexOutOfRangeException" will be thrown if the index is larger than the size of the array. The third item on the stack is the array itself, which will result in a System.NullReferenceException XE "System.NullReferenceException" if it is null. To store an unboxed value type into an array, use ldelema and stobj rather than stelem.<typeSuffix>.

stfld XE "stfld"

store the top of the stack into a field of an object. The item below the top of stack must be an object reference or a pointer to an unboxed value type instance.
stobj XE "stobj"

store an unboxed instance of a value type (on the top of the stack) at the address specified by the pointer below it on the evaluation stack.
stsfld XE "stsfld"

Store the top of the evaluation stack into a static field, specified as part of the instruction.
unbox
 XE "unbox"

Return a pointer to the unboxed instance of a value type that is stored within the boxed instance on the top of the evaluation stack. The type of the boxed instance (from the object on the stack) must match the type desired (from the instruction stream) or a System.InvalidCastException is thrown. The result is a by-ref (managed pointer), not a copy of the data in the object. A copy can be made by using ldobj to copy the data onto the evaluation stack or cpobj to copy into another location that has already been computed.
18.6 Annotations

Annotations are ignored by all the CLR tools that convert IL into managed native code. Their opcodes are reserved and their formats specified for completeness only. More information on these instruction can be found in the IL Instruction Set specification.

ann.call XE "ann.call"
ann.catch XE "ann.catch"
ann.data XE "ann.data"
ann.data.s XE "ann.data.s"
ann.dead XE "ann.dead"
ann.def XE "ann.def"
ann.hoisted XE "ann.hoisted"
ann.hoisted_call XE "ann.hoisted_call"
ann.lab XE "ann.lab"
ann.live XE "ann.live"
ann.phi XE "ann.phi"
ann.ref XE "ann.ref"
ann.ref.s XE "ann.ref.s"
19 Appendix A: Sample IL Programs

This sections shows several complete examples. Unlike the integrated examples, these examples have many features of the CLR merged into a program.

The examples can be saved to a file, assembled and are ready to run.

The first two examples show small programs. The last example shows a rather large program.

19.1 Mutually Recursive Program (with tail calls)

The following is an example of a mutually recursive program that uses tail calls. The methods below determine whether a number is even or odd.

.assembly test.exe { }

.class EvenOdd

{ .method private static bool IsEven(int32 N) il managed

 { .maxstack 2

 ldarg.0 // N

 ldc.i4.0

 bne.un NonZero

 ldc.i4.1

 ret

NonZero:

 ldarg.0

 ldc.i4.1

 sub

 tail.

 call bool EvenOdd::IsOdd(int32)

 ret

 } // end of method ‘EvenOdd::IsEven’

 .method private static bool IsOdd(int32 N) il managed

 { .maxstack 2

 // Demonstrates use of argument names and labels

 // Notice that the assembler does not covert these

 // automatically to their short versions

 ldarg N

 ldc.i4.0

 bne.un NonZero

 ldc.i4.0

 ret

NonZero:

 ldarg N

 ldc.i4.1

 sub

 tail.

 call bool EvenOdd::IsEven(int32)

 ret

 } // end of method ‘EvenOdd::IsOdd’

 .method public static void Test(int32 N) il managed

 { .maxstack 1

 ldarg N

 call void System.Console::Write(int32)

 ldstr " is "

 call void System.Console::Write(class System.String)

 ldarg N

 call bool EvenOdd::IsEven(int32)

 brfalse LoadOdd

 ldstr "even"

Print:

 call void System.Console::WriteLine(class System.String)

 ret

LoadOdd:

 ldstr "odd"

 br Print

 } // end of method ‘EvenOdd::Test’

} // end of class ‘EvenOdd’

//Global method

.method public static void main() il managed

{ .entrypoint

 .maxstack 1

 ldc.i4.5

 call void EvenOdd::Test(int32)

 ldc.i4.2

 call void EvenOdd::Test(int32)

 ldc.i4 100

 call void EvenOdd::Test(int32)

 ldc.i4 1000001

 call void EvenOdd::Test(int32)

 ret

} // end of global method ‘main’
19.2 Using Value Types

The following program shows how rational numbers can be implemented using value types.

.assembly rational.exe { }

.class private value sealed Rational extends System.ValueType

 implements System.IComparable

{ .field public int32 Numerator

 .field public int32 Denominator

 .method virtual public int32 CompareTo(class System.Object o)

 // Implements IComparable::CompareTo(Object)

 { ldarg.0 // this as managed pointer

 ldfld int32 value class Rational::Numerator

 ldarg.1 // o as object

 unbox value class Rational

 ldfld int32 value class Rational::Numerator

 beq.s TryDenom

 ldc.i4.0

 ret

TryDenom:

 ldarg.0 // this as managed pointer

 ldfld int32 value class Rational::Denominator

 ldarg.1 // o as object

 unbox value class Rational

 ldfld int32 class Rational::Denominator

 ceq

 ret

 }

 .method virtual public class System.String ToString()

 // Implements Object::ToString

 { .locals init (class System.Text.StringBuilder SB,

 class System.String S,

 class System.Object N,

 class System.Object D)

 newobj void System.Text.StringBuilder::.ctor()

 stloc.s SB

 ldstr "The value is: {0}/{1}"

 stloc.s S

 ldarg.0 // Managed pointer to self

 dup

 ldflda int32 value class Rational::Numerator

 box System.Int32

 stloc.s N

 ldflda int32 value class Rational::Denominator

 box System.Int32

 stloc.s D

 ldloc.s SB

 ldloc.s S

 ldloc.s N

 ldloc.s D

 call instance class System.Text.StringBuilder

 System.Text.StringBuilder::AppendFormat(class System.String,

 class System.Object,

 class System.Object)

 callvirt instance class System.String System.Object::ToString()

 ret

 }

 .method public value class Rational Mul(value class Rational)

 { .locals init (value class Rational Result)

 ldloca.s Result

 dup

 ldarg.0 // this

 ldfld int32 value class Rational::Numerator

 ldarga.s 1 // arg

 ldfld int32 value class Rational::Numerator

 mul

 stfld int32 value class Rational::Numerator

 ldarg.0 // this

 ldfld int32 value class Rational::Denominator

 ldarga.s 1 // arg

 ldfld int32 value class Rational::Denominator

 mul

 stfld int32 value class Rational::Denominator

 ldloc.s Result

 ret

 }

}

.method void main()

{ .entrypoint

 .locals init (value class Rational Half,

 value class Rational Third,

 value class Rational Temporary,

 class System.Object H,

 class System.Object T)

 // Initialize Half, Third, H, and T

 ldloca.s Half

 dup

 ldc.i4.1

 stfld int32 value class Rational::Numerator

 ldc.i4.2

 stfld int32 value class Rational::Denominator

 ldloca.s Third

 dup

 ldc.i4.1

 stfld int32 value class Rational::Numerator

 ldc.i4.3

 stfld int32 value class Rational::Denominator

 ldloca.s Half

 box value class Rational

 stloc.s H

 ldloca.s Third

 box value class Rational

 stloc.s T

 // WriteLine(H.IComparable::CompareTo(H))

 // Call CompareTo via interface using boxed instance

 ldloc H

 dup

 callvirt int32 System.IComparable::CompareTo(class System.Object)

 call void System.Console::WriteLine(bool)

 // WriteLine(Half.CompareTo(T))

 // Call CompareTo via value type directly

 ldloca.s Half

 ldloc T

 call instance int32

 value class Rational::CompareTo(class System.Object)

 call void System.Console::WriteLine(bool)

 // WriteLine(Half.ToString())

 // Call virtual method via value type directly

 ldloca.s Half

 call instance class System.String class Rational::ToString()

 call void System.Console::WriteLine(class System.String)

 // WriteLine(T.ToString)

 // Call virtual method inherited from Object, via boxed instance

 ldloc T

 callvirt class System.String System.Object::ToString()

 call void System.Console::WriteLine(class System.String)

 // WriteLine((Half.Mul(T)).ToString())

 // Mul is called on two value types, returning a value type

 // ToString is then called directly on that value type

 // Note that we are required to introduce a temporary variable

 // since the call to ToString requires a managed pointer (address)

 ldloca.s Half

 ldloc.s Third

 call instance value class Rational

 Rational::Mul(value class Rational)

 stloc.s Temporary

 ldloca.s Temporary

 call instance class System.String Rational::ToString()

 call void System.Console::WriteLine(class System.String)

 ret

}

19.3 User Interface Sample

This section shows a larger application written in the IL assembly language. It shows many features of the CLR discussed in this document and interoperation with C# and managed C++.

Parts of this sample were used in integrated samples in the document. Some of the integrated samples were modified to fit the context better.

Motivated by waiting for the release date of the CLR, it seemed appropriate to write an application that counts down the seconds left. It is called Microsoft .NET CountDown. The following application has the following features:

· Displays the seconds left in a window (not the console) with appropriate labeling and updates the display every second until zero is reached.

· Has a start/stop button that allows the count down to halt or resume.

· Well, let’s be honest ship dates do move. So, we need functionality to enter a new value for the seconds left using the GUI.

· Rejects values entered for the number of seconds that are not positive and valid integers.

· Has resizing behavior for all elements.

· Produces a beep every second and a final sound when the count reaches zero.

The following is a screen shot of the application:

[image: image11.png]Number is out of range!

[rzzssrenzse | Seconds |eft

Figure A.1: Screenshot of Microsoft.NET CountDown. The user just entered the value shown and clicked Start.

Even though the program could have been written as one monolithic piece, it is split into components and modules. This way the various pieces become usable, independent of each other.

The window itself, the text box, the button, and the two labels form the UI components. In addition, there are components in the backend that represent the application, the counter, the count value, the exceptions, the error values, and the various events happening in the application. The application forms one assembly that consists of three modules written in the IL assembly language:

· CountDown.exe

· CountDownComponents.dll

· Counter.dll

The component displaying the text “Seconds left” is written in C# and comes from the module CountDownSecondsLabel.dll. The component displaying the error messages at the top of the window, one of which is shown in the screenshot above, is available both in managed C++ and C#. The module is called CountDownErrorLabel.dll. The beeps are produced using native code from the Windows library user32.dll (if Windows9x is used, replace the reference to the DLL by user.dll). (Since C++ does not produce verifiable code, you may need to alter your security settings to run the program.)

The following graph gives an overview of the design of the application:

[image: image12.png]CountDownComponents. d11 Counter.dll

e
P —— il Coune &
T

Figure A.2: Overview of the design of Microsoft .NET CountDown.

The following subsections show each module of the sample. To compile and execute the program, each section needs to be Copied into a file that has the same name as the section itself. Section 19.3.1 to 19.3.3 show IL assembly language source code. Sections 19.3.4 and 19.3.5 show C# source code. And section 19.3.6 shows managed C++ source code.

Two of the sections contain the source code for batch files. The file compile.bat can be used to compile the files. The syntax is:

compile [C++]

If the option C++ is specified, the error label will be compiled with the C++ compiler. If no option is specified, C# version of the error label will be compiled.

The program is called CountDown.exe.

19.3.1 CountDown.il

/*

 * Microsoft .Net CountDown

 * (C) Copyright 2000, Microsoft corp.

 *

 * This is the main file of the assembly.

 * It defines the assembly and contains the entrypoint.

 * This file declares the classes

 *
- CountDown

 *
- DountDownForm

 * This files declares the enumeration

 *
- ErrorCodes

 *

 */

/**/

/* Information about the assembly */

/**/

/* The assembly decaration. */

.assembly CountDown {

.hash algorithm 32772
// selected algorithm is SHA1

.ver 1:0:0:0

// version 1.0

}

/* The assembly decaration. */

.assembly CountDown {

.hash algorithm 32772
// selected algorithm is SHA1

.ver 1:0:0:0

// version 1.0

// may also add originator key

}

/* The assembly references. */

.assembly extern mscorlib {

 .originator = (03 68 91 16 D3 A4 AE 33)

 // may also add hash value and version

}

.assembly extern System.WinForms {

 .originator = (03 68 91 16 D3 A4 AE 33)

}

.assembly extern System.Drawing {

 .originator = (03 68 91 16 D3 A4 AE 33)

}

.assembly extern System.Timers {

 .originator = (03 68 91 16 D3 A4 AE 33)

}

/* Files referenced by the assembly, all DLLs need to appear here.

 All references by modules need to be listed here, too. */

.file CountDownComponents.dll

.file Counter.dll

.file CountDownSecondsLabel.dll

.file CountDownErrorLabel.dll

/**/

/* Information about this module */

/**/

/* The module declaration. */

.module CountDown.exe

/* The module references.

 All these modules become part of this assembly. */

.module extern CountDownComponents.dll

.module extern Counter.dll

.module extern CountDownSecondsLabel.dll

.module extern CountDownErrorLabel.dll

/**/

/* Class: CountDown */

/**/

/* This is the main class of the application. It contains

 * the entrypoint. */

.class public auto autochar CountDown extends [mscorlib]System.Object {

/* constructor */

.method public rtspecialname specialname hidebysig instance void .ctor() il managed {

.maxstack 1

ldarg.0

// load this pointer

// call super constructor

call
instance void [mscorlib]System.Object::.ctor()

ret

}

/* entrypoint to the application

 * (can have any name)

 */

.method public static hidebysig int32 Main() il managed {

.entrypoint

.maxstack
1

.zeroinit

// initialize all locals

// declare locals

.locals (class CountDownForm countDownForm)

// GC will run finalizers

call
void [mscorlib]System.GC::RequestFinalizeOnShutdown()

// instantiate CountDownFrom

newobj
instance void CountDownForm::.ctor()

stloc
countDownForm

// store instance

ldloc
countDownForm

// load form onto stack

// start the Form on a new thread

call
void [System.WinForms]System.WinForms.Application::Run(class [System.WinForms]System.WinForms.Form)

ldc.i4.0

// successful return

ret

}

} // end of class CountDown

/**/

/* Class: CountDownForm */

/**/

/* Represents the form displayed on the screen. Contains and manages all the controls

 * of the application */

.class private auto autochar CountDownForm extends [System.WinForms]System.WinForms.Form {

/* the instance fields */

.field private class [.module CountDownSecondsLabel.dll]SecondsLabel secondsLabel

.field private class [.module CountDownComponents.dll]CounterTextBox counterBox

.field private class [.module CountDownComponents.dll]StartStopButton button

.field private class [.module CountDownErrorLabel.dll]ErrorLabel errorLabel

.field private class [.module Counter.dll]Counter counter

.field private class System.String[] errorStrings

/* constructor */

.method public rtspecialname specialname hidebysig instance void .ctor() il managed {

.maxstack 3

.locals init (class [.module Counter.dll]Count count)

// call super constructor

ldarg.0

call
instance void [System.WinForms]System.WinForms.Form::.ctor()

// initialize error strings

ldarg.0

callvirt instance void CountDownForm::InitializeErrorStrings()

// setup form

ldarg.0

callvirt instance void CountDownForm::Initialize()

// create the button and store in an instance variable

ldarg.0

dup

newobj
instance void [.module CountDownComponents.dll]StartStopButton::.ctor(class [System.WinForms]System.WinForms.Form)

stfld
class [.module CountDownComponents.dll]StartStopButton CountDownForm::button

// create the text label and store in an instance variable, the label initializes itself

ldarg.0

dup

newobj
instance void [.module CountDownSecondsLabel.dll]SecondsLabel::.ctor(class [System.WinForms]System.WinForms.Form)

stfld
class [.module CountDownSecondsLabel.dll]SecondsLabel CountDownForm::secondsLabel

// create the time box and store in an instance variable

ldarg.0

dup

newobj
instance void [.module CountDownComponents.dll]CounterTextBox::.ctor(class CountDownForm)

stfld
class [.module CountDownComponents.dll]CounterTextBox CountDownForm::counterBox

// create the count object

ldarg.0

ldfld
class [.module CountDownComponents.dll]CounterTextBox CountDownForm::counterBox

newobj
instance void [.module Counter.dll]Count::.ctor(class [.module Counter.dll]ICountDisplay)

stloc
count

// create the counter

ldarg.0

dup

ldfld
class [.module CountDownComponents.dll]StartStopButton CountDownForm::button

ldloc
count

newobj
instance void [.module Counter.dll]BeepingCounter::.ctor(class [.module Counter.dll]IStartStopEventSource, class [.module Counter.dll]Count)

stfld
class [.module Counter.dll]Counter CountDownForm::counter

// add button to the time up event

ldarg.0

ldfld
class [.module CountDownComponents.dll]StartStopButton CountDownForm::button

ldarg.0

ldfld
class [.module Counter.dll]Counter CountDownForm::counter

call
instance void [.module CountDownComponents.dll]StartStopButton::AddToTimeUp(class [.module Counter.dll]Counter)

// create the error label and store in an instance variable

ldarg.0

dup

newobj
instance void [.module CountDownErrorLabel.dll]ErrorLabel::.ctor(class [System.WinForms]System.WinForms.Form)

stfld
class [.module CountDownErrorLabel.dll]ErrorLabel CountDownForm::errorLabel

ret

}

/* Initializes the form by setting the title, size,

 and background color */

.method virtual newslot family hidebysig instance void Initialize() il managed {

.maxstack 3

.locals init (value class [System.Drawing]System.Drawing.Size size)

// set the title

ldarg.0

// load this pointer

ldstr
"CountDown"

// load window title onto stack

// call the setter of the property

callvirt instance void CountDownForm::set_Text(class System.String)

// set the size

ldloca
size

initobj
value class [System.Drawing]System.Drawing.Size

ldloca
size

ldc.i4
425
// width

ldc.i4
300
// height

call
instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32)

ldarg.0

ldloc
size

callvirt instance void CountDownForm::set_Size(value class [System.Drawing]System.Drawing.Size)

// set the background

ldarg.0

call
value class [System.Drawing]System.Drawing.Color [System.Drawing]System.Drawing.Color::get_CadetBlue()

callvirt instance void CountDownForm::set_BackColor(value class [System.Drawing]System.Drawing.Color)

ret

}

/* Initializes the error strings displayed in case of errors. */

.method virtual newslot family hidebysig instance void InitializeErrorStrings() il managed {

// create the array

ldarg.0

ldc.i4.4
// number of error strings + 1

newarr
class System.String

stfld
class System.String[] CountDownForm::errorStrings

ldarg.0

ldfld
class System.String[] CountDownForm::errorStrings

ldc.i4.0

ldstr
"" // the empty string, used to display no error

stelem.ref

// add the first error string to the array

ldarg.0

ldfld
class System.String[] CountDownForm::errorStrings

ldc.i4.1

ldstr
"Please enter an integer!"

stelem.ref

// add the next error string to the array

ldarg.0

ldfld
class System.String[] CountDownForm::errorStrings

ldc.i4.2

ldstr
"Number is out of range!"

stelem.ref

// add the next error string to the array

ldarg.0

ldfld
class System.String[] CountDownForm::errorStrings

ldc.i4.3

ldstr
"Number must be positive!"

stelem.ref

ret

}

/* Displays the error string according to the passed in error code.

 Error code must be one of the values declared by the enumeration. */

.method virtual newslot famorassem hidebysig instance void ShowErrorText(value class ErrorCodes errorCode) synchronized il managed {

// load the appropriate error string

ldarg.0

ldfld
class [.module CountDownErrorLabel.dll]ErrorLabel CountDownForm::errorLabel

ldarg.0

ldfld
class System.String[] CountDownForm::errorStrings

ldarg
errorCode
// load the value of the enumeration

ldelem.ref

// error string on stack, display

callvirt instance void class [.module CountDownErrorLabel.dll]ErrorLabel::set_Text(class System.String)

ret

}

} // end of class CountDownForm

/**/

/* Enumeration: ErrorCodes */

/**/

/* This enumeration defines the valid error codes

 * Must be sealed, since value type. */

.class value sealed serializable auto autochar public ErrorCodes extends [mscorlib]System.Enum {

// the field of the enumeration, underlying type is unsigned int8

.field public specialname rtspecialname unsigned int8 value__

// Metadata fields documenting the legal values of the enumeration and

// giving them names.

// This fields are accessible only with reflection.

.field public static literal value class ErrorCodes no_error = int8(0)

.field public static literal value class ErrorCodes format_error = int8(1)

.field public static literal value class ErrorCodes overflow_error = int8(2)

.field public static literal value class ErrorCodes nonpositive_error = int8(3)

} // end of enumeration ErrorCodes

19.3.2 CountDownComponents.il

/*

 * Microsoft .Net CountDown

 * (C) Copyright 2000, Microsoft corp.

 *

 * This is file contains UI components for Microsoft .NET CountDown.

 * This file declares the classes

 *
- CounterTextBox

 *
- StartStopButton

 * This file declares the exception

 *
- NonPositiveNumberException

 * This file declares the event

 *
- StartStopEvent (in StartStopButton)

 *

 */

/* This module does not declare an assembly.

 * As a consequence, it must be referenced by another assembly to

 * be usable. This module does not have an entrypoint

 */

/**/

/* Information about this module */

/**/

/* The module declaration. compiles into a dll*/

.module CountDownComponents.dll

/* Assembly references */

.assembly extern mscorlib {

 .originator = (03 68 91 16 D3 A4 AE 33)

}

.assembly extern System.WinForms {

 .originator = (03 68 91 16 D3 A4 AE 33)

}

.assembly extern System.Drawing {

 .originator = (03 68 91 16 D3 A4 AE 33)

}

/* Files referenced by the module, all DLLs need to appear here. */

.file CountDown.exe

.file Counter.dll

/* Module references. */

.module extern CountDown.exe

.module extern Counter.dll

/**/

/* Class: CounterTextBox */

/**/

/* Implements the text box that shows the seconds. Accepts values

 * from the user. Validates enered values.

 * The CounterTextBox is an ICountDisplay. */

.class private auto autochar CounterTextBox extends [System.WinForms]System.WinForms.TextBox implements [.module Counter.dll]ICountDisplay {

/* Nested class. Declares the NegativeNumberException */

.class nested assembly NonPositiveNumberException extends [mscorlib]System.Exception {

/* constructor */

.method public rtspecialname specialname void .ctor() il managed {

.maxstack 1

ldarg.0

// load this pointer

// call super constructor

call
instance void [mscorlib]System.Exception::.ctor()

ret

}

} // end of exception NegativeNumberException

/* The instance fields */

.field private class [.module CountDown.exe]CountDownForm parent

/* constructor */

.method famorassem rtspecialname specialname hidebysig instance void .ctor(class [.module CountDown.exe]CountDownForm parent) il managed {

.maxstack 2

ldarg.0

// load this pointer

// call super constructor

call
instance void [System.WinForms]System.WinForms.TextBox::.ctor()

// set parent field

ldarg.0

ldarg
parent

stfld
class [.module CountDown.exe]CountDownForm CounterTextBox::parent

// initialize

ldarg.0

callvirt instance void CounterTextBox::Initialize()

// add the text box to the form

ldarg
parent

call
instance class [System.WinForms]System.WinForms.Control$ControlCollection [System.WinForms]System.WinForms.Form::get_Controls()

ldarg.0

callvirt instance void [System.WinForms]System.WinForms.Control$ControlCollection::Add(class [System.WinForms]System.WinForms.Control)

ret

}

/* Initializes this text box */

.method virtual newslot private hidebysig instance void Initialize() il managed {

.maxstack 3

.locals init (value class [System.Drawing]System.Drawing.Size size,

 value class [System.Drawing]System.Drawing.Point point)

// set position

ldloca
point

initobj
value class [System.Drawing]System.Drawing.Point

ldloca
point

ldc.i4
75
// x

ldc.i4
100
// y

call
instance void [System.Drawing]System.Drawing.Point::.ctor(int32, int32)

ldarg.0

ldloc
point

call
instance void [System.WinForms]System.WinForms.TextBox::set_Location(value class [System.Drawing]System.Drawing.Point)

// set anchor

ldarg.0

ldc.i4.3
// TopBottom

callvirt instance void [System.WinForms]System.WinForms.TextBox::set_Anchor(value class [System.WinForms]System.WinForms.AnchorStyles)

// set the size of the text box

ldloca
size

initobj
value class [System.Drawing]System.Drawing.Size

ldloca
size

ldc.i4
115
// width

ldc.i4
20
// height

call
instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32)

ldarg.0

ldloc
size

callvirt instance void [System.WinForms]System.WinForms.TextBox::set_Size(value class [System.Drawing]System.Drawing.Size)

// set the text of the text box, should be set to a different value by counter

ldarg.0

ldstr
"0"

callvirt instance void [System.WinForms]System.WinForms.TextBox::set_Text(class System.String)

ret

}

/* Sets the value of the count to be displayed */

.method virtual newslot public hidebysig instance void SetCount(int32 count) il managed {

.maxstack 2

ldarg.0

ldarg
count

// convert count to string

call
class System.String [mscorlib]System.Int32::ToString(int32)

// set teh display

callvirt instance void [System.WinForms]System.WinForms.TextBox::set_Text(class System.String)

ret

}

/* Retrieves the value currently displayed.

 * This includes entries maid by the user.

 * Validates the number displayed. If the number is invalid request CountDownForm to display

 * an appropriate error message

 */

.method virtual newslot public hidebysig instance int32 GetCount() il managed {

.maxstack 4

// local rvalue contains the value to return

// rvalue is initialized to zero

.locals
init (int32 rvalue,

 value class [.module CountDown.exe]ErrorCodes errorCode)

// initialize error code

ldc.i4.0

// no_error

stloc
errorCode
// store into enumeration

ldarg.0

callvirt instance class System.String CounterTextBox::get_Text()

// string representing displayed value on stack

// two catch clauses, need two try declarations

.try {

.try {

// try to convert into integer

callvirt instance int32 [mscorlib]System.String::ToInt32()

// integer on stack

stloc
rvalue

// leave the try and continue with processing

leave
is_integer

} catch [mscorlib]System.FormatException {

// entered value is not an integer

// pop the exception object

pop

ldc.i4.1
// format_error

stloc
errorCode

leave
done
// leave the catch

}} catch [mscorlib]System.OverflowException {

// entered value is number but does not fit into int32

// pop the exception object

pop

ldc.i4.2
// overflow_error

stloc
errorCode

leave
done
// leave the catch

}

is_integer:

.try {

// check whether value is positive

ldloc
rvalue

ldc.i4.0

bgt
in_range

// not positive, throw an exception

newobj
instance void CounterTextBox/NonPositiveNumberException::.ctor()

throw

in_range:

// value is positive, leave the try

leave
done

} catch CounterTextBox/NonPositiveNumberException {

// catch exception thrown in try block

// number is not positive

// pop the exception object

pop

ldc.i4.3
// nonpositive_error

stloc
errorCode

leave
done
// leave the catch

}

done:

// set the error text

ldarg.0

ldfld
class [.module CountDown.exe]CountDownForm CounterTextBox::parent

ldloc
errorCode

callvirt instance void [.module CountDown.exe]CountDownForm::ShowErrorText(value class [.module CountDown.exe]ErrorCodes)

// return with rvalue

ldloc
rvalue

ret

}

} // end of class CounterTextBox

/**/

/* Class: StartStopButton */

/**/

/* Represents the start stop button. The button starts or stops the counter.

 * The button displays the appropriate label and changes state if the counter stops.

 * Declares the StartStopEvent.

 * The StartStopButton is an ISartStopEventSource. */

.class private auto autochar StartStopButton extends [System.WinForms]System.WinForms.Button implements [.module Counter.dll]IStartStopEventSource {

/* The instance fields */

.field private class [mscorlib]System.EventHandler onClickEventHandler

.field private class [.module Counter.dll]TimeUpEventHandler timeUpEventHandler

.field private class [.module Counter.dll]StartStopEventHandler startStopEventHandler

.field private bool state
// 0 = counter stopped, 1 = counter started

/* contructor */

.method public rtspecialname specialname hidebysig instance void .ctor(class [System.WinForms]System.WinForms.Form parent) il managed {

.maxstack 2

ldarg.0

// load this pointer

// call super constructor

call
instance void [System.WinForms]System.WinForms.Button::.ctor()

// intialize state

ldarg.0

ldc.i4.0
// counter stopped

stfld
bool StartStopButton::state

// initialize the button

ldarg.0

callvirt instance void StartStopButton::Initialize()

// add the button to the form

ldarg
parent

call
instance class [System.WinForms]System.WinForms.Control$ControlCollection [System.WinForms]System.WinForms.Form::get_Controls()

ldarg.0

callvirt instance void [System.WinForms]System.WinForms.Control$ControlCollection::Add(class [System.WinForms]System.WinForms.Control)

// setup Click event

ldarg.0

call
instance void StartStopButton::AddToClick()

ret

}

/* finalizer */

.method virtual family hidebysig instance void Finalize() il managed {

.maxstack 3

// remove the OnClick event

ldarg.0

dup

ldfld
class [mscorlib]System.EventHandler StartStopButton::onClickEventHandler

call
instance void [System.WinForms]System.WinForms.Button::remove_Click(class [mscorlib]System.EventHandler)

ret

}

/* Initializes this button */

.method virtual newslot private hidebysig instance void Initialize() il managed {

.maxstack 3

.locals init (value class [System.Drawing]System.Drawing.Size size,

 value class [System.Drawing]System.Drawing.Point point)

// set position

ldloca
point

initobj
value class [System.Drawing]System.Drawing.Point

ldloca
point

ldc.i4
100
// x

ldc.i4
200
// y

call
instance void [System.Drawing]System.Drawing.Point::.ctor(int32, int32)

ldarg.0

ldloc
point

call
instance void [System.WinForms]System.WinForms.Button::set_Location(value class [System.Drawing]System.Drawing.Point)

// set anchor

ldarg.0

ldc.i4
15
// TopBottom

callvirt instance void [System.WinForms]System.WinForms.Button::set_Anchor(value class [System.WinForms]System.WinForms.AnchorStyles)

// set the size of the button

ldloca
size

initobj
value class [System.Drawing]System.Drawing.Size

ldloca
size

ldc.i4
200
// width

ldc.i4
50
// height

call
instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32)

ldarg.0

ldloc
size

callvirt instance void [System.WinForms]System.WinForms.Button::set_Size(value class [System.Drawing]System.Drawing.Size)

// set the color

ldarg.0

call
value class [System.Drawing]System.Drawing.Color [System.Drawing]System.Drawing.Color::get_Gold()

callvirt instance void [System.WinForms]System.WinForms.Button::set_BackColor(value class [System.Drawing]System.Drawing.Color)

// set the text color

ldarg.0

call
value class [System.Drawing]System.Drawing.Color [System.Drawing]System.Drawing.Color::get_Navy()

callvirt instance void [System.WinForms]System.WinForms.Button::set_ForeColor(value class [System.Drawing]System.Drawing.Color)

// set the font height

ldarg.0

ldstr
"Arial"

ldc.r4
20

newobj
instance void [System.Drawing]System.Drawing.Font::.ctor(class System.String, float32)

callvirt instance void [System.WinForms]System.WinForms.Button::set_Font(class [System.Drawing]System.Drawing.Font)

// set the text of the button

ldarg.0

ldstr
"Start"

callvirt instance void [System.WinForms]System.WinForms.Button::set_Text(class System.String)

ret

}

/* Sets the state of the button and updates the label

 * 0 = counter stopped

 * 1 = counter started */

.method virtual newslot famorassem hidebysig instance void SetState(int32 newState) il managed {

// set the state

ldarg.0

ldarg
newState

stfld
bool StartStopButton::state

// set the label

ldarg
newState

ldc.i4.0

beq

stop_state

// state is counter started, set label to "Stop"

ldarg.0

ldstr
"Stop"

callvirt instance void StartStopButton::set_Text(class System.String)

br

done

stop_state:

// state is counter stopped, set label to "Start"

ldarg.0

ldstr
"Start"

callvirt instance void StartStopButton::set_Text(class System.String)

done:

ret

}

/* adds this button to the Click event */

.method public hidebysig instance void AddToClick() il managed {

.maxstack 3

// load method pointer to handler and create a delegate for it

ldarg.0

dup
// duplicate top of stack

dup
// need three version of this

ldvirtftn instance void StartStopButton::OnClick(class System.Object, class [mscorlib]System.EventArgs)

newobj
instance void [mscorlib]System.EventHandler::.ctor(class System.Object, int32)

stfld
class [mscorlib]System.EventHandler StartStopButton::onClickEventHandler

// load delegate and pass to event source

ldarg.0

dup

ldfld
class [mscorlib]System.EventHandler StartStopButton::onClickEventHandler

call
instance void [System.WinForms]System.WinForms.Button::add_Click(class [mscorlib]System.EventHandler)

ret

}

/* Event handler for Click events.

 * Click events are fired for this component when the user presses the button

 * Declaration follows EventHandler delegate */

.method virtual newslot public hidebysig instance void OnClick(class System.Object, class [mscorlib]System.EventArgs) il managed {

.maxstack 3

// fire the start stop event, counter must be started or stopped

ldarg.0

callvirt instance void StartStopButton::fire_StartStopEvent()

ret

}

/* Adds this button to the TimeUp event.

 * called by CountDownForm. */

.method public hidebysig instance void AddToTimeUp(class [.module Counter.dll]Counter counter) il managed {

.maxstack 3

// load pointer to handler and create a delegate for it

ldarg.0

dup
// duplicate top of stack

ldftn
instance void StartStopButton::OnTimeUp()

newobj
instance void [.module Counter.dll]TimeUpEventHandler::.ctor(class System.Object, int32)

stfld
class [.module Counter.dll]TimeUpEventHandler StartStopButton::timeUpEventHandler

ldarg
counter

// load delegate and pass to event source

ldarg.0

ldfld
class [.module Counter.dll]TimeUpEventHandler StartStopButton::timeUpEventHandler

call
instance void [.module Counter.dll]Counter::add_TimeUp(class [.module Counter.dll]TimeUpEventHandler)

ret

}

/* Event handler for time up events.

 * The TimeUp event signals that the counter has stopped.

 * The state of the button needs to be updated. */

.method virtual newslot famorassem hidebysig instance void OnTimeUp() il managed {

// timer stopped, so set state to timer stopped

ldarg.0

ldc.i4.0

callvirt instance void StartStopButton::SetState(int32)

ret

}

/*** Definition of the StartStopEvent ***/

// Event is implemented using delegate StartStopEventHandler from Counter.dll

/* Declaration of the StartStopEvent */

.event [.module Counter.dll]StartStopEventHandler StartStopEvent {

.addon instance void add_StartStopEvent(class [.module Counter.dll]StartStopEventHandler 'handler')

.removeon instance void remove_StartStopEvent(class [.module Counter.dll]StartStopEventHandler 'handler')

.fire instance void fire_StartStopEvent()

}

/* Add a listener to the StartStopEvent */

.method virtual newslot public specialname hidebysig instance void add_StartStopEvent(class [.module Counter.dll]StartStopEventHandler 'handler') il managed {

.maxstack 4

// combine with the multicast delegate

ldarg.0

dup

ldfld
class [.module Counter.dll]StartStopEventHandler StartStopButton::startStopEventHandler

ldarg
'handler'

call
class[mscorlib]System.Delegate [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

castclass [.module Counter.dll]StartStopEventHandler

stfld
class [.module Counter.dll]StartStopEventHandler StartStopButton::startStopEventHandler

ret

}

/* Remove a listener from the StartStopEvent */

.method virtual newslot public specialname hidebysig instance void remove_StartStopEvent(class [.module Counter.dll]StartStopEventHandler 'handler') il managed {

.maxstack 4

// remove from the multicast delegate

ldarg.0

dup

ldfld
class [.module Counter.dll]StartStopEventHandler StartStopButton::startStopEventHandler

ldarg
'handler'

call
class[mscorlib]System.Delegate [mscorlib]System.Delegate::Remove(class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

castclass [.module Counter.dll]StartStopEventHandler

stfld
class [.module Counter.dll]StartStopEventHandler StartStopButton::startStopEventHandler

ret

}

/* Fire the StartStopEvent */

.method virtual newslot family specialname hidebysig instance void fire_StartStopEvent() il managed {

.maxstack 3

// if state is counter stopped, fire start argument

// if state is counter started, fire stop argument

ldarg.0

ldfld
bool StartStopButton::state

brtrue
stop_it

ldarg.0

ldc.i4.1
// start counter

callvirt instance void StartStopButton::SetState(int32)

br
continue

stop_it:

ldarg.0

ldc.i4.0
// stop counter

callvirt instance void StartStopButton::SetState(int32)

continue:

// invoke the mutlicast delegate

ldarg.0

ldfld
class [.module Counter.dll]StartStopEventHandler StartStopButton::startStopEventHandler

ldarg.0

ldfld
bool StartStopButton::state

callvirt instance void [.module Counter.dll]StartStopEventHandler::Invoke(int32)

ret

}

/*** End of the definition of the StartStopEvent ***/

} // end of class StartStopButton

19.3.3 Counter.il

/*

 * Microsoft .Net CountDown

 * (C) Copyright 2000, Microsoft corp.

 *

 * This is file defines the counter functionality for Microsoft .NET CountDown.

 * This file declares the classes

 *
- Count

 *
- Counter

 *
- BeepingCounter

 *
- User32

 * This file declares the interfaces

 *
- ICountDisplay

 *
- IStartStopEventSource

 * This file declares the delegates

 *
- StartStopEventHandler

 *
- TimeUpEventHandler

 * This file declares the event

 *
- TimeUpEvent (in Counter)

 *

 */

/* This module does not declare an assembly.

 * As a consequence, it must be referenced by another assembly to

 * be usable. This module does not have an entrypoint

 */

/**/

/* Information about this module */

/**/

/* Module declaration, compiles into a dll. */

.module CountDownComponents.dll

/* The assembly references. */

.assembly extern mscorlib {

 .originator = (03 68 91 16 D3 A4 AE 33)

}

.assembly extern System.Timers {

 .originator = (03 68 91 16 D3 A4 AE 33)

}

/**/

/* Global Data embedded in PEFile */

/**/

// the default value of the counter

.data COUNTER_DEFAULT = int32(10)
// 10 seconds

/**/

/* Interface: ICountDisplay */

/**/

/* Implementer is able to display a count value */

.class interface abstract public auto autochar ICountDisplay {

.method virtual abstract public hidebysig instance void SetCount(int32 count) il managed {}

.method virtual abstract public hidebysig instance int32 GetCount() il managed {}

} // end of interface ICountDisplay

/**/

/* Interface: IStartStopEventSource */

/**/

/* Implementer defines a StartSopEvent */

.class interface abstract auto autochar public IStartStopEventSource {

.method virtual abstract public hidebysig instance void add_StartStopEvent(class StartStopEventHandler) il managed {}

.method virtual abstract public hidebysig instance void remove_StartStopEvent(class StartStopEventHandler) il managed {}

} // end of interface IStartStopEventSource

/**/

/* Class: Count */

/**/

/* Represents a count value. Defines a Count property.

 * Interacts with an ICountDisplay to display the value.

 * It is not appropriate for Count to be a value type because an

 * instances of it is shared between classes.

 */

.class public auto autochar Count extends [mscorlib]System.Object {

/* Instance fields */

.field private int32 count

.field static family int32 counterDefault at COUNTER_DEFAULT // defined at global data

.field family class ICountDisplay display

/* constructor */

.method public rtspecialname specialname hidebysig instance void .ctor(class ICountDisplay display) il managed {

// make super call

ldarg.0

call
instance void [mscorlib]System.Object::.ctor()

// set display

ldarg.0

ldarg
display

stfld
class ICountDisplay Count::display

// initialize count with counterDefault from global data

// must come after diplay is set

ldarg.0

ldsfld
int32 Count::counterDefault

callvirt instance void Count::set_Count(int32)

ret

}

/*** Property Count ***/

/* Declaration of property */

.property int32 Count() {

.backing int32 count

.get instance int32 get_Count()

.set instance void set_Count(int32)

.other instance void refresh_Count()

}

/* Getter of Count property */

.method virtual newslot public hidebysig instance int32 get_Count() il managed {

ldarg.0

ldfld
int32 Count::count

ret

}

/* Setter of Count property */

.method virtual newslot public hidebysig instance void set_Count(int32 newCount) synchronized il managed {

ldarg.0

ldarg
newCount

stfld
int32 Count::count

ldarg.0

ldfld
class ICountDisplay Count::display

ldarg
newCount

callvirt instance void ICountDisplay::SetCount(int32)

ret

}

/* Other method of Count property.

 * Updates the count value reading the value at the display.

 * This way user entered values are considered. */

.method virtual newslot public hidebysig instance void refresh_Count() synchronized il managed {

ldarg.0

dup

ldfld
class ICountDisplay Count::display

callvirt instance int32 ICountDisplay::GetCount()

stfld
int32 Count::count

ret

}

/*** End of property Count ***/

} // end of class Count

/**/

/* Class: Counter */

/**/

/* Represents a counter. Uses a Count object and decrements its value until zero is reached.

 * Stops when the count has reached zero. Fires a TimeUpEvent when count has reached zero.

 * Defines the TimeUpEvent */

.class public auto autochar Counter extends [mscorlib]System.Object {

/* Instance fields */

.field private class [System.Timers]System.Timers.Timer timer

.field private class [mscorlib]System.EventHandler timerEventHandler

.field family class Count count

.field private class IStartStopEventSource startStopEventSource

.field private class StartStopEventHandler startStopEventHandler

.field private class TimeUpEventHandler timeUpEventHandler

/* constructor */

.method public rtspecialname specialname hidebysig instance void .ctor(class IStartStopEventSource startStopEventSource, class Count count) il managed {

// call super constructor

ldarg.0

call
instance void [mscorlib]System.Object::.ctor()

// set startStopEventSource

ldarg.0

ldarg
startStopEventSource

stfld
class IStartStopEventSource Counter::startStopEventSource

// set count

ldarg.0

ldarg
count

stfld
class Count Counter::count

// setup the time

ldarg.0

callvirt instance void Counter::SetupTimer()

// listen to the StartStopEvent

ldarg.0

callvirt instance void Counter::SetupStartStopEvent()

ret

}

/* finalizer */

.method virtual family hidebysig instance void Finalize() il managed {

.maxstack 3

// remove the StartStop event

ldarg.0

ldfld
class IStartStopEventSource Counter::startStopEventSource

ldarg.0

ldfld
class StartStopEventHandler Counter::startStopEventHandler

callvirt instance void IStartStopEventSource::remove_StartStopEvent(class StartStopEventHandler)

// remove the timer event

ldarg.0

ldfld
class [System.Timers]System.Timers.Timer Counter::timer

ldarg.0

ldfld
class [mscorlib]System.EventHandler Counter::timerEventHandler

call
instance void [System.Timers]System.Timers.Timer::remove_Tick(class [mscorlib]System.EventHandler)

ret

}

/* setup the timer and start listening to the OnTick event */

.method virtual newslot famorassem hidebysig instance void SetupTimer() il managed {

.maxstack 3

// setup the timer

ldarg.0

ldc.r8
1000

newobj
instance void [System.Timers]System.Timers.Timer::.ctor(float64)

stfld
class [System.Timers]System.Timers.Timer Counter::timer

// set auto reset property of timer

ldarg.0

ldfld
class [System.Timers]System.Timers.Timer Counter::timer

ldc.i4.1

call
instance void [System.Timers]System.Timers.Timer::set_AutoReset(bool)

// load method pointer to event handler and create delegate

ldarg.0

dup
// duplicate top of stack

dup
// duplicate top of stack again

ldvirtftn instance void Counter::OnTick(class System.Object, class [mscorlib]System.EventArgs)

newobj
instance void [mscorlib]System.EventHandler::.ctor(class System.Object, int32)

stfld
class [mscorlib]System.EventHandler Counter::timerEventHandler

// start listening OnTick event

ldarg.0

ldfld
class [System.Timers]System.Timers.Timer Counter::timer

ldarg.0

ldfld
class [mscorlib]System.EventHandler Counter::timerEventHandler

call
instance void [System.Timers]System.Timers.Timer::add_Tick(class [mscorlib]System.EventHandler)

ret

}

/* start listening to the StartStopEvent

 * fired when user want to start or stop the counter */

.method virtual newslot famorassem hidebysig instance instance void SetupStartStopEvent() il managed {

.maxstack 3

// load method pointer to event handler and create delegate

ldarg.0

dup
// duplicate top of stack

ldftn
instance void Counter::OnStartStop(int32)

newobj
instance void StartStopEventHandler::.ctor(class System.Object, int32)

stfld
class StartStopEventHandler Counter::startStopEventHandler

// start listening to StartStopEvent

ldarg.0

ldfld
class IStartStopEventSource Counter::startStopEventSource

ldarg.0

ldfld
class StartStopEventHandler Counter::startStopEventHandler

callvirt instance void IStartStopEventSource::add_StartStopEvent(class StartStopEventHandler)

ret

}

/* Event handler for the StartStopEvent

 * action = 0, stop counter

 * action = 1, start counter */

.method public hidebysig instance void OnStartStop(int32 action) il managed {

ldarg
action

brtrue
start

// stop the counter

ldarg.0

call
instance void Counter::Stop()

br
done

start:

// start the counter

ldarg.0

call
instance void Counter::Start()

done:

ret

}

/* starts the counter */

.method private hidebysig instance void Start() il managed {

// refresh

ldarg.0

ldfld
class Count Counter::count

callvirt instance void Count::refresh_Count()

// check if > 0

// 0 indicates some error

ldarg.0

ldfld
class Count Counter::count

callvirt instance int32 Count::get_Count()

ldc.i4.0

ble

do_not_start

// start the timer

ldarg.0

ldfld
class [System.Timers]System.Timers.Timer Counter::timer

call
instance void [System.Timers]System.Timers.Timer::Start()

br
done

do_not_start:

// fire the TimeUpEvent to make sure all listeners are in stop state

ldarg.0

callvirt instance void Counter::fire_TimeUpEvent()

done:

ret

}

/* stops the counter */

.method private hidebysig instance void Stop() il managed {

// stop the timer

ldarg.0

ldfld
class [System.Timers]System.Timers.Timer Counter::timer

call
instance void [System.Timers]System.Timers.Timer::Stop()

ret

}

/* Event handler for the Tick event.

 * Subclasses may override event handler. */

.method virtual newslot family hidebysig instance void OnTick(class System.Object, class [mscorlib]System.EventArgs) il managed {

.maxstack 3

// subtract one from counter

ldarg.0

ldfld
class Count Counter::count

dup

callvirt instance int32 Count::get_Count()

ldc.i4.1

sub

callvirt instance void Count::set_Count(int32)

// check whether to stop

ldarg.0

ldfld
class Count Counter::count

callvirt instance int32 Count::get_Count()

ldc.i4.0

ble
time_up

br
done

time_up:

// stop timer

ldarg.0

call
instance void Counter::Stop()

ldarg.0

callvirt instance void Counter::fire_TimeUpEvent()

done:

ret

}

/*** Definition of the TimeUp event ***/

// Event is implemented using delegate TimeUpEventHandler

/* Declaration of the event */

.event TimeUpEventHandler TimeUpEvent {

.addon instance void add_TimeUp(class TimeUpEventHandler 'handler')

.removeon instance void remove_TimeUp(class TimeUpEventHandler 'handler')

.fire instance void fire_TimeUpEvent()

}

/* add a listener */

.method virtual newslot public specialname hidebysig instance void add_TimeUp(class TimeUpEventHandler 'handler') il managed {

.maxstack 4

ldarg.0

dup

ldfld
class TimeUpEventHandler Counter::timeUpEventHandler

ldarg
'handler'

call
class[mscorlib]System.Delegate [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

castclass TimeUpEventHandler

stfld
class TimeUpEventHandler Counter::timeUpEventHandler

ret

}

/* remove a listener */

.method virtual newslot public specialname hidebysig instance void remove_TimeUp(class TimeUpEventHandler 'handler') il managed {

.maxstack 4

ldarg.0

dup

ldfld
class TimeUpEventHandler Counter::timeUpEventHandler

ldarg
'handler'

call
class[mscorlib]System.Delegate [mscorlib]System.Delegate::Remove(class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

castclass TimeUpEventHandler

stfld
class TimeUpEventHandler Counter::timeUpEventHandler

ret

}

/* fire the event */

.method virtual newslot family specialname hidebysig instance void fire_TimeUpEvent() il managed {

.maxstack 3

ldarg.0

ldfld
class TimeUpEventHandler Counter::timeUpEventHandler

callvirt instance void TimeUpEventHandler::Invoke()

ret

}

/*** End of the definition of the TimeUp event ***/

} // end of class Counter

/**/

/* Class: BeepingCounter */

/**/

/* Modifies the behavior of the counter to beep every seconds and play final time up sound

 * Uses Windows DLL user32 to create the beeps. */

.class public auto autochar BeepingCounter extends Counter {

/* constructor */

.method public rtspecialname specialname hidebysig instance void .ctor(class IStartStopEventSource startStopEventSource, class Count count) il managed {

// call super constructor

ldarg.0

ldarg
startStopEventSource

ldarg
count

call
instance void Counter::.ctor(class IStartStopEventSource, class Count)

ret

}

/* Overrides Counter::OnTick.

 * Creates beeps when the tick is handled */

.method virtual family hidebysig instance void OnTick(class System.Object object, class [mscorlib]System.EventArgs eventArgs) il managed {

// super call

ldarg.0

ldarg
object

ldarg
eventArgs

call
instance void Counter::OnTick(class System.Object, class [mscorlib]System.EventArgs)

// check whether time is up and create appropriate beep

ldarg.0

dup

// for beep call

ldfld
class Count Counter::count

callvirt instance int32 Count::get_Count()

ldc.i4.0

ble

final_beep

// normal beep

ldc.i4.0

br

beep_it

final_beep:

// final beep

ldc.i4.1

beep_it:

// call the beep method

callvirt instance void BeepingCounter::Beep(bool)

ret

}

/* Uses User32 to create a beep. May be overriden by subclasses to

 * have better beeps.

 * finalBeep = 0, counter is still counting

 * finalBeep = 1, counter is done, final beep */

.method virtual newslot private hidebysig instance void Beep(bool finalBeep) il managed {

ldarg
finalBeep

brtrue
'final'

ldc.i4.0
// load value for normal beep

br
continue

'final':

ldc.i4
48
// load value for final beep

continue:

call
int8 User32::MessageBeep(unsigned int32)

pop

ret

}

} // end of class BeepingCounter

/**/

/* Class: User32 */

/**/

/* Uses PInvoke to call functionality in user32.dll.

 * (change to "user.dll" if Windows9x is used).

 * Class is abstract such that no instances can be created. All methods are static.

 * Class is sealed to prevent subtyping */

.class abstract sealed public auto autochar User32 extends [mscorlib]System.Object {

/* declaration of the method MessageBeep in user32.dll */

.method public static pinvokeimpl("user32.dll" cdecl) int8 MessageBeep(unsigned int32) native unmanaged {}

}

/**/

/* Delegate: StartStopEventHandler */

/**/

/* Defines delegate for StartStopEvent */

.class private sealed auto autochar StartStopEventHandler extends [mscorlib]System.MulticastDelegate {

.method public specialname rtspecialname hidebysig instance void .ctor(class System.Object object, int32 'method') runtime managed {}

.method virtual newslot public hidebysig instance void Invoke(int32 action) runtime managed {}

.method virtual newslot public hidebysig instance class ['mscorlib']System.IAsyncResult BeginInvoke(int32 action,

class ['mscorlib']System.AsyncCallback callback, class System.Object object) runtime managed {}

.method virtual newslot public hidebysig instance void EndInvoke(class ['mscorlib']System.IAsyncResult result) runtime managed {}

} // end of delegate StartStopEventHandler

/**/

/* Delegate: TimeUpHandler */

/**/

/* Defines delegate for TimeUpEvent */

.class private sealed auto autochar TimeUpEventHandler extends [mscorlib]System.MulticastDelegate {

.method public specialname rtspecialname hidebysig instance void .ctor(class System.Object object, int32 'method') runtime managed {}

.method virtual newslot public hidebysig instance void Invoke() runtime managed {}

.method virtual newslot public newslot hidebysig instance class ['mscorlib']System.IAsyncResult BeginInvoke(

class ['mscorlib']System.AsyncCallback callback, class System.Object object) runtime managed {}

.method virtual newslot public hidebysig instance void EndInvoke(class ['mscorlib']System.IAsyncResult result) runtime managed {}

} // end of delegate TimeUpEventHandler

19.3.4 CountDownSecondsLabel.cs

using System.WinForms;

using System.Drawing;

/* Represents a label that displays the text "Seconds left" */

class SecondsLabel : System.WinForms.Label {

/* constructor */

internal SecondsLabel(System.WinForms.Form parent) {

Initialize();

// add to form

parent.Controls.Add(this);

}

/* initializes this label */

private void Initialize() {

// set the position

Location = new Point(200,100);

// set anchor

Anchor = System.WinForms.AnchorStyles.TopBottom;

// set the size of the label

Size = new Size(200,30);

// set the color

ForeColor = System.Drawing.Color.DarkRed;

// set the font height

Font = new System.Drawing.Font("Verdana",15);

// set the text of the label

Text = "Seconds left";

}

}

19.3.5 CountDownErrorLabel.cs

using System.WinForms;

using System.Drawing;

/* Label that shows errpr message at top of window in big, red characters */

class ErrorLabel : System.WinForms.Label {

/* constructor */

internal ErrorLabel(System.WinForms.Form parent) {

Initialize();

// add to form

parent.Controls.Add(this);

}

/* initializes this label */

private void Initialize() {

// set the position

Location = new Point(10,25);

// set anchor

Anchor = System.WinForms.AnchorStyles.TopBottom;

// set the size of the label

Size = new Size(400,50);

// set the color

ForeColor = System.Drawing.Color.Red;

// set the font height

Font = new System.Drawing.Font("Arial Black",20);

// set the text of the label

Text = "";

}

}

19.3.6 CountDownErrorLabel.cpp

#using <mscorlib.dll>

#using <System.dll>

#using <System.WinForms.dll>

#using <System.Drawing.dll>

#using <Microsoft.Win32.Interop.dll>

/* Label that shows errpr message at top of window in big, red characters

 __gc declares that instances of the class will be garbage collected */

__gc public class ErrorLabel : public System::WinForms::Label {

public:

/* constructor */

ErrorLabel(System::WinForms::Form* parent) : System::WinForms::Label() {

Initialize();

// add to form

parent->get_Controls()->Add(this);

}

private:

/* initializes this label */

virtual void Initialize() {

// set position

set_Location(System::Drawing::Point(10,25));

// set anchor

set_Anchor(System::WinForms::AnchorStyles::TopBottom);

// set the size of the label

set_Size(System::Drawing::Size(400,50));

// set the color

set_ForeColor(System::Drawing::Color::get_Red());

// set the font height

set_Font(new System::Drawing::Font("Arial Black",20));

// set the text of the label

set_Text("");

}

};

19.3.7 compile.bat

@echo off

csc /t:module CountDownSecondsLabel.cs /r:System.dll /r:System.WinForms.dll /r:System.Drawing.dll /r:Microsoft.Win32.Interop.dll

rem if C++ is specified, create C++ DLL, otherwise create C# DLL

if "C++"=="%1" (cl /CLR /LD CountDownErrorLabel.cpp /link /OUT:CountDownErrorLabel.dll) else (csc /t:module CountDownErrorLabel.cs /r:System.dll /r:System.WinForms.dll /r:System.Drawing.dll /r:Microsoft.Win32.Interop.dll)

ilasm Counter.il /dll

ilasm CountDownComponents.il /dll

ilasm CountDown.il

20 Appendix B: List of ILASM Keywords

This appendix presents all keywords of the IL assembler ilasm. Note that ILASM is case-sensitive.

Note: The assembler is case sensitive.

	.addon

	.algorithm

	.assembly

	.backing

	.blob

	.capability

	.cctor

	.class

	.comtype

	.corflags

	.ctor

	.custom

	.data

	.data

	.emitbyte

	.entrypoint

	.event

	.field

	.fire

	.get

	.hash

	.implicitcom

	.line

	.locale

	.locals

	.manifestres

	.maxstack

	.method

	.module

	.namespace

	.originator

	.os

	.other

	.override

	.pack

	.param

	.permission

	.processor

	.property

	.removeon

	.set

	.size

	.subsystem

	.title

	.try

	.ver

	.vtable

	.vtentry

	.vtfixup

	.zeroinit

	#line

	abstract

	add

	add.ovf

	add.ovf.un

	and

	ann.arg

	ann.call

	ann.catch

	ann.data

	ann.data.s

	ann.dead

	ann.def

	ann.hoisted

	ann.hoisted_call

	ann.lab

	ann.live

	ann.phi

	ann.ref

	ann.ref.s

	ansi

	any

	arglist

	array

	as

	assembly

	assert

	at

	auto

	autochar

	beq

	beq.s

	bge

	bge.s

	bge.un

	bge.un.s

	bgt

	bgt.s

	bgt.un

	bgt.un.s

	ble

	ble.s

	ble.un

	ble.un.s

	blob

	blt

	blt.s

	blt.un

	blt.un.s

	bne.un

	bne.un.s

	bool

	box

	br

	br.s

	break

	brfalse

	brfalse.s

	brtrue

	brtrue.s

	bstr

	bytearray

	byvalstr

	call

	calli

	callvirt

	castclass

	catch

	cdecl

	cdecl

	ceq

	cf

	cgt

	cgt.un

	char

	ckfinite

	class

	clsid

	clt

	clt.un

	const

	conv.i

	conv.i1

	conv.i2

	conv.i4

	conv.i8

	conv.ovf.i

	conv.ovf.i.un

	conv.ovf.i1

	conv.ovf.i1.un

	conv.ovf.i2

	conv.ovf.i2.un

	conv.ovf.i4

	conv.ovf.i4.un

	conv.ovf.i8

	conv.ovf.i8.un

	conv.ovf.u

	conv.ovf.u.un

	conv.ovf.u1

	conv.ovf.u1.un

	conv.ovf.u2

	conv.ovf.u2.un

	conv.ovf.u4

	conv.ovf.u4.un

	conv.ovf.u8

	conv.ovf.u8.un

	conv.r.un

	conv.r4

	conv.r8

	conv.u

	conv.u1

	conv.u2

	conv.u4

	conv.u8

	cpblk

	cpobj

	currency

	decimal

	default

	demand

	deny

	div

	div.un

	dup

	endfilter

	endfinally

	enum

	error

	explicit

	extends

	famandassem

	family

	famorassem

	fastcall

	fastcall

	fault

	file

	filetime

	filter

	finally

	finaly

	float

	float32

	float64

	forwardref

	fromunmanaged

	fullorigin

	handler

	hidebysig

	hresult

	idispatch

	il

	implements

	implicitres

	import

	import

	in

	inheritcheck

	init

	initblk

	initobj

	initonly

	instance

	int

	int16

	int32

	int64

	int8

	interface

	internalcall

	isinst

	iunkown

	jmp

	jmpi

	lateinit

	lcid

	ldarg

	ldarg.0

	ldarg.1

	ldarg.2

	ldarg.3

	ldarg.s

	ldarga

	ldarga.s

	ldc.i4

	ldc.i4.0

	ldc.i4.1

	ldc.i4.2

	ldc.i4.3

	ldc.i4.4

	ldc.i4.5

	ldc.i4.6

	ldc.i4.7

	ldc.i4.8

	ldc.i4.m1

	ldc.i4.s

	ldc.i8

	ldc.r4

	ldc.r8

	ldelem.i

	ldelem.i1

	ldelem.i2

	ldelem.i4

	ldelem.i8

	ldelem.r4

	ldelem.r8

	ldelem.ref

	ldelem.u1

	ldelem.u2

	ldelema

	ldfld

	ldflda

	ldftn

	ldind.i

	ldind.i1

	ldind.i2

	ldind.i4

	ldind.i8

	ldind.r4

	ldind.r8

	ldind.ref

	ldind.u1

	ldind.u2

	ldlen

	ldloc

	ldloc.0

	ldloc.1

	ldloc.2

	ldloc.3

	ldloc.s

	ldloca

	ldloca.s

	ldnull

	ldobj

	ldsfld

	ldsflda

	ldstr

	ldtoken

	ldvirtftn

	leave

	leave.s

	linkcheck

	literal

	localloc

	lpstr

	lpstruct

	lptstr

	lpvoid

	lpwstr

	managed

	marshal

	method

	mkrefany

	modopt

	modreq

	mul

	mul.ovf

	mul.ovf.un

	native

	neg

	nested

	newarr

	newobj

	newslot

	noappdomain

	noinlining

	nomachine

	nomangle

	nometadata

	nop

	noprocess

	not

	not_in_gc_heap

	notserialized

	null

	objectref

	ole

	opt

	optil

	or

	out

	permitonly

	pinbokeimpl

	pinned

	pop

	prejitdeny

	prejitgrant

	private

	privatescope

	public

	record

	refanytype

	refanyval

	rem

	rem.un

	reqmin

	reqopt

	reqrefuse

	request

	ret

	rethrow

	retval

	rtspecialname

	runtime

	safearray

	sealed

	sequential

	serializable

	shl

	shr

	shr.un

	sizeof

	specialname

	starg

	starg.s

	static

	stdcall

	stdcall

	stelem.i

	stelem.i1

	stelem.i2

	stelem.i4

	stelem.i8

	stelem.r4

	stelem.r8

	stelem.ref

	stfld

	stind.i

	stind.i1

	stind.i2

	stind.i4

	stind.i8

	stind.r4

	stind.r8

	stind.ref

	stloc

	stloc.0

	stloc.1

	stloc.2

	stloc.3

	stloc.s

	stobj

	storage

	stream

	struct

	stsfld

	sub

	sub.ovf

	sub.ovf.un

	switch

	synchronized

	syschar

	sysstring

	tail.

	tbstr

	thiscall

	thiscall

	throw

	tls

	to

	typedref

	unaligned.

	unbox

	unicode

	unmanaged

	unmanagedexp

	unsigned

	value

	vararg

	variant

	vector

	virtual

	void

	volatile.

	wchar

	winapi

	with

	xor

21 Appendix C: ILASM Complete Grammar

21.1 Assembler Grammar

The input file to the assembler must be considered legal according to the grammar for <IL File> given here. Items in bold face are lexical tokens to be typed exactly as specified here.

IL assembler is a case-sensitive language, like C/C++. It means that all keywords, instructions, and other lexical tokens are to be used exactly as specified here (e.g., .class, not .Class). The names of classes, methods, fields, etc. are also case-sensitive.

The syntactic classes below are sorted in alphabetical order (case-insensitive).

This section is a hand-edited version of the automatically generated grammar that is available in the SDK as asmparse.grammar. While this grammar was accurate at the time it was written, the file in the SDK is created automatically and is accurate for every drop of the runtime.

	<2bitNumSuffix> ::=
	Section

	 0
	18.1

	| 1
	18.1

	| 2
	18.1

	| 3
	18.1

	<accessibility> ::=
	Section

	 assembly
	6.3

	| family
	6.3

	| famandassem
	6.3

	| famorassem
	6.3

	| private
	6.3

	| privatescope
	6.3

	| public
	6.3

	<asmAttr> ::=
	Section

	 implicitcom
	4.3

	| noappdomain
	4.3

	| nomachine
	4.3

	| noprocess
	4.3

	<asmDecl> ::=
	Section

	 .hash algorithm <int32>
	4.3.1

	| .title <QSTRING> [(<QSTRING>)]
	4.3.1

	| .custom <customDecl>
	17

	| .locale = (<bytes>)
	4.3.2

	| .locale <QSTRING>
	4.3.2

	| .originator = (<bytes>)
	4.3.2

	| .os <int32> .ver <int32> : <int32>
	4.3.2

	| .processor <int32>
	4.3.2

	| .ver <int32> : <int32> : <int32> : <int32>
	4.3.2

	<asmRefDecl> ::=
	Section

	 .hash = (<bytes>)
	4.4

	| .custom <customDecl>
	17

	| .locale = (<bytes>)
	4.4

	| .locale <QSTRING>
	4.4

	| .originator = (<bytes>)
	4.4

	| .os <int32> .ver <int32> : <int32>
	4.4

	| .processor <int32>
	4.4

	| .ver <int32> : <int32> : <int32> : <int32>
	4.4

	<assemblyRefName> ::=
	Section

	 <dottedname>
	3.3

	<bound> ::=
	Section

	 ...
	10.1.2.1

	| <int32>
	10.1.2.1

	| <int32> ...
	10.1.2.1

	| <int32> ... <int32>
	10.1.2.1

	<bytes> ::=
	Section

	 <hexbyte> [<hexbyte>*]
	3.5

	<callConv> ::=
	Section

	 [instance [explicit]] [<callKind>]
	11.4.1

	<callKind> ::=
	Section

	 default
	11.4.2

	| unmanaged cdecl
	11.4.2

	| unmanaged fastcall
	11.4.2

	| unmanaged stdcall
	11.4.2

	| unmanaged thiscall
	11.4.2

	| vararg
	11.4.2

	<classAttr> ::=
	Section

	 abstract
	7.4.2

	| ansi
	7.4.2

	| auto
	7.4.2

	| autochar
	7.4.2

	| explicit
	7.4.2

	| import
	7.4.2

	| interface
	7.4.2

	| lateinit
	7.4.2

	| nested assembly
	7.4.2

	| nested famandassem
	7.4.2

	| nested family
	7.4.2

	| nested famorassem
	7.4.2

	| nested private
	7.4.2

	| nested public
	7.4.2

	| not_in_gc_heap
	7.4.2

	| private
	7.4.2

	| public
	7.4.2

	| rtspecialname
	7.4.2

	| sealed
	7.4.2

	| sequential
	7.4.2

	| serializable
	7.4.2

	| specialname
	7.4.2

	| unicode
	7.4.2

	| value
	7.4.2

	<classHead> ::=
	Section

	 <classAttr>* <id> [extends <typeReference>] [implements <typeReference> [, <typeReference>]*]
	7.2

	<classMember> ::=
	Section

	 .class <classHead> { <classMember>* }
	7.5

	| .comtype <comtypeHead> { <comtypeDecl>* } /* for round trip only */
	7.5

	| .custom <customDecl>
	17

	| .data <datadecl>
	7.5

	| .event <eventHead> { <eventMember>* }
	7.5

	| .export [public | private] <dottedname> { <exportDecl>* }
	4.8

	| .field <fieldDecl>
	7.5

	| .method <methodHead> { <methodBodyItem>* }
	7.5

	| .override <typeSpec> :: <methodName> with <callConv> <type> <typeSpec> :: <methodName> (<parameters>)
	7.5

	| .pack <int32>
	7.5

	| .property <propHead> { <propMember>* }
	7.5

	| .size <int32>
	7.5

	| <externSourceDecl>
	3.7

	| <securityDecl>
	16

	<codeLabel> ::=
	Section

	 <label> :
	3.4

	<comtAttr> ::=
	Section

	 nested assembly
	6.3

	| nested famandassem
	6.3

	| nested family
	6.3

	| nested famorassem
	6.3

	| nested private
	6.3

	| nested public
	6.3

	| private
	6.3

	| public
	6.3

	<comtypeDecl> ::=
	Section

	 .assembly extern <dottedname>
	4.4

	| .class int32
	-

	| .comtype <dottedname>
	-

	| .custom <customDecl>
	17

	| .exeloc <dottedname>
	-

	| .file <dottedname>
	-

	<comtypeHead> ::=
	Section

	 <comtAttr>* <dottedname> (<QSTRING>)
	-

	<constNumSuffix> ::=
	Section

	 4
	18.1

	| 5
	18.1

	| 6
	18.1

	| 7
	18.1

	| 8
	18.1

	| M1
	18.1

	| m1
	18.1

	| <2bitNumSuffix>
	18.1

	<customAttrType> ::=
	Section

	 <callConv> <type> [<typeSpec> ::] <methodName>

 (<parameters>)
	17

	| <typeSpec>
	17

	<customDecl> ::=
	Section

	 <customAttrType> [= (<bytes>) | = <QSTRING>]
	17

	<dataDecl> ::=
	Section

	 [tls] [<dataLabel> =] <ddBody>
	12.3.1

	<ddBody> ::=
	Section

	 <ddItem>
	12.3.1

	| { <ddItemList> }
	12.3.1

	<ddItem> ::=
	Section

	 & (<id>)
	12.3.1

	| bytearray (<bytes>)
	12.3.1

	| char * (<QSTRING>)
	12.3.1

	| float32 [(<float64>)] [[<int32>]]
	12.3.1

	| float64 [(<float64>)] [[<int32>]]
	12.3.1

	| int8 [(<int8>)] [[<int32>]]
	12.3.1

	| int16 [(<int16>)] [[<int32>]]
	12.3.1

	| int32 [(<int32>)] [[<int32>]]
	12.3.1

	| int64 [(<int64>)] [[<int32>]]
	12.3.1

	| wchar * (<QSTRING>)
	12.3.1

	<ddItemList> ::=
	Section

	 <ddItem> [, <ddItemList>]
	12.3.1

	<dataLabel> ::=
	Section

	 <label>
	3.4

	<decl> ::=
	Section

	 .assembly <asmAttr>* <dottedname> { <asmDecl>* }
	4.2

	| .assembly extern [fullorigin] <dottedname> { <asmRefDecl>* }
	4.2

	| .class <classHead> { <classMember>* }
	4.2

	| .comtype <comtypeHead> { <comtypeDecl>* }
	4.2

	| .corflags int32
	4.2

	| .custom <customDecl>
	4.2

	| .data <datadecl>
	4.2

	| .export [<exportAttr*>] <dottedname> { <exportDecl>* }
	4.2

	| .field <fieldDecl>
	4.2

	| .file [nometadata] <filename> [.hash = (<bytes>)]
	4.2

	| .manifestres [public | private] <dottedname>

 [(<QSTRING>)] { <manResDecl>* }
	4.2

	| .method <methodHead> { <methodBodyItem>* }
	4.2

	| .module [<filename>]
	4.2

	| .module extern <filename>
	4.2

	| .namespace <dottedname> { <decl>* }
	4.2

	| .subsystem int32
	4.2

	| .vtfixup <vtfixupDecl>
	4.2

	| <externSourceDecl>
	4.2

	| <securityDecl>
	4.2

	<dottedname> ::=
	Section

	 <id> [. <id>]*
	3.3

	<eventHead> ::=
	Section

	 [specialname] [rtspecialname] [<typeSpec>] <id>
	14.3.1

	<eventMember> ::=
	Section

	 .addon <callConv> <type> [<typeSpec> ::] <methodName>
 (<parameters>)
	14.3.2

	| .custom <customDecl>
	17

	| .fire <callConv> <type> [<typeSpec> ::] <methodName>
 (<parameters>)
	14.3.2

	| .other <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
	14.3.2

	| .removeon <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
	14.3.2

	| <externSourceDecl>
	3.7

	<exportAttr> ::=
	Section

	 nested assembly
	4.8

	| nested famandassem
	4.8

	| nested family
	4.8

	| nested famorassem
	4.8

	| nested private
	4.8

	| nested public
	4.8

	| public
	4.8

	<exportDecl> ::=
	Section

	 .class <int32>
	4.8

	| .custom <customDecl>
	4.8

	| .file <dottedname>
	4.8

	| .nestedtype <dottedname>
	4.8

	<externSourceDecl> ::=
	Section

	 .line <int32> [<SQSTRING>]
	3.7

	| #line <int32> <QSTRING>
	3.7

	<exTypeSuffix> ::=
	Section

	 <typeSuffix>
	18.1

	| u
	18.1

	| u1
	18.1

	| u2
	18.1

	| u4
	18.1

	| u8
	18.1

	<fieldAttr> ::=
	Section

	 assembly
	12.1

	| famandassem
	12.1

	| family
	12.1

	| famorassem
	12.1

	| initonly
	12.1

	| literal
	12.1

	| marshal ([<nativeType>])
	12.1

	| notserialized
	12.1

	| private
	12.1

	| privatescope
	12.1

	| public
	12.1

	| rtspecialname
	12.1

	| specialname
	12.1

	| static
	12.1

	<fieldDecl> ::=
	Section

	 [[<int32>]] <fieldAttr>* <type> <id>

 [= <fieldInit> | at <dataLabel>]
	12

	<fieldInit> ::=
	Section

	 bytearray (<bytes>)
	12.2

	| float32 (<float64>)
	12.2

	| float32 (<int32>)
	12.2

	| float64 (<float64>)
	12.2

	| float64 (<int64>)
	12.2

	| int8 (<int8>)
	12.2

	| int16 (<int16>)
	12.2

	| int32 (<int32>)
	12.2

	| int64 (<int64>)
	12.2

	| <QSTRING>
	12.2

	| wchar * (<QSTRING>)
	12.2

	<filename> ::=
	Section

	 <dottedname>
	3.8

	<float64> ::=
	Section

	 float32 (<int32>)
	
3.6

	| float64 (<int64>)
	
3.6

	| <realnumber>
	
3.6

	<handlerBlock> ::=
	Section

	 handler <int32> to <int32> /* For round trip use only */
	15.1.2

	| handler <label> to <label>
	15.1.2

	| <scopeBlock>
	15.1.2

	<id> ::=
	Section

	 <ID>
	3.3

	| <SQSTRING>
	3.3

	<IL file> ::= <decl>*

	<implAttr> ::=
	Section

	 forwardref
	11.5.5

	| il
	11.5.5

	| internalcall
	11.5.5

	| managed
	11.5.5

	| native
	11.5.5

	| noinlining
	11.5.5

	| ole
	11.5.5

	| optil
	11.5.5

	| runtime
	11.5.5

	| synchronized
	11.5.5

	| unmanaged
	11.5.5

	<instr> ::=
	Section

	 <instruction>[.ovf][.un]
	18.1

	| <prefixInstruction>
	18.1

	<label> ::=
	Section

	 <id>
	3.4

	
	

	<labeloroffset> ::=
	Section

	 <int32> /* For round trip use only */
	3.4

	| <label>
	3.4

	<labels> ::=
	Section

	 <labeloroffset> [, <labeloroffset>]*
	3.4

	<local> ::=
	Section

	 [[<int32>]] <type> [<id>]
	11.5.3.3

	<localsSignature> ::=
	Section

	 <local> [, <local>]*
	11.5.3.3

	<manResDecl> ::=
	Section

	 .assembly extern <dottedname>
	4.3.3

	| .custom <customDecl>
	17

	| .file <dottedname> at <int32>
	4.3.3

	<methAttr> ::=
	Section

	 abstract
	11.5.4

	| assembly
	11.5.4

	| famandassem
	11.5.4

	| family
	11.5.4

	| famorassem
	11.5.4

	| final
	11.5.4

	| hidebysig
	11.5.4

	| newslot
	11.5.4

	| pinvokeimpl (<QSTRING> [as <QSTRING>] <pinvAttr>*)
	11.5.4

	| private
	11.5.4

	| privatescope
	11.5.4

	| public
	11.5.4

	| rtspecialname
	11.5.4

	| specialname
	11.5.4

	| static
	11.5.4

	| unmanagedexp
	11.5.4

	| virtual
	11.5.4

	<methodBodyItem> ::=
	Section

	 .custom <customDecl>
	17

	| .data <datadecl>
	11.5.3

	| .emitbyte < unsigned int8>
	11.5.3

	| .entrypoint
	11.5.3

	| .locals [init] (<localsSignature>)
	11.5.3

	| .maxstack <int32>
	11.5.3

	| .override <typeSpec>::<methodName>
	11.5.3

	| .param [<int32>] [= <fieldInit>]
	11.5.3

	| .vtentry <int32> : <int32>
	11.5.3

	| .zeroinit
	11.5.3

	| <externSourceDecl>
	11.5.3

	| <instr>
	11.5.3

	| <codeLabel>
	11.5.3

	| <scopeBlock>
	11.5.3

	| <securityDecl>
	11.5.3

	| <sehBlock>
	11.5.3

	<methodHead> ::=
	Section

	 <methAttr>* [<callConv>] [<paramAttr>*] <type>

 [marshal ([<nativeType>])] <methodName>

 (<parameters>) <implAttr>*
	11.5.1

	<methodName> ::=
	Section

	 .cctor
	11.5.1.1

	| .ctor
	11.5.1.1

	| <dottedname>
	11.5.1.1

	<nameValPair> ::=
	Section

	 <SQSTRING> = <SQSTRING>
	16

	<nameValPairs> ::=
	Section

	 <nameValPair> [, <nameValPair>]*
	16

	<nativeType> ::=
	Section

	 []
	5.7

	| as any
	5.7

	| bool
	5.7

	| [ansi] bstr
	5.7

	| byvalstr
	5.7

	| custom (<QSTRING> , <QSTRING>)
	5.7

	| error
	5.7

	| fixed array [int32]
	5.7

	| fixed sysstring [int32]
	5.7

	| float
	5.7

	| float32
	5.7

	| float64
	5.7

	| [unsigned] int
	5.7

	| [unsigned] int8
	5.7

	| [unsigned] int16
	5.7

	| [unsigned] int32
	5.7

	| [unsigned] int64
	5.7

	| interface
	5.7

	| lpstr
	5.7

	| lpstruct
	5.7

	| lptstr
	5.7

	| lpvoid
	5.7

	| lpwstr
	5.7

	| method
	5.7

	| <nativeType> *
	5.7

	| <nativeType> []
	5.7

	| <nativeType> [int32]
	5.7

	| <nativeType> [.size .param = int32 [* int32]]
	5.7

	| safearray <variantType>
	5.7

	| struct
	5.7

	| tbstr
	5.7

	| variant bool
	5.7

	<param> ::=
	Section

	 ...
	11.5.2

	| [<paramAttr>*] <type> [marshal ([<nativeType>])] [<id>]
	11.5.2

	<paramAttr> ::=
	Section

	 [in]
	11.5.2

	| [lcid]
	11.5.2

	| [opt]
	11.5.2

	| [out]
	11.5.2

	| [retval]
	11.5.2

	<pinvAttr> ::=
	Section

	 ansi
	11.6.1.1

	| autochar
	11.6.1.1

	| cdecl
	11.6.1.1

	| fastcall
	11.6.1.1

	| lasterr
	11.6.1.1

	| nomangle
	11.6.1.1

	| ole
	11.6.1.1

	| stdcall
	11.6.1.1

	| thiscall
	11.6.1.1

	| unicode
	11.6.1.1

	| winapi
	11.6.1.1

	<propHead> ::=
	Section

	 [specialname|rtspecialname]* <callConv> <type> <id>
 (<parameters>)
	13.1.1

	<propMember> ::=
	Section

	 .backing <type> <id>
	13.1.2

	| .custom <customDecl>
	17

	| .get <callConv> <type> [<typeSpec> ::] <methodName>
 (<parameters>)
	13.1.2

	| .other <callConv> <type> [<typeSpec> ::] <methodName>
 (<parameters>)
	13.1.2

	| .set <callConv> <type> [<typeSpec> ::] <methodName>
 (<parameters>)
	13.1.2

	| <externSourceDecl>
	3.7

	<refTypeReference> ::=
	Section

	 class <typeReference>
	7.2

	<resolutionScope> ::=
	Section

	 [.module <filename>]
	5.5

	| [<assemblyRefName>]
	5.5

	<scopeBlock> ::=
	Section

	 { <methodBodyItem>* }
	11.5.6

	<secAction> ::=
	Section

	 assert
	16

	| demand
	16

	| deny
	16

	| inheritcheck
	16

	| linkcheck
	16

	| permitonly
	16

	| prejitdeny
	16

	| prejitgrant
	16

	| reqmin
	16

	| reqopt
	16

	| reqrefuse
	16

	| request
	16

	<securityDecl> ::=
	Section

	 .capability <secAction> = (<bytes>)
	16

	| .capability <secAction> <SQSTRING>
	16

	| .permission <secAction> <typeReference> (<nameValPairs>)
	16

	<sehBlock> ::=
	Section

	 <tryBlock> <sehClause> [<sehClause>*]
	15.1

	<sehClause> ::=
	Section

	 catch <typeReference> <handlerBlock>
	15.1.2

	| fault <handlerBlock>
	15.1.2

	| filter <int32> <handlerBlock>
	15.1.2

	| filter <label> <handlerBlock>
	15.1.2

	| finally <handlerBlock>
	15.1.2

	<parameters> ::=
	Section

	 [<param> [, <param>]*]
	11.5.2

	<tryBlock> ::=
	Section

	 .try <int32> to <int32> /* For round trip use only */
	15.1.1

	| .try <label> to <label>
	15.1.1

	| .try <scopeBlock>
	15.1.1

	<type> ::=
	Section

	 bool
	5.3

	| char
	5.3

	| class <typeReference>
	5.3

	| float32
	5.3

	| float64
	5.3

	| int8
	5.3

	| int16
	5.3

	| int32
	5.3

	| int64
	5.3

	| method <callConv> <type> * (<parameters>)
	10.4

	| native float
	5.3

	| native int
	5.3

	| native unsigned int
	5.3

	| <type> &
	10.3

	| <type> *
	10.3

	| <type> [[<bound> [,<bound>]*]]
	5.3

	| <type> modopt (<typeReference>)
	5.3

	| <type> modreq (<typeReference>)
	5.3

	| <type> pinned
	5.3

	| typedref
	5.3

	| value class <typeReference>
	5.3

	| unsigned int8
	5.3

	| unsigned int16
	5.3

	| unsigned int32
	5.3

	| unsigned int64
	5.3

	| void
	5.3

	| wchar
	5.3

	<typeReference> ::=
	Section

	 [<resolutionScope>] <dottedname> [/ <dottedname>]*
	5.5

	<typeSpec> ::=
	Section

	 [[.module] <dottedname>]
	5.3

	| <typeReference>
	5.3

	| <type>
	5.3

	<typeSuffix> ::=
	Section

	 i
	18.1

	| i1
	18.1

	| i2
	18.1

	| i4
	18.1

	| i8
	18.1

	| r4
	18.1

	| r8
	18.1

	| ref
	18.1

	<valueTypeReference> ::=
	Section

	 value class <typeReference>
	9.1

	<variantType> ::=
	Section

	 blob /* for roundtrip only */
	5.7

	| blob_object /* for roundtrip only */
	5.7

	| bstr
	5.7

	| bool
	5.7

	| carray /* for roundtrip only */
	5.7

	| cf /* for roundtrip only */
	5.7

	| clsid /* for roundtrip only */
	5.7

	| currency
	5.7

	| date
	5.7

	| decimal
	5.7

	| error
	5.7

	| filetime /* for roundtrip only */
	5.7

	| float32
	5.7

	| float64
	5.7

	| hresult /* for roundtrip only */
	5.7

	| idispatch *
	5.7

	| [unsigned] int /* for roundtrip only */
	5.7

	| [unsigned] int8
	5.7

	| [unsigned] int16
	5.7

	| [unsigned] int32
	5.7

	| [unsigned] int64 /* for roundtrip only */
	5.7

	| iunknown *
	5.7

	| lpstr /* for roundtrip only */
	5.7

	| lpwstr /* for roundtrip only */
	5.7

	| null /* for roundtrip only */
	5.7

	| record
	5.7

	| safearray /* for roundtrip only */
	5.7

	| storage /* for roundtrip only */
	5.7

	| stored_object /* for roundtrip only */
	5.7

	| stream /* for roundtrip only */
	5.7

	| streamed_object /* for roundtrip only */
	5.7

	| userdefined /* for roundtrip only */
	5.7

	| variant *
	5.7

	| <variantType> &
	5.7

	| <variantType> []
	5.7

	| <variantType> vector
	5.7

	<vtfixupAttr> ::=
	Section

	 fromunmanaged
	7.8.2

	| int32
	7.8.2

	| int64
	7.8.2

	<vtfixupDecl> ::=
	Section

	 [<int32>] <vtfixupAttr>* at <dataLabel>
	7.8.2

21.2 Instruction syntax

21.2.1 Comments

The assembler supports both single line comments (started with “//”) and multi-line comments (started with “/*” and ending with “*/”).

21.2.2 Labels

A label is specified by a string of characters (technically, an <ID>) followed by a colon. For example:

 ldc.i4 1

mylabel:

 ldc.i4 2

 br.1 mylabel

Forward branches are allowed.

21.2.3 Full Grammar for Instructions

The remainder of this section describes all of the instruction formats supported by the assembler. The full syntax is here, and each individual instruction format is described in subsequent sections. Instruction names are case-sensitive.

While each section specifies the exact list of instructions that are included in a grammar class, this information is subject to change over time. The precise format of an instruction can be determined can be found by combining the information in the file opcode.def (in the SDK) with the information in the following table:

	Grammar Class
	Format(s) Specified in opcode.def

	<instr_brtarget>
	InlineBrTarget, ShortInlineBrTarget

	<instr_field>
	InlineField

	<instr_i>
	InlineI, ShortInlineI

	<instr_i8>
	InlineI8

	<instr_method>
	InlineMethod

	<instr_none>
	InlineNone

	<instr_phi>
	InlinePhi

	<instr_r>
	InlineR, ShortInlineR

	<instr_rva>
	InlineRVA

	<instr_sig>
	InlineSig

	<instr_string>
	InlineString

	<instr_switch>
	InlineSwitch

	<instr_tok>
	InlineTok

	<instr_type>
	InlineType

	<instr_var>
	InlineVar, ShortInlineVar

<instr> ::=

 <instr_brtarget> <int32>

 | <instr_brtarget> <label>

 | <instr_field> <type> [<typeSpec> ::] <id>

 | <instr_i> <int32>

 | <instr_i8> <int64>

 | <instr_method>

 <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
 | <instr_none>

 | <instr_phi> <int16>*

 | <instr_r> (<bytes>)
// <bytes> represent the binary image of

// float or double (4 or 8 bytes, respectively)
 | <instr_r> <float64>

 | <instr_r> <int64>
// integer is converted to float with possible

// loss of precision
 | <instr_sig> <callConv> <type> (<parameters>)

 | <instr_string> bytearray (<bytes>)

 | <instr_string> <QSTRING>

 | <instr_switch> (<labels>)
 | <instr_tok> field <type> [<typeSpec> ::] <id>

 | <instr_tok> method

 <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)
 | <instr_tok> <typeSpec>

 | <instr_type> <typeSpec>

 | <instr_var> <int32>

 | <instr_var> <localname>

21.2.4 Instructions with no operand

These instructions require no operands, so they simply appear by themselves.

<instr> ::= <instr_none>

<instr_none> ::= // Derived from opcode.def
add | add.ovf | add.ovf.un | and |

ann.catch | ann.def | ann.hoisted | ann.lab |

arglist | break | ceq | cgt |

cgt.un | ckfinite | clt | clt.un |

conv.i | conv.i1 | conv.i2 | conv.i4 |

conv.i8 | conv.ovf.i | conv.ovf.i.un | conv.ovf.i1 |

conv.ovf.i1.un | conv.ovf.i2 | conv.ovf.i2.un | conv.ovf.i4 |

conv.ovf.i4.un | conv.ovf.i8 | conv.ovf.i8.un | conv.ovf.u |

conv.ovf.u.un | conv.ovf.u1 | conv.ovf.u1.un | conv.ovf.u2 |

conv.ovf.u2.un | conv.ovf.u4 | conv.ovf.u4.un | conv.ovf.u8 |

conv.ovf.u8.un | conv.r.un | conv.r4 | conv.r8 |

 conv.u | conv.u1 | conv.u2 | conv.u4 |

 conv.u8 | cpblk | div | div.un |

 dup | endfault | endfilter | endfinally |

 initblk | jmpi | ldarg.0 | ldarg.1 |

 ldarg.2 | ldarg.3 | ldc.i4.0 | ldc.i4.1 |

 ldc.i4.2 | ldc.i4.3 | ldc.i4.4 | ldc.i4.5 |

 ldc.i4.6 | ldc.i4.7 | ldc.i4.8 | ldc.i4.M1 |

 ldelem.i | ldelem.i1 | ldelem.i2 | ldelem.i4 |

 ldelem.i8 | ldelem.r4 | ldelem.r8 | ldelem.ref |

 ldelem.u1 | ldelem.u2 | ldelem.u4 | ldind.i |

 ldind.i1 | ldind.i2 | ldind.i4 | ldind.i8 |

 ldind.r4 | ldind.r8 | ldind.ref | ldind.u1 |

 ldind.u2 | ldind.u4 | ldlen | ldloc.0 |

 ldloc.1 | ldloc.2 | ldloc.3 | ldnull |

 localloc | mul | mul.ovf | mul.ovf.un |

 neg | nop | not | or |

 pop | refanytype | rem | rem.un |

 ret | rethrow | shl | shr |

 shr.un | stelem.i | stelem.i1 | stelem.i2 |

 stelem.i4 | stelem.i8 | stelem.r4 | stelem.r8 |

 stelem.ref | stind.i | stind.i1 | stind.i2 |

 stind.i4 | stind.i8 | stind.r4 | stind.r8 |

 stind.ref | stloc.0 | stloc.1 | stloc.2 |

 stloc.3 | sub | sub.ovf | sub.ovf.un |

 tail. | throw | volatile. | xor

Examples:

ldlen

not

21.2.5 Instructions that Refer to Parameters or Local Variables

These instructions take one operand, which references a parameter or local variable of the current method. The variable can be referenced by its number (starting with variable 0) or by name (if the names are supplied as part of a signature using the form that supplies both a type and a name).

<instr> ::= <instr_var> <int32> |

 <instr_var> <localname>

<instr_var> ::= // Derived from opcode.def
ann.dead | ann.live | ann.ref

ann.ref.s | ldarg | ldarg.s | ldarga

ldarga.s | ldloc | ldloc.s | ldloca

ldloca.s | starg | starg.s | stloc

stloc.s

Examples:

stloc 0 // store into 0th local
ldarg X3 // load from argument named X3

21.2.6 Instructions that Take a Single 32-bit Integer Argument

These instructions take one operand, which must be a 32-bit integer.

<instr> ::= <instr_i> <int32>

<instr_i> ::= // Derived from opcode.def
ldc.i4 | ldc.i4.s | unaligned.
Examples:

ldc.i4 123456 // Load the number 123456
ldc.i4.s 10 // Load the number 10

21.2.7 Instructions that Take a Single 64-bit Integer Argument

These instructions take one operand, which must be a 64-bit integer.

<instr> ::= <instr_i8> <int64>

<instr_i8> ::= // Derived from opcode.def
ldc.i8

Examples:

ldc.i8 0x123456789AB

ldc.i8 12

21.2.8 Instructions that Take a Single Floating Point Argument

These instructions take one operand, which must be a floating point number.

<instr> ::= <instr_r> <float64> |

 <instr_r> <int64> |

<instr_r> (<bytes>) // <bytes> is binary image
<instr_r> ::= // Derived from opcode.def
ldc.r4 | ldc.r8

Examples:

ldc.r4 10.2

ldc.r4 10

ldc.r4 0x123456789ABCDEF

ldc.r8 (00 00 00 00 00 00 F8 FF)

21.2.9 Branch instructions

The assembler does not optimize branches. The branch must be specified explicitly as using either the short or long form of the instruction. If the displacement is too large for the short form, then the assembler will display an error.

<instr> ::=

<instr_brtarget> <int32> |

<instr_brtarget> <label>

<instr_brtarget> ::= // Derived from opcode.def
ann.data | ann.data.s | beq | beq.s | bge | bge.s |

bge.un | bge.un.s | bgt | bgt.s | bgt.un | bgt.un.s |

ble | ble.s | ble.un | ble.un.s | blt | blt.s |

blt.un | blt.un.s | bne.un | bne.un.s | br | br.s |

brfalse | brfalse.s | brtrue | brtrue.s | leave | leave.s

Example:

br.s 22
br foo
21.2.10 Instructions that Take a Method as an Argument

These instructions reference a method, either in another class (first instruction format) or in the current class (second instruction format).

<instr> ::=

 <instr_method>

 <callConv> <type> [<typeSpec> ::] <methodName> (<parameters>)

<instr_method> ::= // Derived from opcode.def
ann.call | ann.hoisted_call | call | callvirt | jmp |

ldftn | ldvirtftn | newobj

Examples:

call instance int32 C.D.E::X(class W, native int)

ldftn vararg char F(...)
// Global Function F

21.2.11 Instructions that Take a Field of a Class as an Argument

These instructions reference a field of a class.

<instr> ::=

<instr_field> <type> <typeSpec> :: <id>

<instr_field> ::= // Derived from opcode.def
ldfld | ldflda | ldsfld | ldsflda | stfld | stsfld

Examples:

ldfld native int X::IntField

stsfld int32 Y::AnotherField

21.2.12 Instructions that Take a Type as an Argument

These instructions reference a type.

<instr> ::= <instr_type> <typeSpec>

<instr_type> ::= // Derived from opcode.def
box | castclass | cpobj | initobj | isinst |

ldelema | ldobj | mkrefany | newarr | refanyval |

sizeof | stobj | unbox

Examples:

initobj System.Console

sizeof class X

21.2.13 Instructions that Take a String as an Argument

These instructions take a string as an argument.

<instr> ::= <instr_string> <QSTRING>

<instr_string> ::= // Derived from opcode.def
ldstr

Examples:

ldstr “This is a string”

ldstr “This has a\nnewline in it”

21.2.14 Instructions that Take a Signature as an Argument

These instructions take a stand-alone signature as an argument.

<instr> ::= <instr_sig> <callConv> <type> (<parameters>)

<instr_sig> ::= // Derived from opcode.def
calli

Examples:

calli class A.B(wchar *)

calli vararg bool(int32[,] X, ...)

// Returns a boolean, takes at least one argument. The first

// argument, named X, must be a two-dimensional array of

// 32-bit ints

21.2.15 Instructions that Take a Metadata Token as an Argument

This instruction takes a metadata token as an argument. The token can reference a type, a method, or a field of a class.

<instr> ::= <instr_tok> <typeSpec> |

 <instr_tok> method

 <callConv> <type> <typeSpec> :: <methodName>

 (<parameters>) |

 <instr_tok> method
 <callConv> <type> <methodName>

 (<parameters>) |

 <instr_tok> field <type> <typeSpec> :: <id>

<instr_tok> ::= // Derived from opcode.def
ldtoken

Examples:

ldtoken class System.Console

ldtoken method int32 X::Fn()

ldtoken method bool GlobalFn(int32 &)

ldtoken field class X.Y Class::Field

21.2.16 The SSA Φ-Node Instruction

This instruction embeds a static single assignment (SSA) Φ-Node into the instruction stream as an annotation.

<instr> ::= <instr_phi> <int16>*

<instr_phi> ::= // Derived from opcode.def
ann.phi

Examples:

ann.phi 10 3 15

ann.phi 3 –2 0x3

21.2.17 Switch instruction

The switch instruction takes a set of labels or decimal relative values.

<instr> ::= <instr_switch> (<labels>)

<instr_switch> ::= // Derived from opcode.def
switch

Examples:

switch (0x3, –14, Label1)

switch (5, Label2)

22 Appendix : Values for .subsystem

Below is the list of possible values accepted by the ILASM .subsystem keyword. These are defined in the Windows WinNT.h header file. Note that .subsystem does not accept the symbolic name – you must supply the numeric value:

#define IMAGE_SUBSYSTEM_UNKNOWN 0 // Unknown subsystem.

#define IMAGE_SUBSYSTEM_NATIVE 1 // Image doesn't require a subsystem.

#define IMAGE_SUBSYSTEM_WINDOWS_GUI 2 // Image runs in the Windows GUI subsystem.

#define IMAGE_SUBSYSTEM_WINDOWS_CUI 3 // Image runs in the Windows character subsystem.

#define IMAGE_SUBSYSTEM_OS2_CUI 5 // image runs in the OS/2 character subsystem.

#define IMAGE_SUBSYSTEM_POSIX_CUI 7 // image runs in the Posix character subsystem.

#define IMAGE_SUBSYSTEM_NATIVE_WINDOWS 8 // image is a native Win9x driver.

#define IMAGE_SUBSYSTEM_WINDOWS_CE_GUI 9 // Image runs in the Windows CE subsystem.
23 Appendix : Values for .corflags

Below is the list of possible values accepted by the ILASM .subsystem keyword. These are defined in the CLR CorHdr.h header file. Note that .subsystem does not accept the symbolic name – you must supply the numeric value:

// CLR Header entry point flags.

 COMIMAGE_FLAGS_ILONLY = 0x00000001,

 COMIMAGE_FLAGS_32BITREQUIRED = 0x00000002,

 COMIMAGE_FLAGS_IL_LIBRARY = 0x00000004,

 COMIMAGE_FLAGS_TRACKDEBUGDATA = 0x00010000,

24 Appendix : Values for Hash Algorithm ID

Below is the list of possible values accepted by ILASM for Hash Algorithm ID. These are defined in the Windows WinCrypt.h header file. Note that ILASM does not accept the symbolic name – you must supply the numeric value:

// algorithm identifier definitions

#define CALG_MD2

(ALG_CLASS_HASH | ALG_TYPE_ANY | ALG_SID_MD2)

#define CALG_MD4

(ALG_CLASS_HASH | ALG_TYPE_ANY | ALG_SID_MD4)

#define CALG_MD5

(ALG_CLASS_HASH | ALG_TYPE_ANY | ALG_SID_MD5)

#define CALG_SHA

(ALG_CLASS_HASH | ALG_TYPE_ANY | ALG_SID_SHA)

#define CALG_SHA1

(ALG_CLASS_HASH | ALG_TYPE_ANY | ALG_SID_SHA1)

#define CALG_MAC

(ALG_CLASS_HASH | ALG_TYPE_ANY | ALG_SID_MAC)

#define CALG_RSA_SIGN

(ALG_CLASS_SIGNATURE | ALG_TYPE_RSA | ALG_SID_RSA_ANY)

#define CALG_DSS_SIGN

(ALG_CLASS_SIGNATURE | ALG_TYPE_DSS | ALG_SID_DSS_ANY)

#define CALG_RSA_KEYX

(ALG_CLASS_KEY_EXCHANGE|ALG_TYPE_RSA|ALG_SID_RSA_ANY)

#define CALG_DES

(ALG_CLASS_DATA_ENCRYPT|ALG_TYPE_BLOCK|ALG_SID_DES)

#define CALG_3DES_112

(ALG_CLASS_DATA_ENCRYPT|ALG_TYPE_BLOCK|ALG_SID_3DES_112)

#define CALG_3DES

(ALG_CLASS_DATA_ENCRYPT|ALG_TYPE_BLOCK|ALG_SID_3DES)

#define CALG_RC2

(ALG_CLASS_DATA_ENCRYPT|ALG_TYPE_BLOCK|ALG_SID_RC2)

#define CALG_RC4

(ALG_CLASS_DATA_ENCRYPT|ALG_TYPE_STREAM|ALG_SID_RC4)

#define CALG_SEAL

(ALG_CLASS_DATA_ENCRYPT|ALG_TYPE_STREAM|ALG_SID_SEAL)

#define CALG_DH_SF (ALG_CLASS_KEY_EXCHANGE|ALG_TYPE_DH|ALG_SID_DH_SANDF)

#define CALG_DH_EPHEM

(ALG_CLASS_KEY_EXCHANGE|ALG_TYPE_DH|ALG_SID_DH_EPHEM)

#define CALG_AGREEDKEY_ANY

(ALG_CLASS_KEY_EXCHANGE|ALG_TYPE_DH|ALG_SID_AGREED_KEY_ANY)

#define CALG_KEA_KEYX

(ALG_CLASS_KEY_EXCHANGE|ALG_TYPE_DH|ALG_SID_KEA)

#define CALG_HUGHES_MD5 (ALG_CLASS_KEY_EXCHANGE|ALG_TYPE_ANY|ALG_SID_MD5)

#define CALG_SKIPJACK

(ALG_CLASS_DATA_ENCRYPT|ALG_TYPE_BLOCK|ALG_SID_SKIPJACK)

#define CALG_TEK

(ALG_CLASS_DATA_ENCRYPT|ALG_TYPE_BLOCK|ALG_SID_TEK)

#define CALG_CYLINK_MEK (ALG_CLASS_DATA_ENCRYPT|ALG_TYPE_BLOCK|ALG_SID_CYLINK_MEK)

#define CALG_SSL3_SHAMD5 (ALG_CLASS_HASH | ALG_TYPE_ANY | ALG_SID_SSL3SHAMD5)

#define CALG_SSL3_MASTER (ALG_CLASS_MSG_ENCRYPT|ALG_TYPE_SECURECHANNEL|ALG_SID_SSL3_MASTER)

#define CALG_SCHANNEL_MASTER_HASH (ALG_CLASS_MSG_ENCRYPT|ALG_TYPE_SECURECHANNEL|ALG_SID_SCHANNEL_MASTER_HASH)

#define CALG_SCHANNEL_MAC_KEY (ALG_CLASS_MSG_ENCRYPT|ALG_TYPE_SECURECHANNEL|ALG_SID_SCHANNEL_MAC_KEY)

#define CALG_SCHANNEL_ENC_KEY (ALG_CLASS_MSG_ENCRYPT|ALG_TYPE_SECURECHANNEL|ALG_SID_SCHANNEL_ENC_KEY)

#define CALG_PCT1_MASTER (ALG_CLASS_MSG_ENCRYPT|ALG_TYPE_SECURECHANNEL|ALG_SID_PCT1_MASTER)

#define CALG_SSL2_MASTER (ALG_CLASS_MSG_ENCRYPT|ALG_TYPE_SECURECHANNEL|ALG_SID_SSL2_MASTER)

#define CALG_TLS1_MASTER (ALG_CLASS_MSG_ENCRYPT|ALG_TYPE_SECURECHANNEL|ALG_SID_TLS1_MASTER)

#define CALG_RC5 (ALG_CLASS_DATA_ENCRYPT|ALG_TYPE_BLOCK|ALG_SID_RC5)

#define CALG_HMAC

(ALG_CLASS_HASH | ALG_TYPE_ANY | ALG_SID_HMAC)

These definitions, in-turn, depend upon the following, also drawn from the same header file --

//

// Algorithm IDs and Flags

//

// ALG_ID crackers

#define GET_ALG_CLASS(x) (x & (7 << 13))

#define GET_ALG_TYPE(x) (x & (15 << 9))

#define GET_ALG_SID(x) (x & (511))

// Algorithm classes

#define ALG_CLASS_ANY (0)

#define ALG_CLASS_SIGNATURE (1 << 13)

#define ALG_CLASS_MSG_ENCRYPT (2 << 13)

#define ALG_CLASS_DATA_ENCRYPT (3 << 13)

#define ALG_CLASS_HASH (4 << 13)

#define ALG_CLASS_KEY_EXCHANGE (5 << 13)

// Algorithm types

#define ALG_TYPE_ANY (0)

#define ALG_TYPE_DSS (1 << 9)

#define ALG_TYPE_RSA (2 << 9)

#define ALG_TYPE_BLOCK (3 << 9)

#define ALG_TYPE_STREAM (4 << 9)

#define ALG_TYPE_DH (5 << 9)

#define ALG_TYPE_SECURECHANNEL (6 << 9)

// Generic sub-ids

#define ALG_SID_ANY (0)

// Some RSA sub-ids

#define ALG_SID_RSA_ANY 0

#define ALG_SID_RSA_PKCS 1

#define ALG_SID_RSA_MSATWORK 2

#define ALG_SID_RSA_ENTRUST 3

#define ALG_SID_RSA_PGP 4

// Some DSS sub-ids

//

#define ALG_SID_DSS_ANY 0

#define ALG_SID_DSS_PKCS 1

#define ALG_SID_DSS_DMS 2

// Block cipher sub ids

// DES sub_ids

#define ALG_SID_DES 1

#define ALG_SID_3DES 3

#define ALG_SID_DESX 4

#define ALG_SID_IDEA 5

#define ALG_SID_CAST 6

#define ALG_SID_SAFERSK64 7

#define ALG_SID_SAFERSK128 8

#define ALG_SID_3DES_112 9

#define ALG_SID_CYLINK_MEK 12

#define ALG_SID_RC5 13

// Fortezza sub-ids

#define ALG_SID_SKIPJACK 10

#define ALG_SID_TEK 11

// KP_MODE

#define CRYPT_MODE_CBCI 6 // ANSI CBC Interleaved

#define CRYPT_MODE_CFBP 7 // ANSI CFB Pipelined

#define CRYPT_MODE_OFBP 8 // ANSI OFB Pipelined

#define CRYPT_MODE_CBCOFM 9 // ANSI CBC + OF Masking

#define CRYPT_MODE_CBCOFMI 10 // ANSI CBC + OFM Interleaved

// RC2 sub-ids

#define ALG_SID_RC2 2

// Stream cipher sub-ids

#define ALG_SID_RC4 1

#define ALG_SID_SEAL 2

// Diffie-Hellman sub-ids

#define ALG_SID_DH_SANDF 1

#define ALG_SID_DH_EPHEM 2

#define ALG_SID_AGREED_KEY_ANY 3

#define ALG_SID_KEA 4

// Hash sub ids

#define ALG_SID_MD2 1

#define ALG_SID_MD4 2

#define ALG_SID_MD5 3

#define ALG_SID_SHA 4

#define ALG_SID_SHA1 4

#define ALG_SID_MAC 5

#define ALG_SID_RIPEMD 6

#define ALG_SID_RIPEMD160 7

#define ALG_SID_SSL3SHAMD5 8

#define ALG_SID_HMAC 9

// secure channel sub ids

#define ALG_SID_SSL3_MASTER 1

#define ALG_SID_SCHANNEL_MASTER_HASH 2

#define ALG_SID_SCHANNEL_MAC_KEY 3

#define ALG_SID_PCT1_MASTER 4

#define ALG_SID_SSL2_MASTER 5

#define ALG_SID_TLS1_MASTER 6

#define ALG_SID_SCHANNEL_ENC_KEY 7

25 Appendix : Values for .os

Below is the list of possible values accepted by ILASM for the .os keyword. These are defined in the Windows WinBase.h header file. Note that ILASM does not accept the symbolic name – you must supply the numeric value:

#define VER_PLATFORM_WIN32s 0

#define VER_PLATFORM_WIN32_WINDOWS 1

#define VER_PLATFORM_WIN32_NT 2

26 Appendix : Values for .processor

Below is the list of possible values accepted by ILASM for the .processor keyword. These are defined in the Windows WinNT.h header file. Note that ILASM does not accept the symbolic name – you must supply the numeric value:

#define PROCESSOR_INTEL_386 386

#define PROCESSOR_INTEL_486 486

#define PROCESSOR_INTEL_PENTIUM 586

#define PROCESSOR_MIPS_R4000 4000 // incl R4101 & R3910 for Windows CE

#define PROCESSOR_ALPHA_21064 21064

#define PROCESSOR_PPC_601 601

#define PROCESSOR_PPC_603 603

#define PROCESSOR_PPC_604 604

#define PROCESSOR_PPC_620 620

#define PROCESSOR_HITACHI_SH3 10003 // Windows CE

#define PROCESSOR_HITACHI_SH3E 10004 // Windows CE

#define PROCESSOR_HITACHI_SH4 10005 // Windows CE

#define PROCESSOR_MOTOROLA_821 821 // Windows CE

#define PROCESSOR_SHx_SH3 103 // Windows CE

#define PROCESSOR_SHx_SH4 104 // Windows CE

#define PROCESSOR_STRONGARM 2577 // Windows CE - 0xA11

#define PROCESSOR_ARM720 1824 // Windows CE - 0x720

#define PROCESSOR_ARM820 2080 // Windows CE - 0x820

#define PROCESSOR_ARM920 2336 // Windows CE - 0x920

#define PROCESSOR_ARM_7TDMI 70001 // Windows CE

27 Appendix : Default Marshalling : Unmanaged to Managed

	The following type library type
	Is imported as the following Element Type
	With the following
 MarshalAs Attribute
	System Type
	Built-in Language Type

	
	
	
	
	VB
	Mgd C++
	C#

	char, boolean, small
	I1
	
	System.SByte
	n/a
	byte
	sbyte

	wchar_t, short
	I2
	
	System.Int16
	short
	short
	short

	long, int
	I4
	
	System.Int32
	integer
	long
	int

	hyper
	I8
	

	System.Int64
	long
	__int64
	long

	unsigned char, byte
	UI1
	
	System.Byte
	byte
	byte
	byte

	unsigned short
	UI2
	
	System.UInt16
	N/A
	unsigned short
	ushort

	unsigned long, unsigned int
	UI4
	
	System.UInt32
	N/A
	unsigned long
	uint

	unsigned hyper
	UI8
	
	System.UInt64
	N/A
	unsigned __int64
	ulong

	single
	R4
	
	System.Single
	single
	float
	float

	double
	R8
	
	System.Double
	double
	double
	double

	VARIANT_BOOL
	Boolean
	VariantBool
	
	boolean
	bool
	bool

	void *
	I4

change to UI4 post Beta 1
	Add MashalAs attrib post Beta 1
	
	n/a
	n/a
	n/a

	HRESULT
	UI4
	Error
	
	n/a
	unsigned long
	uint

	SCODE
	UI4
	Error
	
	n/a
	unsigned long
	uint

	BSTR
	STRING
	BStr
	System.String
	string
	n/a
	string

	LPSTR or
[string, …] char *
	STRING
	LPStr
	System.String
	string
	n/a
	string

	LPWSTR or
[string, …] wchar_t *
	STRING
	LPWStr
	System.String
	string
	n/a
	string

	VARIANT
	OBJECT
	
	System.Object
	
	
	

	DECIMAL
	VALUETYPE
<System.Decimal>
	
	System.Decimal
	
	
	

	DATE
	VALUETYPE
<System.DateTime>
	
	System.DateTime
	
	
	

	GUID
	VALUETYPE
<System.Guid>
	
	System.Guid
	
	
	

	CURRENCY
	VALUETYPE
<System.Currency>
	
	System.Currency
	
	
	

	IUnknown *
	OBJECT
	IUnknown
	System.Object
	
	
	

	IDispatch *
	OBJECT
	IDispatch
	System.Object
	
	
	

	SAFEARRAY(type)
	SZARRAY(type)
	SAFEARRAY
	type[]
	
	
	

	typedef BaseType MyType
	BaseType
	
	
	
	
	

	MyStruct
	VALUETYPE
<MyStruct>
	
	
	
	
	

	MyEnum
	VALUETYPE
<MyEnum>
	
	
	
	
	

	MyInterface *
	CLASS <MyInterface>
	Interface
	
	
	
	

	MyCoClass
	CLASS
<_Class>

	Interface
	
	
	
	

	Pointer Types

	char *, boolean *, small *
	ByRef I1
	
	System.SByte
	n/a
	byte
	sbyte

	wchar_t *, short *
	ByRef I2
	
	System.Int16
	short
	short
	short

	long *, int *
	ByRef I4
	
	System.Int32
	integer
	long
	int

	hyper *
	ByRef I8
	

	System.Int64
	long
	__int64
	long

	unsigned char *, byte *
	ByRef UI1
	
	System.Byte
	byte
	byte
	byte

	unsigned short *
	ByRef UI2
	
	System.UInt16
	N/A
	unsigned short
	ushort

	unsigned long *, unsigned int *
	ByRef UI4
	
	System.UInt32
	N/A
	unsigned long
	uint

	unsigned hyper *
	ByRef UI8
	
	System.UInt64
	N/A
	unsigned __int64
	ulong

	single *
	ByRef R4
	
	System.Single
	single
	float
	float

	double *
	ByRef R8
	
	System.Double
	double
	double
	double

	VARIANT_BOOL *
	ByRef Boolean
	VariantBool
	
	boolean
	bool
	bool

	void **
	ByRef I4

change to UI4 post Beta 1
	Add MashalAs attrib post Beta 1
	
	n/a
	n/a
	n/a

	HRESULT *
	ByRef I4

change to UI4 post Beta 1
	Error
	
	n/a
	unsigned short
	ushort

	SCODE *
	ByRef I4

change to UI4 post Beta 1
	Error
	
	n/a
	unsigned short
	ushort

	BSTR *
	ByRef STRING
	BStr
	System.String
	string
	n/a
	string

	LPSTR *
	ByRef STRING
	LPStr
	System.String
	string
	n/a
	string

	LPWSTR *
	ByRef STRING
	LPWStr
	System.String
	string
	n/a
	string

	VARIANT *
	ByRef OBJECT
	
	System.Object
	
	
	

	DECIMAL *
	ByRef VALUETYPE
<System.Decimal>
	
	System.Decimal
	
	
	

	DATE *
	ByRef VALUETYPE
<System.DateTime>
	
	System.DateTime
	
	
	

	GUID *
	ByRef VALUETYPE
<System.Guid>
	
	System.Guid
	
	
	

	CURRENCY *
	ByRef VALUETYPE
<System.Currency>
	
	System.Currency
	
	
	

	IUnknown **
	ByRef OBJECT
	IUnknown
	System.Object
	
	
	

	IDispatch **
	ByRef OBJECT
	IDispatch
	System.Object
	
	
	

	SAFEARRAY(type) *
	ByRef SZARRAY(type)
	SAFEARRAY
	type[]
	
	
	

	typedef BaseType MyType
	ByRef BaseType
	
	
	
	
	

	MyStruct *
	ByRef VALUETYPE
<MyStruct>
	
	
	
	
	

	MyEnum *
	ByRef VALUETYPE
<MyEnum>
	
	
	
	
	

	MyInterface **
	ByRef CLASS <MyInterface>
	Interface
	
	
	
	

	MyCoClass *
	ByRef CLASS
<_Class>

	Interface
	
	
	
	

28 Appendix : Default Marshalling : Managed to Unmanaged

	The following Element Type
	With the following
 MarshalAs Attribute
	Is converted to the following Type library type
	System Type
	Built-in Language Type

	
	
	
	
	VB
	Mgd C++
	C#

	Boolean
	
	VARIANT_BOOL
	System.Boolean
	boolean
	bool
	bool

	Boolean
(Add post beta1)
	Bool
	boolean
	System.Boolean
	boolean
	bool
	bool

	I1
	
	char
	System.SByte
	n/a
	byte
	byte

	I2
	
	short
	System.Int16
	short
	short
	short

	I4
	
	long
	System.Int32
	integer
	long
	int

	I8
	

	hyper
	System.Int64
	long
	__int64
	long

	UI1
	
	unsigned char
	System.Byte
	byte
	byte
	byte

	UI2, CHAR
	
	unsigned short
	System.UInt16
System.Char
	n/a
	unsigned short,
	ushort, char

	CHAR
	Char
	char
	System.Char
	n/a
	char
	char

	UI2
	Error
	SCODE
	System.UInt16
	n/a
	unsigned short
	ushort

	UI4
	
	unsigned long, unsigned int
	System.UInt32
	N/A
	unsigned long
	uint

	UI4
	Error
	SCODE
	
	n/a
	n/a
	n/a

	UI4
(Add post beta 1)
	Void
	void *
	
	n/a
	n/a
	n/a

	UI8
	
	unsigned hyper
	System.UInt64
	N/A
	unsigned __int64
	ulong

	R4
	
	single
	System.Single
	single
	float
	float

	R8
	
	double
	System.Double
	double
	double
	double

	STRING
	
	BSTR
	System.String
	string
	n/a
	string

	STRING
	BStr
	BSTR
	System.String
	string
	n/a
	string

	STRING
	LPStr
	LPSTR
	System.String
	string
	n/a
	string

	STRING
	LPWStr
	LPWSTR
	System.String
	string
	n/a
	string

	OBJECT
	
	VARIANT
	System.Object
	
	
	

	OBJECT
	Struct
	VARIANT
	System.Object
	
	
	

	OBJECT
	LPStruct
	VARIANT *
	System.Object
	
	
	

	OBJECT
	IUnknown
	IUnknown *
	System.Object
	
	
	

	OBJECT
	IDispatch
	IDispatch *
	System.Object
	
	
	

	VALUETYPE
<System.Decimal>
	
	DECIMAL
	System.Decimal
	
	
	

	VALUETYPE
<System.DateTime>
	
	DATE
	System.DateTime
	
	
	

	VALUETYPE
<System.Guid>
	
	GUID
	System.Guid
	
	
	

	VALUETYPE
<System.Currency>
	
	CURRENCY
	System.Currency
	
	
	

	SZARRAY(type)
	SAFEARRAY
	SAFEARRAY(type)
	type[]
	
	
	

	BaseType
	
	typedef BaseType MyType
	
	
	
	

	VALUETYPE
<MyStruct>
	
	MyStruct
	
	
	
	

	VALUETYPE
<MyEnum>
	
	MyEnum
	
	
	
	

	CLASS <MyInterface>
	Interface
	MyInterface
	
	
	
	

	CLASS
<MyClass>
	Interface
	_MyClass
	
	
	
	

	Reference Types

	ByRef I4
(Add post beta 1)
	Void
	void *
	
	N/A
	Void
	???

	ByRef Boolean
	
	VARIANT_BOOL *
	System.Boolean
	boolean
	bool
	bool

	ByRef Boolean
(Add post beta 1)
	Bool
	boolean
	System.Boolean
	boolean
	bool
	bool

	ByRef I1
	
	char *
	System.SByte
	boolean
	byte
	sbyte

	ByRef I2
	
	short *
	System.Int16
	short
	short
	short

	ByRef I4
	
	long *
	System.Int32
	integer
	long
	int

	ByRef I8
	

	hyper *
	System.Int64
	long
	__int64
	long

	ByRef UI1
	
	unsigned char *
	System.Byte
	byte
	byte
	byte

	ByRef UI2,
ByRef CHAR
	
	unsigned short *
	System.UInt16
	N/A
	unsigned short
	ushort

	ByRef CHAR
	Char
	char *
	System.Char
	N/A
	char
	char

	ByRef I2
(not supported until post beta1)
	Error
	SCODE *
	System.Int16
	N/A
	short
	ushort

	ByRef UI4
	
	unsigned long *
	System.UInt32
	N/A
	unsigned long
	uint

	ByRef I4
	Error
	HRESULT *
	System.UInt32
	N/A
	unsigned long
	uint

	ByRef UI8 (not supported until post beta1)
	
	unsigned hyper *
	System.UInt64
	N/A
	unsigned __int64
	ulong

	ByRef R4
	
	single *
	System.Single
	single
	float
	float

	ByRef R8
	
	double *
	System.Double
	double
	double
	double

	ByRef STRING
	
	BSTR *
	System.String
	string
	n/a
	string

	ByRef STRING
	BStr
	BSTR *
	System.String
	string
	n/a
	string

	ByRef STRING
	LPStr
	LPSTR *
	System.String
	string
	n/a
	string

	ByRef STRING
	LPWStr
	LPWSTR *
	System.String
	string
	n/a
	string

	ByRef OBJECT
	
	VARIANT *
	System.Object
	
	
	

	ByRef OBJECT
	Struct
	VARIANT *
	System.Object
	
	
	

	ByRef OBJECT
	IUnknown
	IUnknown **
	System.Object
	
	
	

	ByRef OBJECT
	IDispatch
	IDispatch **
	System.Object
	
	
	

	ByRef VALUETYPE
<System.Decimal>
	
	DECIMAL *
	System.Decimal
	
	
	

	ByRef VALUETYPE
<System.DateTime>
	
	DATE *
	System.DateTime
	
	
	

	ByRef VALUETYPE
<System.Guid>
	
	GUID *
	System.Guid
	
	
	

	ByRef VALUETYPE
<System.Currency>
	
	CURRENCY *
	System.Currency
	
	
	

	ByRef SZARRAY(type)
	SAFEARRAY
	SAFEARRAY(type) *
	type[]
	
	
	

	ByRef BaseType
	
	typedef BaseType MyType
	
	
	
	

	ByRef VALUETYPE
<MyStruct>
	
	MyStruct *
	
	
	
	

	ByRef VALUETYPE
<MyEnum>
	
	MyEnum *
	
	
	
	

	ByRef CLASS <MyInterface>
	Interface
	MyInterface *
	
	
	
	

	ByRef CLASS
<MyClass>

	Interface
	_MyClass *
	
	
	
	

Below is the list of possible values accepted by ILASM for the .processor keyword. These are defined in the Windows WinNT.h header file. Note that ILASM does not
29 Appendix : Index

#line, 25, 127

&, 44, 102

*, 44, 102

.addon, 160

.assembly, 28, 34

.assembly extern, 29, 35, 48

.backing, 154

.capability, 170

.cctor, 70, 124

.class, 79

.ctor, 69, 87, 124

.custom, 126, 171

.data, 126, 146

.emitbyte, 126, 127

.entrypoint, 126, 127

.export, 38

.field, 143

.file, 29, 31, 35, 37

.fire, 160

.get, 153

.handler, 165

.hash, 35

.hash algorithm, 35

.line, 25, 127

.locale, 33

.locals, 126, 128

.maxstack, 126

.method, 112

.module, 36, 44, 48

.module extern, 29, 37, 48

.namespace, 58

.NET, 9

.NET Framework, 11

.os, 33

.other, 154, 160

.override, 66, 79, 126

.pack, 74

.param, 127, 129

.permission, 170

.processor, 33

.property, 152

.removeon, 160

.set, 153

.size, 74

.try, 163

.vtentry, 127

.vtfixup, 74, 115, 129

.zeroinit, 127

abstract, 63, 67, 132

Abstraction, 40

Accessibility, 55, 62

Accessibility of overridden method, 68

Accessing data, 148

add, 181

add.ovf, 183

add.ovf.un, 183

Address, 101

al, 18

Options, 18

and, 182

ann.call, 193

ann.catch, 193

ann.data, 193

ann.data.s, 193

ann.dead, 193

ann.def, 193

ann.hoisted, 193

ann.hoisted_call, 193

ann.lab, 193

ann.live, 193

ann.phi, 193

ann.ref, 193

ann.ref.s, 193

ansi, 50, 64, 137

arglist, 135, 188

Arguments, 124

Array, 90

Arrays of arrays, 96

as any, 49

Assembler, 14

assembly, 55, 62, 131, 144

Assembly, 27, 28

Information, 31

Assembly Linker, 18

Assignment compatible, 49

Asynchronous delegate calls, 107

AsyncObject, 110

at, 148

Attributes, 26

auto, 63

autochar, 64, 137

Backing field, 154

BeginInvoke, 105, 108

beq, 188

beq.s, 188

bge, 188

bge.s, 188

bge.un, 188

bge.un.s, 188

bgt, 188

bgt.s, 188

bgt.un, 188

bgt.un.s, 188

ble, 188

ble.s, 188

ble.un, 188

ble.un.s, 188

blt, 188

blt.s, 188

blt.un, 188

blt.un.s, 188

bne.un, 188

bne.un.s, 188

bool, 43, 50, 51

box, 85, 191

br, 187

br.s, 187

break, 189

brfalse, 187

brfalse.s, 187

brinst, 187

brinst.s, 187

brnull, 187

brnull.s, 187

brtrue, 187

brtrue.s, 187

brzero, 187

brzero.s, 187

bstr, 50, 51

bytearray, 145

bytes, 25

byvalstr, 50

call, 49, 84, 117, 188

Call kinds, 117

Call stack, 116

calli, 104, 119, 188

Calling convention, 116

callvirt, 49, 84, 86, 118, 191

Case-sensitive, 22

castclass, 49, 191

Casting, 41

catch, 166

cdecl, 137

ceq, 183

cgt, 183

cgt.un, 183

char, 43

ckfinite, 187

class, 43, 59, 82

Class

Implementation attributes, 64

Interoperation attributes, 64

Layout attributes, 63

Loading, 11
Semantics attributes, 63

Special handling, 64

Special semantics, 63

Types, 58
Classes, 58

Defining classes, 60

classical COM., 52

Classical COM., 52

CLS, 13

CLS consumer, 13

CLS extender, 13

CLS framework, 13

CLS Restrictions, 90, 100

clt, 183

clt.un, 184

Code label, 127

Coercion, 42

Combine, 110

Common Language Specification, see CLS

Compilers, 20

comreg, 139

conf.ovf.i.un, 185

Constructors, 69

conv.i, 185

conv.i1, 185

conv.i2, 185

conv.i4, 185

conv.i8, 185

conv.ovf.i, 185

conv.ovf.i1, 185

conv.ovf.i1.un, 185

conv.ovf.i2, 185

conv.ovf.i2.un, 185

conv.ovf.i4, 185

conv.ovf.i4.un, 185

conv.ovf.i8, 185

conv.ovf.i8.un, 185

conv.ovf.u, 186

conv.ovf.u.un, 186

conv.ovf.u1, 186

conv.ovf.u1.un, 186

conv.ovf.u2, 186

conv.ovf.u2.un, 186

conv.ovf.u4, 186

conv.ovf.u4.un, 186

conv.ovf.u8, 186

conv.ovf.u8.un, 186

conv.r.un, 186

conv.r4, 186

conv.r8, 186

conv.u, 186

conv.u1, 186

conv.u2, 186

conv.u4, 186

Copy constructors, 87

cordbg, 20

CorHdr.h, 46

cpblk, 189

cpobj, 86, 191

CultureInfo, 33

currency, 51

custom, 50

Custom attributes, 171

Defined by CLS, 174

Defined by JIT and Debugger, 174

Defined by Reflection, 174

Defined by Remoting, 174

Defined by Security, 175

Defined for language interop, 176

Defined for the assembly linker, 176

Defined for thread local storage, 176

date, 51

Deadlock, 71

Debug Engine, 11

Debugger, 20

decimal, 51

Declarations

Inside Module, 37

Top level, 28

Declarative security, 170

Declared type, 40

default, 117

Delegates, 104

Creating, 106

Declaring, 105

Multicast, 110

Using, 107

Diassembler, 15

div, 181

div.un, 182

dup, 189

EE, 11

Encapsulation, 40

endfault, 166, 189

endfilter, 167, 189

endfinally, 165, 189

EndInvoke, 105, 109

Enumerations, 98

Underlying representation, 98

error, 50, 51

Evaluation stack, 116

Event handler, 156

Event observer, 156

Event source, 156

Events, 58, 156

Declaration, 159

Firing, 160

Implementation, 156

Naming convention, 157

Observing, 157

Exact type, 40

Exceptions, 163

Handling, 164

Throwing, 169

Execution Engine, 11

explicit, 63, 73, 114, 116

extends, 61

famandassem, 55, 62, 131, 144

family, 55, 62, 131, 144

famorassem, 55, 62, 131, 144

fastcall, 137

fault, 166

Field attributes

Predefined, 143

Field init metadata, 145

Fields, 58, 143

instance, 65

static, 65

File name, 26

filter, 167

final, 66, 131

Finalizer, 69

finally, 165

fixed array, 50

fixed sysstring, 50

float, 50

float32, 25, 43, 50, 51, 145

float64, 25, 43, 50, 51, 146

Floating point number, 25

forwardref, 134

Framework, 11

fromunmanaged, 75

fullorigin, 35

Garbage Collection, 11

General arrays, 92

Getter, 151

Global data, 146

Accessing, 148

Global fields, 75

Global methods, 75

Hash algorithm, 31

hexbyte, 23, 25

hidebysig, 131

Hiding, 54

hresult, 51

id, 23

ID, 23

Identifiers, 23

idispatch, 51

IJW, 136

il, 133

ilasm, 14

Options, 14

ildasm, 15

Options, 15, 17

Implementation attributes, 132

implements, 61, 77

Implicit type, 41

import, 64

in, 125

Indirect calls, 119

ing64, 146

Inheritance, 58

init, 126, 129

initblk, 189

Initialization of static data, 149

initobj, 82, 191

initonly, 69, 70, 144

instance, 58, 84, 112, 116

Instance, 60

Instance constructors, 69

Instance methods, 114

instantiating, 60

int, 50

int16, 43, 50, 146

int32, 22, 43, 50, 146

int64, 22, 43, 50

int8, 43, 50, 146

interface, 50, 63, 79

Interfaces, 77

Definitions, 79

Implementation, 77

Intermediate Language, 9

Assembly Language, 14

internalcall, 134

Invoke, 105

isinst, 49, 82, 191

It Just Works, 136

iunknown *, 52

jmp, 121, 188

jmpi, 122, 189

Just-In-Time

JIT compiling, 11

Just-In-Time, 9

Label, 24

Code label, 24

Data label, 24

ladarg.<2bitNumSuffix>, 189

lasterr, 137

lateinit, 71

lcid, 125

ldarg, 189

ldarg.s, 189

ldarga, 101, 103, 189

ldarga.s, 190

ldc.i4, 190

ldc.i4.<constNumSuffix>, 190

ldc.i4.s, 190

ldc.i8, 190

ldc.r4, 190

ldc.r8, 190

ldelem, 91

ldelem.<exTypeSuffix>, 191

ldelema, 91, 101, 191

ldfld, 191

ldflda, 101, 191

ldftn, 104, 106, 119, 189

ldind, 74, 101

ldind.<exTypeSuffix>, 190

ldlen, 91, 191

ldloc, 190

ldloc.<2bitNumSuffix>, 190

ldloc.s, 190

ldloca, 101, 103, 190

ldloca.s, 190

ldnull, 190

ldobj, 91, 191

ldsfld, 192

ldsflda, 101, 103, 192

ldstr, 192

ldtoken, 192

ldvirtftn, 104, 106, 119, 192

leave, 164, 167, 189

leave, 168

leave.s, 189

literal, 144

Locale, 33

localloc, 190

Location signature, 100

lpstr, 50

lpstruct, 50

lptstr, 50

lpvoid, 50

lpwstr, 50

managed, 133

managed code, 112

managed data, 112

Manifest, 27, 28

Manifest resource, 34

marshal, 52, 145

Matching method definition, 78

members, 58

Metadata, 26

method, 43, 50

Method arguments, 124

Method attributes

Implementation attributes, 132

Method calls, 115

Method Descriptors, 113

Method head, 123

Method names, 124

Method parameters, 124

Method pointer, 103

Method signature, 113

MethodDecl, 79

MethodDecls, 113

MethodDefs, 113

MethodImpl(s), 67, 78, 79, 113

MethodRef(s), 79, 113

Methods, 58, 112

instance, 66

static, 65

virtual, 66

Methods attributes

Predefined, 129

mkrefany, 192

modopt, 45, 113

modreq, 45, 113

Module, 27, 36

mscorlib, 36, 83

mscorlib.dll, 92

mul, 181

mul.ovf, 183

mul.ovf.un, 183

Name mangling, 138

Namespace, 27

Namespaces, 58

native, 133, 137

native float, 44

native int, 44

native unsigned int, 44

neg, 181

neslot, 131

nested, 54, 62, 72

Nested class

Name, 47

Nested classes, 72

Nested types, 58

newarr, 91, 192

newobj, 60, 122, 192

newslot, 66, 115

noappdomain, 30

noinlining, 134

nomachine, 30

nomangle, 138

nometadata, 35

nop, 189

noprocess, 30

not, 181

not_in_gc_heap, 63, 87

notserialized, 144

null, 82

Object oriented programming, 40

ole, 134, 138

opt, 125

optil, 133

or, 182

out, 125

overload, 114

Parameters, 124

PDB, 25

PE, 11

PEVerify, 12, 19

Options, 19

pinned, 45

PInvoke, 52, 87, 136

pinvokeimpl, 132, 137

Pointer types, 100

Pointers

Managed, 102

Transient, 103

Unmanaged, 102

Polymorphism, 40

pop, 190

Portable Debug, 25

portable executable, 11

private, 54, 55, 62, 131, 144

privatescope, 55, 57, 131, 144

Properties, 58, 151

Declaration, 152

Head, 153

Members, 153

Naming convention, 151

Use, 152

Protected blocks, 163

Pseudo Custom Attributes, 173

public, 54, 55, 62, 131, 144

QSTRING, 23

Race, 71

rank, 92

refanytype, 192

refanyval, 192

Reference type, 41, 42

References, 29

Reflection, 14

ReflectionEmit, 14

rem, 181

rem.un, 182

ret, 49, 116, 189

rethrow, 167, 168, 189

retval, 125

Round Trip, 17

rtspecialname, 132, 145

runtime, 105, 133

safearray, 51

Scope blocks, 134

sealed, 63, 66

SEH blocks, 163

sequential, 63, 73

serializable, 64

Setter, 151

shl, 182

shr, 182

shr.un, 182

Signature, 113

sizeof, 192

Source line information, 25

specialname, 132, 145

SQSTRING, 23

starg, 49, 190

starg.s, 190

static, 58, 84, 112, 131, 144

Static methods, 114

stdcall, 138

stelem, 91

stelem.<typeSuffix>, 192

stfld, 49, 193

stind, 74

stind.<typeSuffix>, 190

stloc, 49, 190

stloc.<2bitNumSuffix>, 190

stloc.s, 190

stobj, 91, 193

struct, 51

stsfld, 193

sub, 181

sub.ovf, 183

sub.ovf.un, 183

subtype, 48

Subtype, 40

Super call, 119

superclass, 48

Superclass, 40

supertype, 48

Supertype, 40

switch, 187

synchronized, 134

Synchronous delegate calls, 107

Syntax

Syntax classes, 22

Syntax notation, 22

System, 41

System.ArgIterator, 135

System.ArgumentException, 110

System.ArithmeticException, 181

System.Array, 90, 96

system.Array.Initialize, 83

System.ArrayTypeMismatchException, 91, 191, 192

System.ArtihmeticException, 187

System.AsyncCallback, 106, 108

System.Attribute, 171

System.AttributeUsageAttribute, 172

System.Boolean, 46

System.Byte, 47

System.Char, 46, 47

System.ContextBoundObject, 191

System.Delegate, 105

System.DivideByZeroException, 181, 182

System.Double, 46

System.Enum, 98

System.EventHandler, 157

System.Exception, 163, 169

System.ExecutionEngineException, 179

System.GC.RequestFinalizeOnShutdown, 70

System.GC.SupressFinalize, 70

System.IAsyncResult, 105, 108

System.IClonable, 111

System.IndexOutOfRangeException, 91, 191, 192

System.Int, 46

System.Int16, 46

System.Int32, 46

System.Int64, 46

System.InvalidCastException, 191

System.InvalidOperationException, 135

System.MarshalByRefObject, 191

System.MissingMethodException, 118

System.MulticastDelegate, 110

System.MulticastNotSupportedException, 110

System.NullReferenceException, 91, 191, 192

System.Object, 41, 46, 58, 59, 69, 81, 82, 85, 90, 105, 108, 118

System.OverflowException, 182, 185

System.Runtime.ISerializable, 111

System.Sbyte, 46

System.Single, 46

System.String, 46, 59

System.TypedReference, 47

System.Uint16, 47

System.Uint32, 47

System.Uint64, 47

System.ValueType, 81, 83, 98

Tail calls, 120

tail., 120, 189

tbstr, 51

Terminals, 22

teypedref, 135

this, 66, 116

thiscall, 138

Thread local storage, 147

Unmanaged, 148

Thread Support, 11

throw, 169, 189

tlbexp, 139

tlbimp, 139

tls, 147

Type, 27, 40

Built-in, 43, 45

Native, 49

Self-describing, 43

Type System, 42

User defined, 43

Variants, 51

Type initializer, 70

Typed reference, 42

typedref, 44

unaligned, 190

unbox, 86, 193

unicode, 64, 138

unmanaged, 133, 137

unmanaged cdecl, 117

Unmanaged COM, 138

unmanaged fastcall, 117

Unmanaged methods, 136

unmanaged stdcall, 117

unmanaged thiscall, 117

unmanagedexp, 132

unsigned, 44, 50

Validation, 12

value, 44, 63, 82

Value type, 41, 42

Value types, 81

For C++ classes, 88

Instantiating, 82

Methods, 84

Referencing, 82

vararg, 117, 123, 135

variant *, 52

variant bool, 51

Vectors, 90

Verification, 12, 49

Verifiable code, 12

Verifier, 12, 19

virtual, 84, 112, 118, 131

Virtual methods, 115

Visibility, 54, 62

void, 44

volatile., 190

Ways to write programs, 10

wchar, 44

wchar*, 146

winapi, 138

winbase.h, 33

winnt.h, 33

with, 67

xor, 182

Syntactically correct IL

Valid IL

Typesafe IL

Verifiable IL

� All entries in this column are from the System.Runtime.InteropServices.UnmanagedType enum. The unmanaged type is supplied with the MarshalAs attribute.

� Blanks in this column indicate that the language has no built-in type that maps to that type. In such cases, the types from the System namespace can be used directly.

� If a coclass is used as a parameter type in a type library, the coclass’s default interface is used in its place. In this table, the interface _Class is assumed to be the default interface for the coclass MyClass.

� If a coclass is used as a parameter type in a type library, the coclass’s default interface is used in its place. In this table, the interface _Class is assumed to be the default interface for the coclass MyClass.

� All entries in this column are from the System.Runtime.InteropServices.UnmanagedType enum. The unmanaged type is supplied with the MarshalAs attribute.

� Blanks in this column indicate that the language has no built-in type that maps to that type. In such cases, the types from the BCL can be used directly.

� If a coclass is used as a parameter type in a type library, the coclass’s default interface is used in its place. In this table, the interface _Class is assumed to be the default interface for the coclass MyCoClass.

�PAGE \# "'Page: '#'�'" ��I don’t see this spec in the build.

Page 1

_1027416028.doc
[image: image1.png]--l Microsoft

