
A new approach to operational semantics by categories

William Steingartner
william.steingartner@tuke.sk

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice, Slovakia

Semantics of programming languages
Spring 2022/2023

Theme 07 – Semantics in categories

A new approach to operational semantics by categories 1/34

Formal semantics

provides unambiguous meaning of programs written in programming language;
helps designers to prepare good and useful programming languages;
serves for implementators to write correct compilers;
encourages users/programmers how to use language constructions properly.

Semantic methods
denotational semantics;
operational semantics;
natural semantics;
axiomatic semantics;
action semantics;
game semantics.

A new approach to operational semantics by categories 2/34

Categories

mathematical structures consisting of objects and morphisms between them;
objects can be various mathematical structures, data structures, types;
categories have become useful for modeling computations, processes, programs,
program systems;
are basic structures for coalgebraic behavioural models.

Categories in teaching
quite simple mathematical structures;
graphical representations useful for illustration of examples;
understandable for our students.

A new approach to operational semantics by categories 3/34

Category theory
Original purpose of categories
in theyears 1942-1945 - in topology, especially algebraic topology,
geometry (Samuel Eilenberg, Saunders MacLane)

Application of categories
algebraic topology;
geometry;
physics; . . .

In informatics
expressing the models of computation;
definition of semantics;
definition of types and work with them;
models of logic; . . .

A new approach to operational semantics by categories 4/34

Definition of category

Category
Ob(C), objects of category C : A, B, . . .;
Morph(C), morphisms of category C : f : A → B;
identical morphism for each object C , idA : A→ A;
the composition of morphisms: for f : A→ B and g : B → C is defined g ◦ f : A→ C.

For each category are defined the following conditions:

1 the domain of composition of morphisms f ◦ g is the domain of f and codomain of
composition f ◦ g is codomain of g;

2 composition of morphisms is associative, i.e. h ◦ (g ◦ f) = (h ◦ g) ◦ f ;
3 the domain and codomain of identity idA is an object A;
4 if f : A→ B is a morphism, then it holds f ◦ idA = idB ◦ f .

A new approach to operational semantics by categories 5/34

The commutative diagrams
The commutative diagram is a structure for graphical expressing of equalities in categories. Let
A and B be the objects of category and let D be the diagram of category C . The diagram D
we call commutative diagram, if the all paths from A to B composed of morphisms are equal; it
means that for the morphisms

fi : Ai−1 → Ai and gj : A′j−1 → A′j

for i = 1, . . . , n, j = 1, . . . , m, where A = A0 = A′0 a B = An = A′m it holds

fn ◦ . . . ◦ f2 ◦ f1 = gm ◦ . . . ◦ g2 ◦ g1.

A

A1

A′1

. . .

. . .

f2

g2

fn−1

gm−1

An−1

A′m−1

B

f1

g1

fn

gm

A new approach to operational semantics by categories 6/34

Simple categories

Empty category ∅ - no objects, no morphisms.
1 category with only one object and one morphism - an identity on
existing category object.
1 + 1 category with two objects and two morphisms - identities on
particular objects.
2 category with two objects, two identity morphisms and one
morphism between category objects.

A

idA

1
A

idA

B

idB

1+ 1
A

idA

B

idB

2

f

A new approach to operational semantics by categories 7/34

Category of sets

S et

objects are sets, Ob(S et) = {A, B,N, . . .};
morphisms are functions, f : A→ B, ln : R+ → R etc.;
identity is defined on each set, idA : A→ A;
composition of morphisms is a composition of functions: for
f : A→ B and g : B → C exists a new morphism g ◦ f : A→ C:

(g ◦ f)(x) = g(f(x))

for x ∈ A.

A new approach to operational semantics by categories 8/34

Functor

Functor
Functor F : C → D is defined as tuple of functions (F0, F1)

F0 : Cobj → Dobj

F1 : Cmorp → Dmorp,

with the following conditions:
if f : A→ B is a morphism in C , then F1(f) : F0(A)→ F0(B) v D ;
for each object A in C holds F1(idA) = idF0(A);
if f ◦ g is a composition in C , then the composition F1(f) ◦ F1(g) is defined in D and it
holds F1(f ◦ g) = F1(f) ◦ F1(g).

F ◦ f = F (f) ◦ F

A new approach to operational semantics by categories 9/34

Categorical semantics

denotational semantics uses category of types where objects are types and
morphisms are functions;
algebraic semantics uses institutions as complex structures based on categories of
signatures;
game semantics uses category of arenas.

A new approach to operational semantics by categories 10/34

Why categorical operational semantics

provides illustrative view of dynamics of states;
provides simply understandable mathematical model of programs;
appropriate for informaticians writing compilers;
serves for creating skills to work with formal methods.

A new approach to operational semantics by categories 11/34

Basic ideas of our approach

Construction of category of states
we consider simple imperative language;
our language has only two implicit types;
we do not consider exception, jumps and recursion;
so simplified model is understandable without losing exactness.

A new approach to operational semantics by categories 12/34

Language J ane

consists of traditional syntactic constructions of imperative languages;
for defining formal syntax of J ane the following syntactic domains are introduced:

n ∈ Num - for digit strings;
x ∈ Var - for variable names;
e ∈ Expr - for arithmetic expressions;
b ∈ Bexpr - for boolean expressions;
S ∈ Statm - for statements;
D ∈ Decl - for sequences of variable declarations.

A new approach to operational semantics by categories 13/34

Language J ane - Syntax

The elements n ∈ Num and x ∈ Var have no internal structure from semantic point of
view.

The syntactic domain Expr consists of all well-formed arithmetic expressions created by
the following production rule

e ::= n | x | e + e | e− e | e ∗ e.

Boolean expression from Bexpr can be of the following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b.

The variables used in programs have to be declared. We consider D ∈ Decl as a
sequence of declarations:

D ::= var x; D | ε.

As the statements S ∈ Statm we consider five Dijkstra’s statements together with
block statement and input statement:

S ::= x := e|skip|S; S|if b then S else S|while b do S|begin D; S end|input x.

A new approach to operational semantics by categories 14/34

Specification of states

State
can be considered as some abstraction of computer memory;
change of state means change of value in memory;
because of block structure of J ane, we have to consider also a level of block
nesting;
every variable occurring in a program has to be allocated;

The signature ΣState for states

ΣState =
types : State, V ar, V alue

opns : init :→ State

alloc : var, State→ State
get : V ar, State→ V alue
del : State→ State

A new approach to operational semantics by categories 15/34

Specification of states

Representation
The representation of the elements of the type V alue we consider the set
of integer numbers:

Value = Z.

For undefined values we use the symbol ⊥.

Type V ar is represented by set Var of variable names.

Levels of declaration l are denoted by natural numbers:

l ∈ Level, Level = N.

A new approach to operational semantics by categories 16/34

Operational semantics

Operational model
we construct operational model of J ane as the category CState of states;
we assign to states their representation;
because of block structure of J ane, we have to consider also a level of block
nesting (l ∈ Level, Level = N);
representation of type State has to express variable, its value with respect to
actual nesting level;

A new approach to operational semantics by categories 17/34

State representation

Sequence
s : Var× Level ⇀ Value

Every state s can be expressed as a sequence of ordered pairs ((x, l) , v):

s = 〈((x, 1) , v1) , . . . , ((z, l) , vn)〉

Table
variable level value

x 1 v1

z l vn

...

A new approach to operational semantics by categories 18/34

Representation of operations

The operation JinitK
JinitK = s0 = 〈((⊥, 1) ,⊥)〉

creates the initial state of a program, with no declared variable.

variable level value

⊥ 1 ⊥

The operation JallocK
JallocK(x, s) = s � ((x, l) ,⊥) ,

sets actual nesting level to declared variable. Because of undefined value of declared
variable, the operation JallocK does not change the state.

variable level value

x l ⊥
...

A new approach to operational semantics by categories 19/34

Representation of operations

The operation JgetK returns a value of a variable declared on the highest nesting level,

JgetK(x, 〈. . . , ((x, li) , vi) , . . . , ((x, lk) , vk) , . . .〉) = vk,

where li < lk.

The operation JdelK deallocates (forgets) all variables declared on the highest nesting
level lj :

JdelK(s � 〈((xi, lj) , vk) , . . . , ((xn, lj) , vm)〉) = s.

variable level value

x li v

...

xi lj vk
...

xn lj vm

A new approach to operational semantics by categories 20/34

Arithmetic expressions

Arithmetic expressions
JeK : State→ Value.

[[n]]s = n

[[x]]s = [[get]](x, s)

[[e1 + e2]]s = [[e1]]s⊕ [[e2]]s

[[e1 − e2]]s = [[e1]]s	 [[e2]]s

[[e1 ∗ e2]]s = [[e1]]s⊗ [[e2]]s

Value = Z

A new approach to operational semantics by categories 21/34

Boolean expressions
Boolean expressions

JbK : State→ Bool

[[true]]s = true

[[false]]s = false

[[e1 = e2]]s =
{

true if [[e1]]s=[[e2]]s
false otherwise

[[e1 ≤ e2]]s =
{

true if [[e1]]s≤[[e2]]s
false otherwise

[[¬b]]s =
{

true if [[¬b]]s=false
false otherwise

[[b1 ∧ b2]]s =
{

true if [[b1]]s=[[b2]]s=true
false otherwise

Bool = B
A new approach to operational semantics by categories 22/34

Declarations

Declarations
A declaration

var x

is represented as an endomorphism:

[[]]D : s→ s

for a given state s and defined by

[[var x]]s = [[alloc]](x, s).

A sequence of declarations

[[var x; D]]s = [[D]] ◦ [[alloc(x, s)]].

A declaration creates new entry for declared variable with the actual level of nesting and
undefined value

((x, l) ,⊥) .

A new approach to operational semantics by categories 23/34

Statements

JSK : s→ s′

[[x := e]]s =
{

s′ = s [((x, l) , v) 7→ ((x, l) , JeK) s] for ((x, l) , v) ∈ s;
⊥ otherwise.

[[skip]] = ids, [[skip]]s = s

[[S1; S2]] = [[S2]] ◦ [[S1]], [[S1; S2]]s = [[S2]] ([[S1]]) s

[[if b then S1 else S2]]s =
{

[[S1]]s if [[b]]s = true;
[[S2]]s otherwise.

[[while b do S]]s =
[[if b then (S; while b do S) else skip]]

[[input x]]s =
{

s′ = s [((x, l), v) 7→ ((x, l), v′)] for ((x, l) , v′) ∈ s;
⊥ otherwise.

A new approach to operational semantics by categories 24/34

Statements

JSK : s→ s′

[[x := e]]s =
{

s [((x, l) , v) 7→ ((x, l) , JeKs)] , for ((x, l) , v) ∈ s
s⊥, otherwise

s s′

Jx := eK
s

JskipK

The notation
s′ = s [((x, l), v) 7→ ((x, l), [[e]]s)]

describes a new state s′ that is an actualization of the state s in its entry for the
declared variable x whose value is changed to [[e]]s.

[[skip]] = ids, [[skip]]s = s

A new approach to operational semantics by categories 25/34

Statements

[[S1; S2]] = [[S2]] ◦ [[S1]], [[S1; S2]]s = [[S2]] ([[S1]]) s

s

s′

s′′

JS1K

JS2K

JS1;S2K

If the state s is undefined, i.e. s = s⊥, then execution of any statement in this
undefined state provides also undefined state:

[[S]]s⊥ = s⊥.

[[if b then S1 else S2]]s =
{

[[S1]]s, if [[b]]s = true
[[S2]]s, otherwise

s s′

A new approach to operational semantics by categories 26/34

Statements

[[while b do S]]s = [[if b then (S; while b do S) else skip]]s

s0 s1 s2 sn−1 sn

JSK JSK JSK JSK

Jwhile b do SK

[[input x]]s =
{

s [((x, l), v) 7→ ((x, l), v′)] , for ((x, l) , v) ∈ s;
s⊥ otherwise.

A new approach to operational semantics by categories 27/34

Block statement

begin D; S end

The following is a summary of the four steps used to execute of unnamed blocks:

nesting level l is incremented. We represent this step by fictive entry in state table

((begin, l + 1) ,⊥)

i.e. endomorphism s→ s;
local declarations are elaborated on nesting level l + 1;
the body S of block is executed;
locally declared variables are forgotten at the end of block. We model this
situation using operation [[del]].

The semantics:

[[begin D; S end]]s = [[del]] ◦ [[S]] ◦ [[D]](s � 〈((begin, l + 1),⊥)〉)

A new approach to operational semantics by categories 28/34

Example 1

var x; var y; var d;
input x;
input y;
if (x ≤ y) then

begin
var z;
z := x;
x := y;
y := z;

end;
else

skip;
d := x− y;

We assume that user inputs value 2 into variable x and value 7 into
variable y.

A new approach to operational semantics by categories 29/34

Categorical representation of program

s0

s1
Jvar yK

Jvar xK

s2

Jin
pu
t
yK

Jvar zK

s3Jz := xK
s4

Jd := x− yK

s5

JdelK

s7

Jx := yK

Jinpu
t xK

Jy := zK

s6

Jvar dK

A new approach to operational semantics by categories 30/34

States during program execution

s1
x 1 2

s2
x 1 2

y 1 7

s3
x 1 2

y 1 7

s4
x 1 7

y 1 7

s5
x 1 7

y 1 2

a) b) c)

d)

e) f)

s0
x 1 ⊥

s6
x 1 7

y 1 2

g)

y 1 ⊥ y 1 ⊥

begin 2 ⊥
z 2 ⊥

begin 2 ⊥
z 2 2

begin 2 ⊥
z 2 2

begin 2 ⊥
z 2 2

d 1 ⊥ d 1 ⊥ d 1 ⊥

d 1 ⊥ d 1 ⊥ d 1 ⊥

d 1 ⊥

s7
x 1 7

y 1 2

h)

d 1 5

A new approach to operational semantics by categories 31/34

Example 2

var x; var y;
input x;
y := 1;
while ¬(x = 1) do (y := y ∗ x; x := x− 1)

Assume user input s x = 3.

A new approach to operational semantics by categories 32/34

Categorical representation of program

s1

s3 s4
s6s5

Jy := 1K

Jy := y ∗ xKJx := x− 1K Jx := x− 1K

Jwhile ¬(x = 1) do (y := y ∗ x;x := x− 1)K

s0

Jvar xK

Jinput xK

Jy := y ∗ xK

s2

Jvar yK

A new approach to operational semantics by categories 33/34

States during program execution

s1
x 1 3

s2
x 1 3

y 1 1

s3
x 1 3

y 1 3

s4
x 1 2

y 1 3

s5
x 1 2

y 1 6

a) b) c)

d) e) f)

s0
x 1 ⊥

s6
x 1 1

y 1 6

g)

y 1 ⊥ y 1 ⊥

A new approach to operational semantics by categories 34/34

	Formal semantics
	Categories
	Category theory
	Definition of category
	Commutative diagrams
	Simple categories
	Category of sets
	Functor
	Categorical semantics
	Why categorical operational semantics
	Basic ideas of our approach
	Language Jane
	Language Jane - Syntax
	Specification of states
	Specification of states
	Operational semantics
	State representation
	Representation of operations
	Representation of operations
	Arithmetic expressions
	Boolean expressions
	Declarations
	Statements
	Statements: Assignment and empty statement
	Statements: Sequence and conditional statement
	Statements: Cycle and user input
	Block statement
	Example 1
	Semantics of a program
	States during program execution
	Example 2
	Semantics of a program
	States during program execution

