Provably correct implementation

William Steingartner
william.steingartner@tuke.sk

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of KoSice, Slovakia

Semantics of programming languages
Spring 2022/2023
Theme 05 — Provably correct implementation

Provably correct implementation 1/29

Correct implementation

Structural operational semantics is useful when implementing language.
A correct implementation of program consists of:

e the definition of abstract machine,

e the definition of the meaning of the abstract machine instructions by an
operational semantics,

e the definition of translation functions that will map expressions and
statements in the Jane language into sequences of such instructions.

The correctness result will then state that if we translate a program into code,
and execute the code on the abstract machine, then we get the same result
as we specified by the semantic functions .#,,; and ..

The definition of abstract machine consists of:
e the configuration of abstract machine,
e the definition of instructions and their:

e syntax definition, and
e operational semantics of instructions.

Provably correct implementation 2/29

Abstract machine configuration

The abstract machine AM has configuration of the form:

(c,st,s)
where
e ¢ isacode, i.e. the sequence of instructions to be executed,
e st is the evaluation stack, and

® s is the storage, expressed by state s € State and is used to hold the
values of variables.

We use the evaluation stack to evaluate arithmetic and Boolean expressions.
Formally, stacks are enclosed into semantic domain

st € Stack = (ZUB)”
and each element is a stack - finite sequence of numbers and/or truth values,

e.g.
V1V it iv3 .. Un

where v; are numeric values and ¢; are truth values, v, is on,the top of.stack.

Provably correct implementation 3/29

Syntax of instructions

We shall define two syntactic domains:

e ins € Instr — for instructions; and

e ¢ € Code - forcode, sequences of instructions.
The instructions of AM are given by the abstract syntax:

ins ::= PUSH-n | ADD | MULT | SUB | TRUE | FALSE
| EQ | LE | AND | NEG | FETCH-z | STORE-z
| EMPTYOP | BRANCH(c, ¢) | LOOP(c, ¢)

c=¢lins:c

where ¢ is the empty sequence.

Provably correct implementation 4/29

Semantics of instructions

The semantics of the instructions of the abstract machine is given by an
operational semantics. Transition relation specifies how to execute the
instructions:

{c,st,s) => (', st',s")
Final configuration has a form
(e,,5)

which means that all instructions were executed on AM and the resulting
state is s.

Provably correct implementation 5/29

Semantics of instructions

Instruction PUSH-n pushes a constant value n onto the stack.
(PUSH-n : ¢, st, s) => (¢, A [n] : st,s) 1am)
Instructions ADD, MULT and SUB assume, that on the top of stack two numeric

values v1,v2 € Z are pushed. They are removed by instruction, arithmetic
operation is evaluated and the result is pushed onto the stack.

(ADD : ¢, v1 : vz : st, 8) => (¢, (v1 Dv2) : st,8) (2am)
(MULT : c,v1 w2 & st,s) => (¢, (v1 ®v2) : st,8) (3am)

(SUB : c,v1 : v2 : st 8) => (¢, (v1 ©v2) : st,8) (4am)

Provably correct implementation 6/29

Semantics of instructions

Instructions TRUE and FALSE push the constants tt and ff, respectively, onto
the stack:

(TRUE : ¢, st,s) => (¢, tt: st,s)(5am)
(FALSE : ¢, st,s) => (c,ff : st, s)(6am)

Instruction EQ assumes two numeric values v1,v2 € Z on the top of stack.
They are removed from stack and the result of the relation = (whether the
values are equal) is pushed onto the stack:

(EQ: c,u1 :v2: st,s)=>(c, (v1 = v2) : St, $)(Tam)
Instruction LE assumes two numeric values v1,v2 € Z on the top of stack.

They are removed from stack and the result of the relation < is pushed onto
the stack:

(LE: ¢,v1 : w2 & st,8)=>(c, (v1 < v2) : st, $)(8am)

Provably correct implementation 7/29

Semantics of instructions

Instruction AND assumes two Boolean values t1,t2 € B on the top of stack.
They are removed from stack and the result of conjunction A (value tt or ff)
is pushed onto the stack:

(c,tt : st,s), if t1 =tt and to = tt,
(AND : ¢, t1 : to : st,5)=>
(c,fF : st,s), ift1 =f orta =1 (9am)

Instruction NEG assumes one Boolean value ¢t € B on the top of stack. This
value is removed from the stack and their logical negation is pushed onto the
stack:

(c,tt: st,s), ift=1F

(NEG : ¢, t : st, s)=>
(e, fF : st,s), ift=tt (10am)

Provably correct implementation 8/29

Semantics of instructions

Instruction FETCH-z pushes the value bound to = onto the stack — a value in
actual state s z:

(FETCH-z : ¢, st, s) => (¢, (s x) : st,8) (11am)

Instruction STORE-z pops the topmost element off the stack and updates the
storage so that the popped value is bound to z:

(STORE-z : ¢, v : st,s) => (c, st,s[z — v]) (12am)

Instruction EMPTYOP is an empty instruction, it changes neither the state nor
the stack:

(EMPTYOP : ¢, st,s) => (¢, st,s) (13am)

Provably correct implementation 9/29

Semantics of instructions

Instruction BRANCH(c1, c2) changes the flow control.

If the topmost of the stack is the value tt (that is some Boolean expression
has been evaluated to true) then the stack is popped and c; is to be executed
next. Otherwise, if the topmost element of the stack is ff then it will be
popped and c2 will be executed next:

(c1:¢,8t,s), if t=tt
(BRANCH(c1, ¢2) : ¢, t : sty s) =>
(ca:eystys), if t=M0 (14am)

Provably correct implementation 10/29

Semantics of instructions

A looping construct such as the while-construct can be implemented using
the instruction LOOP(cy, c2). The semantics of this instruction is is defined by
rewriting it to a combination of other constructs including the
BRANCH-instruction and itself:

(LOOP(c1, ¢2) : ¢, st, s)
=> (c1 : BRANCH(cz : LOOP(c1, ¢2), EMPTYOP) : ¢, st,) (15am)

We emphasize that the assumptions for every instruction are necessary for
the continuation of AM work.

If the AM is expecting value(s) on the top of stack and
e on the top of stack the values are missing, or
e the type of values does not correspond

then the execution of abstract machine stops.

Provably correct implementation 11/29

Computation sequence

The execution of program on AM is expressed by computation sequence. Given a
sequence c of instructions and a storage s, a computation sequence for c and s is
either:

® a finite sequence of configurations
aQ, 01, ...,0n
satisfying
ap = (c, ¢, 8) o => it an = (g, st, s'),

for 0 < i < k, k > 0 and where there is no « such that a,,=>a. This sequence
terminates.

® 2 finite sequence of configurations as above but
an = {c, st, s).

Here the execution of program is stopped.
® an infinite sequence of configurations

ag,ai, ...

We say that the sequence is looping — it is infinite.

Provably correct implementation 12/29

Example

We consider the following program for abstract machine:

PUSH-1 : FETCH-x : ADD : STORE-x
with an initial state s © = 2.

A computation sequence of this program is:

oo =
g

(PUSH-1 : FETCH-z : ADD : STORE-x, ¢,5) =>
(FETCH-x : ADD : STORE-z,1,s) =>

= (ADD : STORE-z,2: 1,s) =>
(
(

«as = (STORE-z, 3, s) =>
as = (g, ¢, s[x — 3)])

Computation sequence terminates and the resulting state is s ©z = 3.

Provably correct implementation 13/29

Semantics of instructions — Example

. s AT T TN sr e
1 X . sx : 1).',»\-‘ % T:i|lsxd1
I| ; : I” " :
v ST v i
y .
1 1 srd1
PUSH—1 FETCH—=x ADD STORE—=x

Provably correct implementation 14/29

Properties of computation sequence

We denote
o (c,st,s)=>"(c/,st’, s') computation sequence of length k,
e (c,st,s)=>*(c',st’,s’) finite computation sequence.

Lemma 1: Let c1, c2, ¢’ € Code be codes, st1, sta, st’ € Stack are stacks
and s, s’ € State are states of AM. If

(c1, st1, s) =sFk (¢, st')s")

then

(c1: ca, st : sta, s) =sF (c' i ca, st : sta,s)

This means that we can extend the code component as well as the stack
component without changing the behavior of the machine.

Provably correct implementation 15/29

Properties of computation sequence

Lemma 2: Let ¢1, c2 € Code be codes, st, st’, st” € Stack are stack and
s,s',s" € State are states of AM. If for some natural k

(c1: ez, st,8) =" (e, 51", 5")

then exists configuration (e, st’, s’} and natural numbers k1, k2 with
k1 + k2 = k such that

(c1,s8t,8) =>F (g,st',s') and

(ca,st',8") =2 (e, st",5")

O

This means that the execution of a composite sequence of instructions can
be split into two pieces.

Provably correct implementation 16/29

Properties of computation sequence

Lemma 3: Semantics of abstract machine is deterministic if for all choices
of a,a/,a’:

if a=>d and a=>d", then o’ =a".

We shall define the meaning of a sequence of instructions as a (partial)
function from State to State:

s, if {c,e,8) =>* (g,st,5),
//Zﬂc]s—{

1, otherwise.

Provably correct implementation 17/29

Specification of the translation

A translation of Jane into instructions of AM — a code generating is defined:

e by translation functions,
e for each syntactic domain we define one translation function,
e and we define it for all alternatives in the given production rule.

Provably correct implementation 18/29

Specification of the translation
Translation of arithmetic expressions is defined by function
J& : Expr — Code

for all syntactic forms of arithmetic expressions in Jane:

F&[n] = PUSH-n

JEx] = FETCH-x

TEle1+ex] = TE]ez] : TEer] : ADD

TEerxes] = TEe2] : TEe1] : MULT

9&[[61*62]] :9(5”[[62]] : 95[61]]ZSUB

Note: Code generated for binary expressions consists of the code for the right
argument followed by that for the /left argument and finally the appropriate
instruction for the operator.

Provably correct implementation 19/29

Specification of the translation

Translation of Boolean expressions is defined by function:

IR : Bexpr — Code
for all syntactic forms of Boolean expressions in Jane:

TR true] = TRUE

TP false] = FALSE

TBler=es]| = TEes]: TE[er] 1 EQ
TBler < ex] = TE[es]: TE[er]: LE
TB[-b] = TP b] : NEG

y%[bl/\bz]]: y@[bzﬂiy%[[bl]]:AND

Provably correct implementation 20/29

Example 1

Consider an arithmetic expression z * (z — 1) and generate a code for AM:

TExx(x—1)] = TE[x—1]: TE[z] : MULT
= &« — 1] : FETCH-z : MULT
= 9J6&[1]: & x] : SUB : FETCH-z : MULT

= PUSH-1 : FETCH-z : SUB : FETCH-x : MULT

Provably correct implementation 21/29

Specification of the translation

Translation of statements is defined by the function:
75 : Statm — Code

for all syntactic forms of statements in Jane:

TS x=e] = T&[e] : STORE-z

7. skip] = EMPTYOP

TS S1;8:] = TF[S1] : Z7[S:2]

FS[if b then Sy else So] = TA[b] : BRANCH(T.¥[S1], 7L S2])

J.[while b do S| =L00P(TA[b],T7S[S])

Provably correct implementation 22/29

Example 2

Consider a simple program z:=0;while (y < z) do (=2 + 1;z:=2¢ — y) and
generate a code for AM:

TS [z=0;while (y < z) do (z:==2z + ;=0 — y) |
= JS[2=0] : ZF[while (y < z)do (z=z + L;z==x — y)]
= J&[0] : STORE-z : LOOP(T By < z], TS [2=z + L;z=x — y])

= PUSH-0 : STORE-z
:LOOP(FE[x] : TEy] : LE, TS [z=2+ 1] : TS [x=x — y])

= PUSH-0 : STORE-z
: LOOP(FETCH-z : FETCH-y : LE,
PUSH-1 : FETCH-z : ADD : STORE-z
: FETCH-y : FETCH-z : SUB : STORE-x)

O

Provably correct implementation 23/29

The semantic function .%4u,

An abstract implementation of statement S is obtained by executing of the
following steps:

e translating the statement S into code of AM by translation functions, and
e executing the code on AM by semantics of instructions.

This can be expressed by the semantic function .4, of abstract machine:
Zam : Statm — (State — State)
which is defined for statement S € Statm as follows:

Fam[S] = (7 o M)]S]

Provably correct implementation 24/29

Correctness of abstract implementation

The correctness of abstract implementation amounts to showing that, if
we first translate a statement into code for AM and then execute code, then
we must to obtain the same result as specified by the operational semantics
of Jane.

Proof will be done in three steps:

e for arithmetic expressions,
e for Boolean expressions,
e for statements.

Provably correct implementation 25/29

Correctness of the implementation of
arithmetic expressions

Theorem 1: For all arithmetic expressions e we have:
(F€e], e, s) =>" (e,8[e]s, s)
Proof: The proof is by structural induction on e.

© The case n:
From translation function we have 7&[n] = PUSH-n.
From semantics of instruction it implies (PUSH-n, e, s)=>(e, 4 [n],s).
Since
En]s=A[n]

we have completed the proof in this case.

Provably correct implementation 26/29

Correctness of the implementation of
arithmetic expressions

® The case z (variable):
From translation function we have &«] = FETCH-z.
From semantics of instruction it implies (FETCH-z, ¢, s)=>(e, (s), s).
Since:
Elz]s=s=x

this is required result.

Provably correct implementation 27/29

Correctness of the implementation of

arithmetic expressions

©® The case ¢; + e3:
We have J&e1+ex] = TEex]: T&er] : ADD.
The induction hypothesis (IH) applied to both expressions e1, es gives
that:
(TEe1],e,s) =>" (e,8[e1]s,s)
(T&e2],e,s) =>" (e,8[ez2]s, s)
In both cases all intermediate configurations will have a non-empty
evaluation stack. Thus:

(FE[ex] : TE[er] : ADD, e, s) =>* from IH and Lemma 1
(F&[er] : ADD, & ez s, s) => * from IH and Lemma 1
(ADD, & e1]s: & ez]s, s) from sem. AM
(e,8[er]s® Eez2]s, s)
Since
Eler+ex]s=EJer]sDEezx]s
we have the desired result.

The proof for other cases is analogous.

Provably correct implementation 28/29

Correctness of the implementation of
Boolean expressions

Theorem 2: For all Boolean expressions b we have:
(7B b],e,5) =>" (e, 2[b], s)

Proof: The proof is analogous to the proof for correctness of arithmetic
expressions.

Theorem 3: For every statement S of _# ane we have:
Fns[S] = Fam[S]

Proof: The theorem is proved in two stages:

© it (S,5) — s’ then (7.7 S],e,5)=>"(e,¢,5');
@ it (7.7]S],¢e,5)=>"(e,st,s') then (S,s) — s’ and st = ¢.

Provably correct implementation 29/29

	Correct implementation
	Abstract machine configuration
	Syntax of instructions
	Semantics of instructions
	Semantics of instructions (1)
	Semantics of instructions (2)
	Semantics of instructions (3)
	Semantics of instructions (4)
	Semantics of instructions (5)
	Semantics of instructions (6)
	Computation sequence
	Example
	Semantics of instructions – Example
	Properties of computation sequence
	Properties of computation sequence
	Properties of computation sequence
	Specification of the translation
	Specification of the translation
	Specification of the translation
	Example 1
	Specification of the translation
	Example 2
	Semantic function
	Correctness
	Correctness of the implementation of arithmetic expressions
	Correctness of the implementation of arithmetic expressions
	Correctness of the implementation of arithmetic expressions
	Correctness of the implementation of Boolean expressions

