
Denotation semantics

William Steingartner
william.steingartner@tuke.sk

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice, Slovakia

Semantics of programming languages
Spring 2022/2023

Theme 06 – Denotational semantics

Denotation semantics 1/26



Denotation semantics

In the operational approach we were interested in how a program is executed.
In the denotational approach we are merely interested in the effect of executing a
program, i.e. an association between initial states and final states.
The main idea is to define a semantic function for each syntactic category.
Semantic function maps each syntactic construct to a mathematical object
(often a function), that describes the effect of executing that construct.

Semantic functions are defined compositionally:
there is a semantic clause for each of the basic elements of the syntactic category,
and
for each method of constructing a composite element (in the syntactic category)
there is a semantic clause defined in terms of the semantic function applied to the
immediate constituents of the composite element.

Denotation semantics 2/26



Semantic function

The effect of executing a statement S

S ∈ Statm
is to change the state so we shall define the meaning of S to be a partial function on
states:

Sds : Statm→ (State ⇀ State).

Denotations of particular statements we define with denotation equations. We define
one equation for each alternative in the production rule of an abstract syntax.

Denotation semantics 3/26



Denotation of statements
Denotation of assignment:

(1ds) SdsJ x:=e Ks= s[x 7→ E J e Ks]
Denotation of an empty statement:

(2ds) SdsJ skip K= idState

Denotation of statements sequence:

(3ds) SdsJ S1; S2 K= SdsJ S2 K ◦ SdsJ S1 K

defined for an initial state s as follows:

SdsJ S1; S2 Ks= (SdsJ S2 K ◦ SdsJ S1 K)s

=


s′, if there exists s′′ such that SdsJ S1 Ks= s′′

and SdsJ S2 Ks′′= s′,

⊥, if SdsJ S1 Ks= ⊥ or if there exists s′′ such that
SdsJ S1 Ks= s′′ but SdsJ S2 Ks′′= ⊥ .

Denotation semantics 4/26



Denotation of statements

We define an auxiliary function cond:

cond : (State→ B)× (State ⇀ State)× (State ⇀ State)
→ (State ⇀ State)

defined for ϕ : State→ B and f1, f2 : State ⇀ State as follows:

cond(ϕ, f1, f2)s =

{
f1 s, if ϕ s= tt,

f2 s, if ϕ s= ff .

Denotation semantics 5/26



Denotation of statements

Denotation of conditional statement

(4ds) SdsJ if b then S1 else S2 K=cond(BJ b K, SdsJ S1 K, SdsJ S2 K)
for an initial state s

SdsJ if b then S1 else S2 Ks= cond(BJ b K, SdsJ S1 K, SdsJ S2 K)s

=


s′, if BJ b Ks=tt and SdsJ S1 Ks= s′,

or if BJ b Ks=ff and SdsJ S2 Ks= s′,

⊥, if BJ b Ks=tt and SdsJ S1 Ks= ⊥
or if BJ b Ks=ff and SdsJ S2 Ks= ⊥ .

Denotation semantics 6/26



Denotation of statements

We observe that the effect of loop

while b do S

must equal that of

if b then (S; while b do S) else skip

Using the parts of Sds that have already been defined, this gives

SdsJ while b do S K= cond(BJ b K, SdsJ S K ◦SdsJ while b do S K, id) (1)

We note that we cannot use the equation above as the definition of the denotation of a loop.
However, this equation is recursive.

Denotation semantics 7/26



Denotation of statements

The equation (1) expresses that

SdsJ while b do S K

must be a fixed point of the functional F defined by

F g = cond(BJ b K, g ◦SdsJ while b do S K, id),
that is SdsJ while b do S K = F (SdsJ while b do S K).
Thus we write:

SdsJ while b do S K= fix F,

The functionality of the auxiliary function fix is:

fix : ((State ⇀ State)→ (State ⇀ State))→ (State ⇀ State)

Denotation semantics 8/26



Fixed points

To prepare for a framework that guarantees the existence of the desired fixed point fix F
we will develop a framework where

1 we impose requirements on the fixed points and show that there is at most one
fixed point fulfilling these requirements, and

2 all functionals originating from statements in Jane do have a fixed point that
satisfies these requirements.

For that, we introduce:

1 ordering on partial functions,
2 complete partially ordered sets,
3 graph of the function,
4 continuous function.

Denotation semantics 9/26



Partial ordering

Definition 1: Let D be a set and v binary relation on this set, v ⊆ D ×D, which is
reflexive, antisymmetric and transitive, i.e. for any d1, d2, d3 ∈ D:

d1 v d1 (reflexivity)
if d1 v d2 and d2 v d1, then d1=d2 (antisymmetry)
if d1 v d2 and d2 v d3, then d1 v d3 (transitivity)

Such a relation v we call partial ordering and a tuple (D,v) we call partially ordered
set (poset). �

The least element of poset D we denote ω. For all d ∈ D it holds that ω v d. If D has
the least element then it is unique.

Denotation semantics 10/26



Partial ordering

Definition 2: Let (D,v) be a poset and let Y be a subset of D, Y ⊆ D. An upper
bound of Y is an element d ∈ D such that for any d′ ∈ Y holds the following:

d′ v d.

An upper bound d of Y ⊆ D is a least upper bound of Y , if and only if d′ is an upper
bound of Y implies

d v d′′.

�

If Y has a least upper bound d then d is unique and we denote it tY .

Denotation semantics 11/26



Partial ordering

Definition 3: Let (D,v) be a poset. A relation v we call relation of linear ordering, if
for any elementsd1, d2 ∈ D holds

either d1 v d2 or d2 v d1.

Subset Y ⊆ D is called chain in D it is consistent in the sense that if we take any two
elements of Y then one will share its information with the other; formally this is
expressed by linear ordering on Y .

A partially ordered set (D,v) is called a chain complete poset (abbreviated ccpo)
whenever tY exists for all subsets Y of D. �

Definition 4: Let g : D → D′ be a function. A graph g is a set

graph(g)= {(d, d′) ∈ D ×D′ | g d= d′}.

�

Denotation semantics 12/26



Continuous functions

Definition 5: Let (D,v) and (D′,v′) be chain complete posets. We say that function
g : D → D′ is monotone if and only if for all choices d1, d2 ∈ D holds the following:

if d1 v d2, then g d1 v′ g d2.

�

The composition of two monotone functions is a monotone function.

Definition 6: Let (D,v) and (D′,v′) are chain complete postes and let g : D → D′ be a
monotone function. We say that function g is continuous if

t′{g y | y ∈ Y }= g(tY ) (2)

holds for all non-empty chains Y ⊆ D.
�

If (??) holds for an empty chain, Y =∅, that is ω= g ω holds, then we shall say that g is strict.

Denotation semantics 13/26



Fixed points

Definition 7: Let (D,v) and (D′,v′) be chain closed posets.
A functional F

F : (D → D′)→ (D → D′)

is a function which assigns to monotone function g : D → D′ the monotone function
F g : D → D′.

A fixed point of functional F is such a function g0 : D → D′ that

F g0 = g0

holds, i.e. by applying the functional on this function we get the same function as a result.
�

A functional F :

can have no fixed point, or
can have one or more fixed points.

We are interested in an existence of the least fixed point fix F .

Denotation semantics 14/26



Fixed points

Theorem 1: Continuous functions on chain closed posets always have the least fixed
points.

Theorem 2: Let f : D → D be a continuous function on the ccpo (D,v) with the least
element ⊥. Then

fix f = t {fn ω | n ≥ 0}
defines an element of D and this element is the least fixed point of f . A construction is
given as follows:

f0 = id,

fn+1 = f ◦ fn, for n ≥ 0.
(3)

Denotation semantics 15/26



Denotation of the loop
A functional of partially defined recursive function

SdsJ while b do S K : State ⇀ State

is the following function

F : (State ⇀ State)→ (State ⇀ State)

defined for g : State ⇀ State

F g= cond(BJ b K, g ◦SdsJ S K, id).

Steps necessary for denotation of loop:

I. we must to define partial ordering v on the set of partially defined functions State ⇀ State
and to prove that the set (State ⇀ State,v) is a poset with the least element.
II. we must to prove that (State ⇀ State,v) is a chain complete poset with the least upper
bound.
III. we must to prove that functional F is a continuous function.

Then we can say that the least fixed point fix F of the functional F exists and it is the
denotation of loop statements.

Denotation semantics 16/26



Denotation of the loop
I. We define partial ordering v of partially defined functions as follows:
Let g, g′ : State ⇀ State be partially defined functions. We say that g v g′ if

if g s= s′ then g′ s= s′

holds for any states s, s′ ∈ State.

Lemma 8: If g, g′ : State ⇀ State are partially defined functions and v is ccpo, then

g v g′ if and only if graph(g) ⊆ graph(g′).

(An alternative characterization of ordering)

Lemma 9: A set (State ⇀ State,v) is a poset with the least element

⊥: State ⇀ State.

A function ⊥ s (or ⊥ (s)) send any input s, s ∈ State, into undefined value as resulting value:

⊥ s = ⊥ .

Denotation semantics 17/26



Denotation of the loop

II. We prove, that (State ⇀ State,v) is ccpo with the least upper bound.

Lemma 10: A set (State ⇀ State,v) is ccpo. The equation (property)

graph(tY )=
⋃
{graph(g) | g ∈ Y }

holds for the least upper bound tY of its chain Y ⊆ State ⇀ State.

Denotation semantics 18/26



Denotation of the loop

III. We must to show that F is continuous.
To do so we first observe that

F g= F1(F2 g)

where
F1 g = cond(BJ b K, g, id) and

F2 g = g ◦SdsJ S K

for f, g : State ⇀ State.

The continuity of F we obtain by showing that F1 and F2 are continuous.

Lemma 11: Let f0 : State→ B and f1 : State ⇀ State are continuous. Then F defined as
follows

F g= cond(f0, g, f1)

is continuous.

Denotation semantics 19/26



Denotation of the loop

Lemma 12: Let g0 : State ⇀ State be partially defined function, then F defined as

F g= g ◦ g0

for g : State ⇀ State is continuous.

Denotation of the loop can be now defined by the following denotation equation

(5ds) SdsJ while b do S K= fix F,

where the functional F is defined as follows:

F g= cond(BJ b K, g ◦SdsJ S K, id),

for g : State ⇀ State.

Denotation semantics 20/26



Example 1

Example 1: We find a denotation of S in an initial state s0=[x 7→ 3], where

S= y:= 1; while ¬(x= 1) do (y:= y ∗ x; x:= x− 1).

From (1ds) and (5ds) for an initial state s0 we have

SdsJ S Ks0= (fix F )s0[y 7→ 1],

whereby

(F g) s=

{
g(SdsJ y:=y ∗ x; x:=x− 1 Ks), if BJ¬(x=1) Ks=tt,

s, if BJ¬(x=1) Ks=ff .

This can be written also as follows:

(F g) s=
{

g(s[y 7→ (s y) ∗ (s x)][x 7→ (s x)− 1]), if s x 6= 1,
s, if s x=1.

Denotation semantics 21/26



Example 1
We construct functions F n ⊥ according to Theorem 2, form. (3):

(F 0 ⊥)s = ⊥,

(F 1 ⊥)s =
{

s, if s x=1,
(F 0 ⊥) =⊥, if s x 6= 1,

(F 2 ⊥)s =

{
s, if s x=1,

(F 1 ⊥)s =
{

s[y 7→ (s y) ∗ (s x)][x 7→ (s x)− 1], if s x=2,
⊥, otherwise.

This means that only if x has value 1 or 2, then the function F 2 ⊥ applied on the state s
provides concrete value for the variable y.

(F 3 ⊥)s =


s, if s x=1,
s[y 7→ (s y) ∗ (s x)][x 7→ (s x)− 1], if s x=2,
s[y 7→ (s y) ∗ (s x) ∗ ((s x)− 1)][x 7→ ((s x)− 1)− 1], if s x=3,
⊥, otherwise.

Denotation semantics 22/26



Example 1
We generalize:
nth function F n ⊥ provides values of y for values in variable x from 1 to n. So

(F n ⊥)s=


⊥, if s x < 1 or s x > n,

s[y 7→ (s y) ∗ s x . . . ∗ ((s x)− (n− 1))][x 7→ ((s x)− (n− 1))],
if s x ≤ n and s x > 1

s, if s x = 1

Then

(fix F )s=


⊥, if s x < 1,

s[y 7→ (s y) ∗ n . . . ∗ 2][x 7→ 1], if s x=n,
n > 1.

For an initial state s0 x=3 we have

(fix F )(s0[y 7→ 1])= s0[y 7→ 1 ∗ 3 ∗ 2][x 7→ 1]=[y 7→ 6, x 7→ 1],

where 6 is the resulting value, the factorial of 3.
�

Denotation semantics 23/26



Example 2

Example 2: We find a denotation of the statement

while ¬(x=0) do skip

for an initial state s ∈ State.

It holds from (5ds)

SdsJ while ¬(x=0) do skip Ks= (fix F ′)s

whereby

(F ′ g)s=
{

g s, if s x 6= 0,
s, if s x=0,

because SdsJ skip Ks= s. That means, every partially defined function
g : State ⇀ State

g s = s

is a fixed point of functional F ′.

Denotation semantics 24/26



Example 2
This is the situation when the functional has more fixed points. The least fixed point fix F ′ is
found after construction of functions

(F ′0 ⊥)s = ⊥

(F ′1 ⊥)s = (F ′(F ′′0 ⊥))s =
{
⊥, if s x 6= 0,
s, if s x=0,

(F ′2 ⊥)s = (F ′(F ′1 ⊥))s =
{
⊥, if s x 6= 0,
s, if s x=0,

· · ·

(F ′n ⊥)s =
{
⊥, if s x 6= 0,
s, if s x=0.

So the least fixed point of functional F ′ is a function

fix F ′ = g0

defined
g0 s=

{
⊥, if s x 6= 0,
s, if s x=0,

and the denotation is

SdsJ while ¬(x= 0) do skip K= fix F ′= g0

�
Denotation semantics 25/26



Semantic equivalence

Similarly we can define the denotation of the statement

while true do skip.

Definition 13: We say that statements S1 and S2 are semantically equivalent according
to denotational semantics, if they have the same denotation, that is

SdsJ S1 K = SdsJ S2 K

holds.
�

Denotation semantics 26/26


	Denotation semantics
	Denotation semantics: Semantic function
	Denotation of statements
	Denotation of statements
	Denotation of statements
	Denotation of statements
	Denotation of statements
	Fixed point: preview
	Partial ordering
	Partial ordering
	Partial ordering
	Continuous functions
	Fixed points
	Fixed point theorem
	Denotation of the loop
	Denotation of the loop
	Denotation of the loop
	Denotation of the loop
	Denotation of the loop
	Example 1
	Example 1
	Example 1
	Example 2
	Example 2
	Semantic equivalence

