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Formal semantics

provides unambiguous meaning of programs written in programming language;
helps designers to prepare good and useful programming languages;
serves for implementators to write correct compilers;
encourages users/programmers how to use language constructions properly.

Semantic methods
denotational semantics;
operational semantics;
natural semantics;
axiomatic semantics;
action semantics;
game semantics.
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Categories

mathematical structures consisting of objects and morphisms between them;
objects can be various mathematical structures, data structures, types;
categories have become useful for modeling computations, processes, programs,
program systems;
are basic structures for coalgebraic behavioural models.

Categories in teaching
quite simple mathematical structures;
graphical representations useful for illustration of examples;
understandable for our students.
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Category theory
Original purpose of categories
in theyears 1942-1945 - in topology, especially algebraic topology,
geometry (Samuel Eilenberg, Saunders MacLane)

Application of categories
algebraic topology;
geometry;
physics; . . .

In informatics
expressing the models of computation;
definition of semantics;
definition of types and work with them;
models of logic; . . .

A new approach to operational semantics by categories 4/34



Definition of category

Category
Ob(C ), objects of category C : A, B, . . .;
Morph(C ), morphisms of category C : f : A → B;
identical morphism for each object C , idA : A→ A;
the composition of morphisms: for f : A→ B and g : B → C is defined g ◦ f : A→ C.

For each category are defined the following conditions:

1 the domain of composition of morphisms f ◦ g is the domain of f and codomain of
composition f ◦ g is codomain of g;

2 composition of morphisms is associative, i.e. h ◦ (g ◦ f) = (h ◦ g) ◦ f ;
3 the domain and codomain of identity idA is an object A;
4 if f : A→ B is a morphism, then it holds f ◦ idA = idB ◦ f .
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The commutative diagrams
The commutative diagram is a structure for graphical expressing of equalities in categories. Let
A and B be the objects of category and let D be the diagram of category C . The diagram D
we call commutative diagram, if the all paths from A to B composed of morphisms are equal; it
means that for the morphisms

fi : Ai−1 → Ai and gj : A′j−1 → A′j

for i = 1, . . . , n, j = 1, . . . , m, where A = A0 = A′0 a B = An = A′m it holds

fn ◦ . . . ◦ f2 ◦ f1 = gm ◦ . . . ◦ g2 ◦ g1.

A

A1

A′1

. . .

. . .

f2

g2

fn−1

gm−1

An−1

A′m−1

B

f1

g1

fn

gm
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Simple categories

Empty category ∅ - no objects, no morphisms.
1 category with only one object and one morphism - an identity on
existing category object.
1 + 1 category with two objects and two morphisms - identities on
particular objects.
2 category with two objects, two identity morphisms and one
morphism between category objects.

A

idA

1
A

idA

B

idB

1+ 1
A

idA

B

idB

2

f
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Category of sets

S et

objects are sets, Ob(S et) = {A, B,N, . . .};
morphisms are functions, f : A→ B, ln : R+ → R etc.;
identity is defined on each set, idA : A→ A;
composition of morphisms is a composition of functions: for
f : A→ B and g : B → C exists a new morphism g ◦ f : A→ C:

(g ◦ f)(x) = g(f(x))

for x ∈ A.
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Functor

Functor
Functor F : C → D is defined as tuple of functions (F0, F1)

F0 : Cobj → Dobj

F1 : Cmorp → Dmorp,

with the following conditions:
if f : A→ B is a morphism in C , then F1(f) : F0(A)→ F0(B) v D ;
for each object A in C holds F1(idA) = idF0(A);
if f ◦ g is a composition in C , then the composition F1(f) ◦ F1(g) is defined in D and it
holds F1(f ◦ g) = F1(f) ◦ F1(g).

F ◦ f = F (f) ◦ F
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Categorical semantics

denotational semantics uses category of types where objects are types and
morphisms are functions;
algebraic semantics uses institutions as complex structures based on categories of
signatures;
game semantics uses category of arenas.
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Why categorical operational semantics

provides illustrative view of dynamics of states;
provides simply understandable mathematical model of programs;
appropriate for informaticians writing compilers;
serves for creating skills to work with formal methods.
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Basic ideas of our approach

Construction of category of states
we consider simple imperative language;
our language has only two implicit types;
we do not consider exception, jumps and recursion;
so simplified model is understandable without losing exactness.
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Language J ane

consists of traditional syntactic constructions of imperative languages;
for defining formal syntax of J ane the following syntactic domains are introduced:

n ∈ Num - for digit strings;
x ∈ Var - for variable names;
e ∈ Expr - for arithmetic expressions;
b ∈ Bexpr - for boolean expressions;
S ∈ Statm - for statements;
D ∈ Decl - for sequences of variable declarations.
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Language J ane - Syntax

The elements n ∈ Num and x ∈ Var have no internal structure from semantic point of
view.

The syntactic domain Expr consists of all well-formed arithmetic expressions created by
the following production rule

e ::= n | x | e + e | e− e | e ∗ e.

Boolean expression from Bexpr can be of the following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b.

The variables used in programs have to be declared. We consider D ∈ Decl as a
sequence of declarations:

D ::= var x; D | ε.

As the statements S ∈ Statm we consider five Dijkstra’s statements together with
block statement and input statement:

S ::= x := e|skip|S; S|if b then S else S|while b do S|begin D; S end|input x.
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Specification of states

State
can be considered as some abstraction of computer memory;
change of state means change of value in memory;
because of block structure of J ane, we have to consider also a level of block
nesting;
every variable occurring in a program has to be allocated;

The signature ΣState for states

ΣState =
types : State, V ar, V alue

opns : init :→ State

alloc : var, State→ State
get : V ar, State→ V alue
del : State→ State
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Specification of states

Representation
The representation of the elements of the type V alue we consider the set
of integer numbers:

Value = Z.

For undefined values we use the symbol ⊥.

Type V ar is represented by set Var of variable names.

Levels of declaration l are denoted by natural numbers:

l ∈ Level, Level = N.
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Operational semantics

Operational model
we construct operational model of J ane as the category CState of states;
we assign to states their representation;
because of block structure of J ane, we have to consider also a level of block
nesting (l ∈ Level, Level = N);
representation of type State has to express variable, its value with respect to
actual nesting level;
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State representation

Sequence
s : Var× Level ⇀ Value

Every state s can be expressed as a sequence of ordered pairs ((x, l) , v):

s = 〈((x, 1) , v1) , . . . , ((z, l) , vn)〉

Table
variable level value

x 1 v1

z l vn

...
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Representation of operations

The operation JinitK
JinitK = s0 = 〈((⊥, 1) ,⊥)〉

creates the initial state of a program, with no declared variable.

variable level value

⊥ 1 ⊥

The operation JallocK
JallocK(x, s) = s � ((x, l) ,⊥) ,

sets actual nesting level to declared variable. Because of undefined value of declared
variable, the operation JallocK does not change the state.

variable level value

x l ⊥
... ... ...
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Representation of operations

The operation JgetK returns a value of a variable declared on the highest nesting level,

JgetK(x, 〈. . . , ((x, li) , vi) , . . . , ((x, lk) , vk) , . . .〉) = vk,

where li < lk.

The operation JdelK deallocates (forgets) all variables declared on the highest nesting
level lj :

JdelK(s � 〈((xi, lj) , vk) , . . . , ((xn, lj) , vm)〉) = s.

variable level value

x li v

... ... ...

xi lj vk
... ... ...

xn lj vm
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Arithmetic expressions

Arithmetic expressions
JeK : State→ Value.

[[n]]s = n

[[x]]s = [[get]](x, s)

[[e1 + e2]]s = [[e1]]s⊕ [[e2]]s

[[e1 − e2]]s = [[e1]]s	 [[e2]]s

[[e1 ∗ e2]]s = [[e1]]s⊗ [[e2]]s

Value = Z
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Boolean expressions
Boolean expressions

JbK : State→ Bool

[[true]]s = true

[[false]]s = false

[[e1 = e2]]s =
{

true if [[e1]]s=[[e2]]s
false otherwise

[[e1 ≤ e2]]s =
{

true if [[e1]]s≤[[e2]]s
false otherwise

[[¬b]]s =
{

true if [[¬b]]s=false
false otherwise

[[b1 ∧ b2]]s =
{

true if [[b1]]s=[[b2]]s=true
false otherwise

Bool = B
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Declarations

Declarations
A declaration

var x

is represented as an endomorphism:

[[ ]]D : s→ s

for a given state s and defined by

[[var x]]s = [[alloc]](x, s).

A sequence of declarations

[[var x; D]]s = [[D]] ◦ [[alloc(x, s)]].

A declaration creates new entry for declared variable with the actual level of nesting and
undefined value

((x, l) ,⊥) .
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Statements

JSK : s→ s′

[[x := e]]s =
{

s′ = s [((x, l) , v) 7→ ((x, l) , JeK) s] for ((x, l) , v) ∈ s;
⊥ otherwise.

[[skip]] = ids, [[skip]]s = s

[[S1; S2]] = [[S2]] ◦ [[S1]], [[S1; S2]]s = [[S2]] ([[S1]]) s

[[if b then S1 else S2]]s =
{

[[S1]]s if [[b]]s = true;
[[S2]]s otherwise.

[[while b do S]]s =
[[if b then (S; while b do S) else skip]]

[[input x]]s =
{

s′ = s [((x, l), v) 7→ ((x, l), v′)] for ((x, l) , v′) ∈ s;
⊥ otherwise.
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Statements

JSK : s→ s′

[[x := e]]s =
{

s [((x, l) , v) 7→ ((x, l) , JeKs)] , for ((x, l) , v) ∈ s
s⊥, otherwise

s s′

Jx := eK
s

JskipK

The notation
s′ = s [((x, l), v) 7→ ((x, l), [[e]]s)]

describes a new state s′ that is an actualization of the state s in its entry for the
declared variable x whose value is changed to [[e]]s.

[[skip]] = ids, [[skip]]s = s
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Statements

[[S1; S2]] = [[S2]] ◦ [[S1]], [[S1; S2]]s = [[S2]] ([[S1]]) s

s

s′

s′′

JS1K

JS2K

JS1;S2K

If the state s is undefined, i.e. s = s⊥, then execution of any statement in this
undefined state provides also undefined state:

[[S]]s⊥ = s⊥.

[[if b then S1 else S2]]s =
{

[[S1]]s, if [[b]]s = true
[[S2]]s, otherwise

s s′
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Statements

[[while b do S]]s = [[if b then (S; while b do S) else skip]]s

s0 s1 s2 sn−1 sn

JSK JSK JSK JSK

Jwhile b do SK

[[input x]]s =
{

s [((x, l), v) 7→ ((x, l), v′)] , for ((x, l) , v) ∈ s;
s⊥ otherwise.
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Block statement

begin D; S end

The following is a summary of the four steps used to execute of unnamed blocks:

nesting level l is incremented. We represent this step by fictive entry in state table

((begin, l + 1) ,⊥)

i.e. endomorphism s→ s;
local declarations are elaborated on nesting level l + 1;
the body S of block is executed;
locally declared variables are forgotten at the end of block. We model this
situation using operation [[del]].

The semantics:

[[begin D; S end]]s = [[del]] ◦ [[S]] ◦ [[D]](s � 〈((begin, l + 1),⊥)〉)
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Example 1

var x; var y; var d;
input x;
input y;
if (x ≤ y) then

begin
var z;
z := x;
x := y;
y := z;

end;
else

skip;
d := x− y;

We assume that user inputs value 2 into variable x and value 7 into
variable y.
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Categorical representation of program

s0

s1
Jvar yK

Jvar xK

s2

Jin
pu
t
yK

Jvar zK

s3Jz := xK
s4

Jd := x− yK

s5

JdelK

s7

Jx := yK

Jinpu
t xK

Jy := zK

s6

Jvar dK
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States during program execution

s1
x 1 2

s2
x 1 2

y 1 7

s3
x 1 2

y 1 7

s4
x 1 7

y 1 7

s5
x 1 7

y 1 2

a) b) c)

d)

e) f )

s0
x 1 ⊥

s6
x 1 7

y 1 2

g)

y 1 ⊥ y 1 ⊥

begin 2 ⊥
z 2 ⊥

begin 2 ⊥
z 2 2

begin 2 ⊥
z 2 2

begin 2 ⊥
z 2 2

d 1 ⊥ d 1 ⊥ d 1 ⊥

d 1 ⊥ d 1 ⊥ d 1 ⊥

d 1 ⊥

s7
x 1 7

y 1 2

h)

d 1 5
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Example 2

var x; var y;
input x;
y := 1;
while ¬(x = 1) do (y := y ∗ x; x := x− 1)

Assume user input s x = 3.
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Categorical representation of program

s1

s3 s4
s6s5

Jy := 1K

Jy := y ∗ xKJx := x− 1K Jx := x− 1K

Jwhile ¬(x = 1) do (y := y ∗ x;x := x− 1)K

s0

Jvar xK

Jinput xK

Jy := y ∗ xK

s2

Jvar yK

A new approach to operational semantics by categories 33/34



States during program execution

s1
x 1 3

s2
x 1 3

y 1 1

s3
x 1 3

y 1 3

s4
x 1 2

y 1 3

s5
x 1 2

y 1 6

a) b) c)

d) e) f )

s0
x 1 ⊥

s6
x 1 1

y 1 6

g)

y 1 ⊥ y 1 ⊥
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