
Structural operationanal semantics of
imperative programming language

William Steingartner
william.steingartner@tuke.sk

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice, Slovakia

Semantics of programming languages

Spring 2022/2023

Theme 03 – Structural operational semantics

Structural operationanal semantics of imperative programming language 1/18



Structural operational semantics

In Structural operational semantics, the emphasis is on the individual steps
of the execution, that is the execution of assignments and tests.

Configuration has the form
〈S, s〉.

The transition relation in the structural operational semantics expresses the
first step of the execution of S from state s:

〈S, s〉 ⇒ α,

where α denotes

• state s′,

• or configuration 〈S′, s′〉, resp.

The symbol ’⇒’ denotes one-step transition in structural operational
semantics.

Structural operationanal semantics of imperative programming language 2/18



Structural operational semantics

The transition relation has two forms:

• 〈S, s〉 ⇒ s′ means that execution of S from s has terminated and the
final state is s′,

• 〈S, s〉 ⇒ 〈S′, s′〉 means that execution of S is not completed and the
remaining computation is expressed by the intermediate configuration
〈S′, s′〉.

We shall say that 〈S′, s′〉 is stuck if there is no such transition

〈S, s〉 ⇒ s′ or 〈S, s〉 ⇒
〈
S′, s′

〉
.

The execution of statement S from state s is stopped.

Structural operationanal semantics of imperative programming language 3/18



Semantics of statements

Derivation rules for language Jane are as follows:

〈x:=e, s〉 ⇒ s[x 7→ E J e Ks] (1os)

〈skip, s〉 ⇒ s (2os)

The rules for a variable assignment and empty statement:

• are axioms,

• are fully executed in one step,

• have not changed at all, only transition symbol changed to⇒.

Structural operationanal semantics of imperative programming language 4/18



Semantic of statements

The rules for composition express that to execute S1, S2 in state s, we first
execute S1 one step from s:

〈S1, s〉 ⇒ 〈S′1, s′〉
〈S1, S2, s〉 ⇒ 〈S′1, S2, s

′〉
(31

os)

〈S1, s〉 ⇒ s′

〈S1, S2, s〉 ⇒ 〈S2, s
′〉

(32
os)

There are two possible outcomes:

• if the execution of S1 has not been completed, we have to complete it
before embarking on the execution of S2 – the rule (31

os),
• if the execution of S1 has been completed, we can start on the

execution of S2 – the rule (32
os),

• although we have two rules for composition, their application is clear.

Structural operationanal semantics of imperative programming language 5/18



Semantic of statements

From the rules for conditional statement we see that the first step in
executing the statement is to perform the test and to select the appropriate
branch:

BJ b Ks = tt
〈if b then S1 else S2, s〉 ⇒ 〈S1, s〉

(4tt
os)

BJ b Ks = ff
〈if b then S1 else S2, s〉 ⇒ 〈S2, s〉

(4ff
os)

Both rules are symmetric, they differ only in a value of the Boolean
expression. We clearly now when to use concrete rule from them.

Structural operationanal semantics of imperative programming language 6/18



Semantic of statements

For the loop statement, there is only one axiom:

〈while b do S, s〉 ⇒ 〈if b then (S, while b do S) else skip, s〉 (5os)

• the axiom shows that the first step in the execution of while-construct is
to unfold it one level, that is to rewrite it as a conditional,

• the test will therefore be performed in the second step of the execution,
where one of the rules for the if-construct is applied.

After the first step, an initial state s remains unchanged.

Structural operationanal semantics of imperative programming language 7/18



Structural operational semantics of a
program

Structural operational semantics of a program P is determined from a
derivation sequence.
A derivation sequence of a statement S starting in one state s is either:

1 a finite sequence

α0, α1, . . . , αn

of configurations satisfying:

• the first element, an initial configuration is α1 = 〈P, s0〉,
• the next element arises by applying some of derivation

rules, αi ⇒ αi+1, for 0 ≤ i < k, k ≥ 0,
• if the last element is state s′ then it is a final state after the

program P execution,
• if the last element is configuration then the execution of

program is stopped and final state of program does not
exist.

Structural operationanal semantics of imperative programming language 8/18



Structural operational semantics of
program

2 an infinite sequence

α0, α1, αn, . . .

of configurations satisfying α0 = 〈S, s〉 and αi ⇒ αi+1 for 0 ≤ i.

We introduce the following conventions for derivation sequences. We shall
write:

• αi ⇒ αi+1 represents the execution of one step in program,

• α⇒k α′ indicates that there are k steps in the execution from α to α′,

• α⇒∗ α′ indicates that there is a finite number of steps.

Structural operationanal semantics of imperative programming language 9/18



Example 1
Let P be a program P = x:=y − 5; while x ≤ y do (x:=x+ 3; y:=y − x) with
an initial state s0 y = 10.

The derivation sequence is:

α0 = 〈P, s0〉 ⇒
α1 = 〈while x ≤ y do (x:=x+ 3; y:=y − x), s1〉 ⇒
α2 = 〈if x ≤ y then (x:=x+ 3; y:=y − x; while x ≤ y do (x:=x+ 3; y:=y − x))

else skip, s1〉 ⇒
α3 = 〈x:=x+ 3; y:=y − x; while x ≤ y do (x:=x+ 3; y:=y − x), s1〉 ⇒
α4 = 〈y:=y − x; while x ≤ y do (x:=x+ 3; y:=y − x), s2〉 ⇒
α5 = 〈while x ≤ y do (x:=x+ 3; y:=y − x), s3〉 ⇒
α6 = 〈if x ≤ y then (x:=x+ 3; y:=y − x; while x ≤ y do (x:=x+ 3; y:=y − x))

else skip, s3〉 ⇒
α7 = s3

s1 = s0[x 7→ 5] BJx ≤ y Ks1 = tt
s2 = s1[x 7→ 8]
s3 = s2[y 7→ 2] BJx ≤ y Ks3 = ff
s = s3 = [x 7→ 8, y 7→ 2]

�
Structural operationanal semantics of imperative programming language 10/18



Statement stop

Now we extend language Jane with the simple statement stop. The idea is
that statement stop stops the execution of the complete program.

Formally, the new syntax of statements is given by:

S ::= . . . | stop.

Structural operational semantics of given statement is defined as follows:

• an execution of the program is modeled by ensuring that the
configurations of the form

〈stop, s〉
are stuck.

Structural operationanal semantics of imperative programming language 11/18



Statement Stop

In natural semantics, the following statements are semantically equivalent:

stop and while true do skip

because semantic function is not defined for any initial state s.

From the structural operation semantics point of view, it is clear now that
stop and while true do skip cannot be sematically equivalent because:

α0 = 〈while true do skip, s〉 ⇒
α1 = 〈if true then (skip; while true do skip) else skip, s〉 ⇒
α2 = 〈skip; while true do skip, s〉 ⇒
α3 = 〈while true do skip, s〉 ⇒ . . .

This is an infinite derivation sequence whereas stop has none.

Structural operationanal semantics of imperative programming language 12/18



Statement or

We extend the language Jane with the command or, which introduces
nondeterminism into the programming language.

We extend the syntax with a new alternative to the production rule for
commands:

S::= . . . | S or S

Structural operational semantics of the statement or we define with two
axioms:

〈S1 or S2, s〉 ⇒ 〈S1, s〉 (61
os)

〈S1 or S2, s〉 ⇒ 〈S2, s〉 (62
os)

We can use any of the given axioms, but there is no guarantee that the
command will be executed according to the chosen rule. We see that even
the structural operational semantics does not provide an unambiguous
semantics of non-deterministic programs.

Structural operationanal semantics of imperative programming language 13/18



Properties of structural operational
semantics

We shall say that the execution of statement S in state s

• terminates if and only if there is a finite derivation sequence starting
with configuration 〈S, s〉,

• loops if and only if there is an infinite derivation sequence starting with
configuration 〈S, s〉.

Structural operational semantics distinguishes the reason of
non-termination:

• if the derivation sequence is infinite then program loops, in contrast
with the situation

• if the derivation sequence is finite and the last element is a stuck then
execution of program is stopped and final state does not exist.

Structural operationanal semantics of imperative programming language 14/18



Properties of structural operational
semantics

We say that statements S1 and S2 are semantically equivallent

• if it holds for every state s

〈S1, s〉 ⇒∗ α iff 〈S2, s〉 ⇒∗ α

where α can be final state or configuration,

• if for both statements the outcomes are infinite sequences.

Lengths of derivation sequences for two semantically equivalent statements
can be different.

Structural operational semantics of language Jane is deterministic.

Structural operationanal semantics of imperative programming language 15/18



Semantic function
The meaning of statements can be summarized by a (partial) function from
State to State:

Sos : Statm→ (State ⇀ State).
Properties:

• specification of function expresses that the result is change of state,

• symbol ”⇀” expresses that function is partial,

• function is given by

SosJS Ks =
{

s′, if 〈S, s〉 ⇒∗ s′,
⊥, otherwise,

• symbol ⊥ expresses that in given state function is not defined and the
execution of statement when

SosJS Ks = ⊥

is not defined.

Structural operationanal semantics of imperative programming language 16/18



Equivalence of natural and structural
operational semantics

Natural and structural operational semantics:

• describe the meaning of programs in different ways,

• cover different approaches,

• must to provide the same meaning of one program,

• then it is necessary to prove an equivalence of both methods.

The proof proceeds by structural induction.

Structural operationanal semantics of imperative programming language 17/18



Proof of equivalence
Theorem. For every statement S of Jane we have

SnsJ S K = SosJ S K.

This result expresses two properties:
• if the execution of S from some state terminates in one of the semantics then it

also terminates in the other and the resulting states will be equal,
• if the execution of S from some state loops in one of the semantics then it will

also loop in the other.
For every statement S we have

1. 〈S, s〉 → s′ implies 〈S, s〉 ⇒∗ s′,

2. 〈S, s〉 ⇒k s′ implies 〈S, s〉 → s′.

The first implication expresses that if exists a transition for statement S in natural
semantics then there exists a finite derivation sequence in structural operational
semantics which the last element is final state.

The second implication expresses that if a derivation sequence for statement S in
structural operational semantics has a final state s then there exists a transition in
natural semantics with the same final state.

Structural operationanal semantics of imperative programming language 18/18


	Structural operational semantics
	Basic notions
	Basic notions
	Semantic of statements
	Semantic of statements
	Semantic of statements
	Semantic of statements
	Structural operational semantics of a program
	Structural operational semantics of program
	Example 1
	Statement stop
	Statement Stop
	Or
	Properties of structural operational semantics
	Properties of structural operational semantics
	Semantic function
	Equivalence
	Proof of equivalence

