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Denotation semantics

In the operational approach we were interested in how a program is executed.
In the denotational approach we are merely interested in the effect of executing a
program, i.e. an association between initial states and final states.
The main idea is to define a semantic function for each syntactic category.
Semantic function maps each syntactic construct to a mathematical object
(often a function), that describes the effect of executing that construct.

Semantic functions are defined compositionally:
there is a semantic clause for each of the basic elements of the syntactic category,
and
for each method of constructing a composite element (in the syntactic category)
there is a semantic clause defined in terms of the semantic function applied to the
immediate constituents of the composite element.
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Semantic function

The effect of executing a statement S

S ∈ Statm
is to change the state so we shall define the meaning of S to be a partial function on
states:

Sds : Statm→ (State ⇀ State).

Denotations of particular statements we define with denotation equations. We define
one equation for each alternative in the production rule of an abstract syntax.
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Denotation of statements
Denotation of assignment:

(1ds) SdsJ x:=e Ks= s[x 7→ E J e Ks]
Denotation of an empty statement:

(2ds) SdsJ skip K= idState

Denotation of statements sequence:

(3ds) SdsJ S1; S2 K= SdsJ S2 K ◦ SdsJ S1 K

defined for an initial state s as follows:

SdsJ S1; S2 Ks= (SdsJ S2 K ◦ SdsJ S1 K)s

=


s′, if there exists s′′ such that SdsJ S1 Ks= s′′

and SdsJ S2 Ks′′= s′,

⊥, if SdsJ S1 Ks= ⊥ or if there exists s′′ such that
SdsJ S1 Ks= s′′ but SdsJ S2 Ks′′= ⊥ .
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Denotation of statements

We define an auxiliary function cond:

cond : (State→ B)× (State ⇀ State)× (State ⇀ State)
→ (State ⇀ State)

defined for ϕ : State→ B and f1, f2 : State ⇀ State as follows:

cond(ϕ, f1, f2)s =

{
f1 s, if ϕ s= tt,

f2 s, if ϕ s= ff .
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Denotation of statements

Denotation of conditional statement

(4ds) SdsJ if b then S1 else S2 K=cond(BJ b K, SdsJ S1 K, SdsJ S2 K)
for an initial state s

SdsJ if b then S1 else S2 Ks= cond(BJ b K, SdsJ S1 K, SdsJ S2 K)s

=


s′, if BJ b Ks=tt and SdsJ S1 Ks= s′,

or if BJ b Ks=ff and SdsJ S2 Ks= s′,

⊥, if BJ b Ks=tt and SdsJ S1 Ks= ⊥
or if BJ b Ks=ff and SdsJ S2 Ks= ⊥ .
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Denotation of statements

We observe that the effect of loop

while b do S

must equal that of

if b then (S; while b do S) else skip

Using the parts of Sds that have already been defined, this gives

SdsJ while b do S K= cond(BJ b K, SdsJ S K ◦SdsJ while b do S K, id) (1)

We note that we cannot use the equation above as the definition of the denotation of a loop.
However, this equation is recursive.
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Denotation of statements

The equation (1) expresses that

SdsJ while b do S K

must be a fixed point of the functional F defined by

F g = cond(BJ b K, g ◦SdsJ while b do S K, id),
that is SdsJ while b do S K = F (SdsJ while b do S K).
Thus we write:

SdsJ while b do S K= fix F,

The functionality of the auxiliary function fix is:

fix : ((State ⇀ State)→ (State ⇀ State))→ (State ⇀ State)
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Fixed points

To prepare for a framework that guarantees the existence of the desired fixed point fix F
we will develop a framework where

1 we impose requirements on the fixed points and show that there is at most one
fixed point fulfilling these requirements, and

2 all functionals originating from statements in Jane do have a fixed point that
satisfies these requirements.

For that, we introduce:

1 ordering on partial functions,
2 complete partially ordered sets,
3 graph of the function,
4 continuous function.
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Partial ordering

Definition 1: Let D be a set and v binary relation on this set, v ⊆ D ×D, which is
reflexive, antisymmetric and transitive, i.e. for any d1, d2, d3 ∈ D:

d1 v d1 (reflexivity)
if d1 v d2 and d2 v d1, then d1=d2 (antisymmetry)
if d1 v d2 and d2 v d3, then d1 v d3 (transitivity)

Such a relation v we call partial ordering and a tuple (D,v) we call partially ordered
set (poset). �

The least element of poset D we denote ω. For all d ∈ D it holds that ω v d. If D has
the least element then it is unique.
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Partial ordering

Definition 2: Let (D,v) be a poset and let Y be a subset of D, Y ⊆ D. An upper
bound of Y is an element d ∈ D such that for any d′ ∈ Y holds the following:

d′ v d.

An upper bound d of Y ⊆ D is a least upper bound of Y , if and only if d′ is an upper
bound of Y implies

d v d′′.

�

If Y has a least upper bound d then d is unique and we denote it tY .
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Partial ordering

Definition 3: Let (D,v) be a poset. A relation v we call relation of linear ordering, if
for any elementsd1, d2 ∈ D holds

either d1 v d2 or d2 v d1.

Subset Y ⊆ D is called chain in D it is consistent in the sense that if we take any two
elements of Y then one will share its information with the other; formally this is
expressed by linear ordering on Y .

A partially ordered set (D,v) is called a chain complete poset (abbreviated ccpo)
whenever tY exists for all subsets Y of D. �

Definition 4: Let g : D → D′ be a function. A graph g is a set

graph(g)= {(d, d′) ∈ D ×D′ | g d= d′}.

�
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Continuous functions

Definition 5: Let (D,v) and (D′,v′) be chain complete posets. We say that function
g : D → D′ is monotone if and only if for all choices d1, d2 ∈ D holds the following:

if d1 v d2, then g d1 v′ g d2.

�

The composition of two monotone functions is a monotone function.

Definition 6: Let (D,v) and (D′,v′) are chain complete postes and let g : D → D′ be a
monotone function. We say that function g is continuous if

t′{g y | y ∈ Y }= g(tY ) (2)

holds for all non-empty chains Y ⊆ D.
�

If (??) holds for an empty chain, Y =∅, that is ω= g ω holds, then we shall say that g is strict.
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Fixed points

Definition 7: Let (D,v) and (D′,v′) be chain closed posets.
A functional F

F : (D → D′)→ (D → D′)

is a function which assigns to monotone function g : D → D′ the monotone function
F g : D → D′.

A fixed point of functional F is such a function g0 : D → D′ that

F g0 = g0

holds, i.e. by applying the functional on this function we get the same function as a result.
�

A functional F :

can have no fixed point, or
can have one or more fixed points.

We are interested in an existence of the least fixed point fix F .
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Fixed points

Theorem 1: Continuous functions on chain closed posets always have the least fixed
points.

Theorem 2: Let f : D → D be a continuous function on the ccpo (D,v) with the least
element ⊥. Then

fix f = t {fn ω | n ≥ 0}
defines an element of D and this element is the least fixed point of f . A construction is
given as follows:

f0 = id,

fn+1 = f ◦ fn, for n ≥ 0.
(3)
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Denotation of the loop
A functional of partially defined recursive function

SdsJ while b do S K : State ⇀ State

is the following function

F : (State ⇀ State)→ (State ⇀ State)

defined for g : State ⇀ State

F g= cond(BJ b K, g ◦SdsJ S K, id).

Steps necessary for denotation of loop:

I. we must to define partial ordering v on the set of partially defined functions State ⇀ State
and to prove that the set (State ⇀ State,v) is a poset with the least element.
II. we must to prove that (State ⇀ State,v) is a chain complete poset with the least upper
bound.
III. we must to prove that functional F is a continuous function.

Then we can say that the least fixed point fix F of the functional F exists and it is the
denotation of loop statements.
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Denotation of the loop
I. We define partial ordering v of partially defined functions as follows:
Let g, g′ : State ⇀ State be partially defined functions. We say that g v g′ if

if g s= s′ then g′ s= s′

holds for any states s, s′ ∈ State.

Lemma 8: If g, g′ : State ⇀ State are partially defined functions and v is ccpo, then

g v g′ if and only if graph(g) ⊆ graph(g′).

(An alternative characterization of ordering)

Lemma 9: A set (State ⇀ State,v) is a poset with the least element

⊥: State ⇀ State.

A function ⊥ s (or ⊥ (s)) send any input s, s ∈ State, into undefined value as resulting value:

⊥ s = ⊥ .
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Denotation of the loop

II. We prove, that (State ⇀ State,v) is ccpo with the least upper bound.

Lemma 10: A set (State ⇀ State,v) is ccpo. The equation (property)

graph(tY )=
⋃
{graph(g) | g ∈ Y }

holds for the least upper bound tY of its chain Y ⊆ State ⇀ State.
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Denotation of the loop

III. We must to show that F is continuous.
To do so we first observe that

F g= F1(F2 g)

where
F1 g = cond(BJ b K, g, id) and

F2 g = g ◦SdsJ S K

for f, g : State ⇀ State.

The continuity of F we obtain by showing that F1 and F2 are continuous.

Lemma 11: Let f0 : State→ B and f1 : State ⇀ State are continuous. Then F defined as
follows

F g= cond(f0, g, f1)

is continuous.
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Denotation of the loop

Lemma 12: Let g0 : State ⇀ State be partially defined function, then F defined as

F g= g ◦ g0

for g : State ⇀ State is continuous.

Denotation of the loop can be now defined by the following denotation equation

(5ds) SdsJ while b do S K= fix F,

where the functional F is defined as follows:

F g= cond(BJ b K, g ◦SdsJ S K, id),

for g : State ⇀ State.
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Example 1

Example 1: We find a denotation of S in an initial state s0=[x 7→ 3], where

S= y:= 1; while ¬(x= 1) do (y:= y ∗ x; x:= x− 1).

From (1ds) and (5ds) for an initial state s0 we have

SdsJ S Ks0= (fix F )s0[y 7→ 1],

whereby

(F g) s=

{
g(SdsJ y:=y ∗ x; x:=x− 1 Ks), if BJ¬(x=1) Ks=tt,

s, if BJ¬(x=1) Ks=ff .

This can be written also as follows:

(F g) s=
{

g(s[y 7→ (s y) ∗ (s x)][x 7→ (s x)− 1]), if s x 6= 1,
s, if s x=1.

Denotation semantics 21/26



Example 1
We construct functions F n ⊥ according to Theorem 2, form. (3):

(F 0 ⊥)s = ⊥,

(F 1 ⊥)s =
{

s, if s x=1,
(F 0 ⊥) =⊥, if s x 6= 1,

(F 2 ⊥)s =

{
s, if s x=1,

(F 1 ⊥)s =
{

s[y 7→ (s y) ∗ (s x)][x 7→ (s x)− 1], if s x=2,
⊥, otherwise.

This means that only if x has value 1 or 2, then the function F 2 ⊥ applied on the state s
provides concrete value for the variable y.

(F 3 ⊥)s =


s, if s x=1,
s[y 7→ (s y) ∗ (s x)][x 7→ (s x)− 1], if s x=2,
s[y 7→ (s y) ∗ (s x) ∗ ((s x)− 1)][x 7→ ((s x)− 1)− 1], if s x=3,
⊥, otherwise.
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Example 1
We generalize:
nth function F n ⊥ provides values of y for values in variable x from 1 to n. So

(F n ⊥)s=


⊥, if s x < 1 or s x > n,

s[y 7→ (s y) ∗ s x . . . ∗ ((s x)− (n− 1))][x 7→ ((s x)− (n− 1))],
if s x ≤ n and s x > 1

s, if s x = 1

Then

(fix F )s=


⊥, if s x < 1,

s[y 7→ (s y) ∗ n . . . ∗ 2][x 7→ 1], if s x=n,
n > 1.

For an initial state s0 x=3 we have

(fix F )(s0[y 7→ 1])= s0[y 7→ 1 ∗ 3 ∗ 2][x 7→ 1]=[y 7→ 6, x 7→ 1],

where 6 is the resulting value, the factorial of 3.
�
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Example 2

Example 2: We find a denotation of the statement

while ¬(x=0) do skip

for an initial state s ∈ State.

It holds from (5ds)

SdsJ while ¬(x=0) do skip Ks= (fix F ′)s

whereby

(F ′ g)s=
{

g s, if s x 6= 0,
s, if s x=0,

because SdsJ skip Ks= s. That means, every partially defined function
g : State ⇀ State

g s = s

is a fixed point of functional F ′.
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Example 2
This is the situation when the functional has more fixed points. The least fixed point fix F ′ is
found after construction of functions

(F ′0 ⊥)s = ⊥

(F ′1 ⊥)s = (F ′(F ′′0 ⊥))s =
{
⊥, if s x 6= 0,
s, if s x=0,

(F ′2 ⊥)s = (F ′(F ′1 ⊥))s =
{
⊥, if s x 6= 0,
s, if s x=0,

· · ·

(F ′n ⊥)s =
{
⊥, if s x 6= 0,
s, if s x=0.

So the least fixed point of functional F ′ is a function

fix F ′ = g0

defined
g0 s=

{
⊥, if s x 6= 0,
s, if s x=0,

and the denotation is

SdsJ while ¬(x= 0) do skip K= fix F ′= g0

�
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Semantic equivalence

Similarly we can define the denotation of the statement

while true do skip.

Definition 13: We say that statements S1 and S2 are semantically equivalent according
to denotational semantics, if they have the same denotation, that is

SdsJ S1 K = SdsJ S2 K

holds.
�
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