
Natural semantics of imperative programming
language

William Steingartner
william.steingartner@tuke.sk

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice, Slovakia

Semantics of programming languages

Spring 2022/2023

Theme 03 – Natural Semantics

Natural semantics of imperative programming language 1/22



Basic notions

Operational semantics is concerned with how to execute programs. We are
interested in how the states are modified during the execution of the
statement.

• Semantics of expressions only inspects the state in order to determine
the value of the expression.

• Semantics of statements modifies the states.

Natural semantics of imperative programming language 2/22



Basic notions

In operational semantics, the meaning of statements will be specified by
transition system. Both kinds of semantics use configuration of the form

〈S, s〉

representing that the statement S is to be executed from the state s.

An execution of the statement S in its initial state s causes the change of
state. Transition relation in particular semantics looks as follows:

• 〈S, s〉 → s′ in natural semantics,

• 〈S, s〉 ⇒ s′ in structural operational semantics.

A definition of operational semantics of programming language does not
use semantic equations but:

• axioms, and

• derivation rules.

Natural semantics of imperative programming language 3/22



Basic notions in operational semantics
A rule has a general form:

transition1, . . . , transitionn, condition
transition (name)

where
• above the solid line premises are written,
• below the solid line stands one conclusion,
• transitioni consists of Si which is immediate constituent of S or

statement constructed from the immediate constituents of S,
• condition (not in every rule) has to be fulfilled whenever the rule is

applied.

Furthermore,
• rule with an empty set of premises is called axiom and the solid line is

omitted,
• rule without premises, only with condition is called simple derivation

rule.

Derivation rule is a schema allowing set the data from concrete programming
language.

Natural semantics of imperative programming language 4/22



Natural semantics

In the natural semantics, we are concerned with the relationship between
the initial and the final state of an execution.

The purpose of natural semantics is to describe how the overall results of
execution are obtained.

Transition relation in natural semantics we shall write as

〈S, s〉 → s′.

Intuitively, this means that the execution of statement S from state s will
terminate and the resulting state will be s′.

Natural semantics of imperative programming language 5/22



Natural Semantics

Rule in natural semantics has a general form

〈S1, s0〉 → s1, . . . , 〈Sn, sn−1〉 → s

〈S, s0〉 → s
(nns)

where

• statements S1, . . . , Sn−1 are constituents (parts, components) of
statement S;

• s0 is an initial state;

• s is a final (resulting) state;

• s1, . . . , sn−1 are states during the program execution.

Natural semantics of imperative programming language 6/22



Natural semantics

A rule
〈S1, s0〉 → s1, . . . , 〈Sn, sn−1〉 → s

〈S, s0〉 → s
(nns)

is read as follows:

if an execution of statement S1 in state s0 causes change of state to s1, . . .,
and execution of statement Sn in state sn−1 causes change of state to state
s, then the execution of the statement S in an initial state s0 causes a change
to the final state s.
Each transition is a proposition, and the rule says: from the true propositions
– premises implies the true proposition – conclusion.

Natural semantics of imperative programming language 7/22



Natural semantics of an assignment

Natural semantics of a variable assignment is defined with the axiom

〈x := e, s〉 → s[x 7→ E J e Ks] (1ns)

This axiom says:

• in an initial state s, statement is executed to yield a final state
s[x 7→ E J e Ks] which is as s except that x has the value E J e K.

Natural semantics of an empty statement is defined as follows:

〈skip, s〉 → s (2ns)

• This statement does not change the state.

Natural semantics of imperative programming language 8/22



Example 1
We consider the following statement and an initial state s0 = [x 7→ 3]:

x:=x + 1

Natural semantics of this statement we find by applying the rule (1ns):

〈x:=x + 1, s0〉 → s0[x 7→ E J x + 1 Ks0]
After evaluation of an expression x + 1 in the state s0:

E J x + 1 Ks0 = E J x Ks0 ⊕ E J 1 Ks0
= s0 x⊕N J 1 K
= 3⊕ 1
= 4

we get a result of an assignment statement:

〈x:=x + 1, s0〉 → s0[x 7→ 4]
The resulting state is s = [x 7→ 4].

�

Natural semantics of imperative programming language 9/22



Natural semantics of statements
sequence

Natural semantics of statements sequence is defined as follows:

〈S1, s〉 → s′, 〈S2, s′〉 → s′′

〈S1; S2, s〉 → s′′
(3ns)

This rule means intuitively:

• to execute S1; S2 from state s we must first execute S1 from s.
Assuming that this yields a final state s′ we shall then execute S2 from
s′. The premises of the rule are concerned with the two statements S1
and S2, whereas the conclusion expresses a property of the composite
statement itself.

Natural semantics of imperative programming language 10/22



Example 2

The following is an instance of the rule:

y := x + 5; x := x− 1
An initial state is s0 = [x 7→ 1, y 7→ 1].

Here S1 is instantiated to y := x + 5, statement S2 to x := x− 1:

〈y := x + 5, s0〉 → s1, 〈x := x− 1, s1〉 → s

〈y := x + 5; x := x− 1, s0〉 → s

The resulting state:

s1 = s0[y 7→ E J x + 5 Ks0] = s0[y 7→ 6]
s = s1[x 7→ 0]

�

Natural semantics of imperative programming language 11/22



Natural semantics of conditional
statement

For the conditional statement we have two rules:

〈S1, s〉 → s′, BJ b Ks = tt
〈if b then S1 else S2, s〉 → s′

(4tt
ns)

〈S2, s〉 → s′, BJ b Ks = ff
〈if b then S1 else S2, s〉 → s′

(4ff
ns)

The first rule says:

• to execute conditional statement if b then S1 else S2 we simply
execute S1 provided that b evaluates to tt in the actual state.

The second rule says that:

• if b evaluates to ff then to execute if b then S1 else S2 we just
execute S2.

Natural semantics of imperative programming language 12/22



Example 3

Taking s0 x = 1 the following is an instance of the rule (4ff
ns):

if ¬(x = 1) then skip else x:= x + 5

The first step is to evaluate the condition with the state s0:

BJ¬(x = 1) Ks0 = . . . = ff

Then we apply the rule (4ff
ns):

〈x:=x + 5, s0〉 → s, BJ¬(x = 1) Ks0 = ff
〈if ¬(x = 1) then skip else x:=x + 5, s0〉 → s

The resulting state is:

s = s0[x 7→ E J x + 5 K s0] = s0[x 7→ 6]
�

Natural semantics of imperative programming language 13/22



Natural semantics of the loop

Finally, we have one rule and one axiom expressing how to execute the loop
statement:

〈S, s〉 → s′, 〈while b do S, s′〉 → s′′, BJ b Ks = tt
〈while b do S, s〉 → s′′

(5tt
ns)

BJ b Ks = ff
〈while b do S, s〉 → s

(5ff
ns)

Intuitively, the meaning of the construct while b do S in the state s can be
explained as follows:

• if the test b evaluates to true in the state s, then we first execute the
body of the loop and then continue with the loop itself from the state so
obtained;

• if the test b evaluates to false in the state s, then the execution of the
loop terminates.

Natural semantics of imperative programming language 14/22



Example 4

Consider the following cycle

while (x ≤ 2) do x:=y + 2
and an initial state s0 = [x 7→ 0, y 7→ 1].

We apply the rule (5tt
ns) in the first step and the rule (5ff

ns) in the second step:

〈x:=y + 2, s0〉 → s1,

BJ (x ≤ 2) Ks1 = ff
〈while (x ≤ 2) do x:=y + 2, s1〉 → s, BJ (x ≤ 2) Ks0 = tt
〈while (x ≤ 2) do x:=y + 2, s0〉 → s

where:
s1 = s0[x 7→ 3]
s = s1 = [x 7→ 3, y 7→ 1]

�

Natural semantics of imperative programming language 15/22



Derivation tree

When we use the axioms and rules to derive a transition 〈S, s〉 → s′ we
obtain a derivation tree.

• The root of derivation tree is 〈S, s〉 → s′,

• the leaves are instances of axioms,

• the internal nodes are conclusions of instantiated rules and they have
corresponding premises as their immediate sons.

A derivation tree is called simple if it is an instance of axiom, otherwise is is
called composite.

Natural semantics of imperative programming language 16/22



Example 5

Consider a program P = x:=y − 5; while x ≤ y do (x:=x + 3; y:=y − x)
and an initial state s0 y = 10.
We apply the substitutions: S1 = x:=x + 3; S2 = y:=y − x. Then we
construct a derivation tree:

〈x:=y−5,s0〉→s1

〈x:=x+3,s1〉→s3 〈y:=y−x,s3〉→s2

〈S1;S2,s1〉→s2

BJ x≤y Ks2=ff

〈while x≤ y do (S1;S2),s2〉→s, BJ x≤y Ks1=tt

〈while x≤ y do (S1;S2),s1〉→s

〈P,s0〉→s

States s1, s2, s arise by applying the derivation rules:

s1 = s0[x 7→ 5]
s3 = s1[x 7→ 8]
s2 = s3[y 7→ 2]
s = s2 = [x 7→ 8, y 7→ 2]

�

Natural semantics of imperative programming language 17/22



Properties of natural semantics
We shall introduce the following terminology.

The execution of a statement S on a state s

• terminates if and only if there is a state s′ such that

〈S, s〉 → s′,

• always terminates if it terminates in any state.

We say that the statement S

• loops if and only if there is no state s′ such that

〈S, s〉 → s′,

• never terminates if it does not terminate for any state.

A program has a meaning in natural semantics only if it terminates after finite
number of steps (statements).

Natural semantics of imperative programming language 18/22



Properties of Natural Semantics

We say that statement S1 is semantically equivalent with the statement S2 if
it holds for all states s and s′:

〈S1, s〉 → s′ iff 〈S2, s〉 → s′.

In other words: two different statements in the same initial state provide the
same resulting state.

Natural semantics of imperative programming language 19/22



Example 6

The following two statements S1 and S2 are semantically equivalent.

S1 = while b do S,
S2 = if b then (S, while b do S) else skip.

Proof: is in two stages. We must to prove two implications:

1 if 〈S1, s〉 → s′ then 〈S2, s〉 → s′,

2 if 〈S2, s〉 → s′ then 〈S1, s〉 → s′,

Natural semantics of imperative programming language 20/22



Properties of natural semantics

The natural semantics of Jane is deterministic if for all elements S, s, s′, s′′

we have that

〈S, s〉 → s′ and 〈S, s〉 → s′′ imply s′ = s′′.

Theorem: The natural semantics of Jane is deterministic.
Proof: by using structural induction.

Natural semantics of imperative programming language 21/22



The semantic function
The meaning of statements can now be summarized as a (partial) function
from State to State. Its specification is:

Sns : Statm→ (State ⇀ State)

• and this means that for every statement S we have a partial function
Sns[[S]] ∈ State ⇀ State,

• symbol ”⇀” expresses that function is partially defined,

• semantic function is given by

Sns[[S]]s =
{

s′, if 〈S, s〉 → s′,
⊥, otherwise,

• symbol ⊥ denotes an undefined value, i.e. the execution of statement

Sns[[S]]s = ⊥

does not provide result in a state s.

Natural semantics of imperative programming language 22/22


	Basic notions: Semantics
	Basic notions
	Basic notions
	Natural semantics
	Natural Semantics
	Natural semantics
	Variable assignment
	Example 1
	Sequence of statements
	Example 2
	Conditional statement
	Example 3
	Loop
	Example 4
	Derivation tree
	Properties of natural semantics
	Properties of Natural Semantics
	Example 6
	Properties of natural semantics
	The semantic function

