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Sets

A set A is a well defined collection of distinct objects. For example:

A = {a1, a2, . . . , an}, B = {b | P (b)}.
Conventions:

• N set of natural numbers,

• N0 set of natural numbers with value 0,

• Z set of integers.

Basic operations:
A ∪B = {c | (c ∈ A) ∨ (c ∈ B)} – union
A ∩B = {c | (c ∈ A) ∧ (c ∈ B)} – intersection
A×B = {(a, b) | (a ∈ A) ∧ (b ∈ B)} – binary cartesian product
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Relations
A binary relation R over sets A and B is a subset of the Cartesian product
(a new set of ordered pairs)

R ⊆ A×B.

The statement a ∈ A is R-related to b ∈ B and is denoted by aRb.

The relation R ⊆ A×A is called preorder on A, if

• a1Ra1 (reflexivity),

• if a1Ra2 and a2Ra3 then a1Ra3 (transitivity),

for all a1, a2, a3 ∈ A.
The relation R ⊆ A×A over a set A which is reflexive, antisymmetric, and
transitive, i.e., which satisfies for all a1, a2, a3 ∈ A:

• a1Ra1 (reflexivity),

• if a1Ra2 and a2Ra1, then a1 = a2 (antisymmetry),

• if a1Ra2 and a2Ra3, then a1Ra3 (transitivity),

is called partially ordered set – a poset.
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Functions
A total function from A to B

f : A→ B

is a function which is defined for all inputs of its domain. It is a relation in
which for each a ∈ A there exists exactly one b ∈ B such that afb, denoted
also by:

f(a) = b.

The set A is called domain, B is called codomain of the function f .

A function f is a relationship that assigns exactly one output b ∈ B value for
each input value a ∈ A, which can be denoted also

f : a 7→ b

Partially defined function is not defined for all values of the domain. It is
denoted by:

f : A ⇀ B.

There can exits such a ∈ A, for which f(a) = ⊥.
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Composition, Currying
Composition of functions (or composite function) refers to the combining of functions
in a manner where the output from one function becomes the input for the next
function. Given two functions f : A→ B, g : B → C, the composite function is a
function from A to C:

g ◦ f : A→ C such that for each a ∈ A
(g ◦ f)(a) = g(f(a)).

Currying of functions. A function:

f : A×B → C

can be denoted also by:

f : A→ B → C.

Firstly, f is applied to an argument a ∈ A, the result is a function:

f(a) : B → C.

In the second step, the function f(a) is applied to an argument b ∈ B and the result is
a value:

f(a)(b) = f(a, b) ∈ C.

Currying functions is right associative implicitly.
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Semantics of programs
Formal semantics provides unambiguous meaning of programs written in
programming languages.

Programming languages include various kinds of constructs: expressions,
declarations, commands, etc.

For example:

• imperative languages have declarations, types, blocks, statements,
formal arguments, . . .

The differences between languages are not merely syntactic: they reflect
essential differences in the computational meaning of the various kinds of
construct.

Each construct may involve both:

• flow of control and

• flow of information.
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Flow of control and Flow of information
An execution of a program consists of a computation on some machine.

In general, the computation may be regarded as a combination of
sub-computations for the constructs that occur in the program.

A control:

• flows into construct when its sub-computation starts, and

• flows out again when it finishes.

Information processing during the computation corresponds to flow of
information between constructs.

Constructs can differ mostly in how they let

• control and

• information

flow to and from their sub-constructs.
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Flow of control
Fundamental control-flow concepts include sequencing, interleaving, choice between
alternatives, exception raising and handling, iteration, procedural abstraction and
activation, concurrent processes, and synchronization.
The main features of the above control-flow concepts are as follows:

• sequencing involves letting control flow into sub-constructs from left to right, so
long as each terminates normally,

• interleaving lets control move back and forth between two or more
sub-constructs,

• choice between several alternatives usually lets control flow into only one of the
alternatives, although when the chosen alternative fails, this may cause
back-tracking, whereby another alternative is tried,

• raising or throwing an exception generally interrupts normal control flow
(sequencing, etc.) and skips the rest of enclosing constructs until control reaches
some enclosing construct that can handle or catch the exception, thereby
resuming normal control flow,

• iteration lets control flow into the same sub-construct repeatedly,
• activation of a procedural abstraction lets control flow into a construct from

different parts of the program, resuming from the point of activation when the
activation terminates,

• concurrent processes - split the flow of control into separate threads, which
may subsequently be subject to synchronization.
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Flow of information
Fundamental information-flow concepts include computation of values, use of
computed values, effects on storage, scopes of bindings, and message-passing.

• Obviously, expressions are evaluated primarily to compute values, a
declaration computes a so-called environment (i.e., a set of bindings for
identifiers), and a command, which conceptually computes no value at all, can
be regarded as computing a fixed dummy value.

• Computed values correspond to information that flows out of constructs, the
values may subsequently flow into other constructs. Computing a value always
involves termination. Raising an exception may be seen as a combination of
exceptional control flow and the computation of a value that identifies the
exception.

• Effects on storage are stable: when a new cell has been added to the storage,
or a value stored in a cell (overwriting any previous value), the cell remains in the
same state until some new value is stored in it, or the cell is removed (explicitly,
or by garbage collection).

• The bindings computed by one sub-construct may flow (often together with the
current bindings) into another sub-construct, which is then the scope of the
computed bindings.

• Message-passing by a construct corresponds to information flow both ways: the
construct itself gets the information that its context accepts the message, and the
context gets the information in the message itself.
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Programming Paradigms

Programming languages can be classified according to which programming
paradigm they support best.

Sometimes, a language intended for one paradigm can be used for other
paradigms as well, with some extra effort.

Some well-known paradigms:

• imperative programming,

• functional programming,

• concurrent programming,

• object-oriented programming,

• logic programming.
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Imperative programming emphasizes sequencing, iteration, procedural
abstraction and activation, and effects on storage.

Imperative programs:

• tend to involve numerous changes of stored values,

• the computations of the values themselves are usually rather simple,

• Flow of control is expressed primarily by sequential, conditional, and
iterative commands.

Typical languages: C, Pascal, Algol60 and many others.
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Overview of other paradigms

• Functional programming emphasizes computation of values, scopes of
bindings, and procedural abstraction and activation. Flow of control is
usually expressed by activation of functions (i.e., procedural
abstractions that compute values from argument values) giving them
other functions as arguments. The scopes of bindings in declarations
are often recursive.

• Concurrent programming emphasizes concurrent processes, choice
between alternatives, and message-passing. Each process generally
does a very limited amount of computation in between sending or
receiving messages. Typically, choices between alternatives are
decided by the kind of message next received, or by synchronization
between two processes.
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Overview of other paradigms

• Object-oriented programming may be regarded as imperative
programming with a particular discipline for scopes of bindings. It is
based on the use of bindings between objects and methods. Objects
are essentially identifiable fragments of storage, created either by
instantiating classes or by cloning existing objects. Methods are
procedural abstractions that usually have direct effects on the objects to
which they are bound.

• Logic programming emphasizes choice between alternatives with
back-tracking, and procedural abstraction. The basic idea is that a logic
program consists of a set of alternative procedure abstractions for each
identifier. The choice between them is made by so-called unification of
patterns between the parameters of the abstractions and the arguments
of the activations. This unification generally binds identifiers to terms,
and the bindings revert when a failure causes back-tracking.
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Formal Language Descriptions

Descriptions are called formal when they are written (expressed) in a
notation that already has a precise meaning.

• Reference manuals and standards for programming languages
generally provide some formal descriptions of program syntax.

• The description in the reference manual is generally completely
informal, being expressed only in natural language which, even when
used very pedantically, is inherently imprecise and open to
misinterpretation.

We shall next consider how to express the computational meaning of
constructs precisely, using formal semantics.
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Formal definition of language

Formal definition of programming language is given by:

• formal definition of syntax:

• Backus-Naur form,
• inductive definition,
• derivation rules,. . . ,

• formal definition of semantics by appropriate semantic method.
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Syntax

Syntax of programming language determines the form and structure of
programs written in given language.

Kinds of syntax:

• concrete syntax – deals with text and parsing,

• abstract syntax – deals only with structure,

• context-free syntax – assumes fixed grouping rules,

• context-sensitive syntax – can also deal with constraints.

From the point of formal definition of programming language, we will focus
only on concrete and abstract syntax.
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Concrete syntax

Concrete syntax deals with program source and parsing.

Concrete syntax:

• determines which text strings are accepted as programs and program
constructs,

• provides a parse tree for each accepted program,

• is typically specified by formal grammars, with productions giving sets
of alternatives for each nonterminal symbol,

• a grammar for concrete syntax should be unambiguous,

• an alternative approach is to let the grammar remain ambiguous, and
provide precedence rules to select a unique parse tree for each
program text.
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Concrete syntax

BNF – Backus-Naur Form – formal notation technique for context-free
grammars, often used to describe syntax of languages used in computer
science.

John Backus Peter Naur
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Abstract syntax
Abstract syntax deals only with a structure of programs and serves for
formal semantics.

Whereas concrete syntax deals with the actual character strings used to write
programs, abstract syntax is concerned only with the deep structure of
programs, which is generally represented by trees – abstract syntax trees
(AST).

The definition of abstract syntax consists of:

• syntactic domains, and

• abstract syntax tree.

In abstract syntax trees:

• each node is created by a particular constructor,

• leaves can be created by constant constructors with no arguments,

• each node has a branch for each argument of its constructor.

AST can be expressed also in linear form by using the rules in BNF.
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For purpose of this course, we will use the following definition of abstract
syntax.

Abstract syntax consists of:

• syntactic domains,

• one production rule for each syntactic domain.

Every production rule has a form:

element of syntactic domain ::= form 1 | form 2 | . . .
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Example of abstract syntax
Language of untyped arithmetic expressions has abstract syntax defined as
follows:

1 Syntactic domains:

x ∈ Var variables,
n ∈ Num strings of digits,
e ∈ Expr arithmetic expressions.

The elements n ∈ Num and x ∈ Var have no internal structure from
the semantic point of view.

2 We need only one production rule for syntactic domain Expr of
arithmetic expressions:

e ::= n | x | e + e | e− e | e ∗ e | (e).
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Semantics

Formal semantics of programming languages:

• provides abstract units which represent only essential features from all
possible program executions, that are written in a given language,

• ignores details, that are not important from point of semantics.

Essential features are usually considered as follows:

• the relation between input and output,

• termination or non-termination of program execution.

Implementation details, like

• real memory addresses in computer,

• real time of program execution, or

• computer architecture,

are from the point of semantics inessential and they are ignored.
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Semantic methods

Selected semantic methods:

• operational semantics:

• natural semantics,
• structural operational semantics,

• denotational semantics,

• axiomatic semantics,

• action semantics,

• attribute grammars,

• algebraic semantics,

• categorical semantics,

• game semantics.
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Attribute grammars

• a formal way to define attributes for the productions of a formal
grammar, associating these attributes to values,

• the evaluation occurs in the nodes of the abstract syntax tree, when the
language is processed by some parser or compiler,

• they hang together with denotational semantics, an output language is
filled with attribute annotations.

Algebraic semantics defines a model of specification (ADT) as many-sorted
algebra.

Categorical semantics works with category theory and usually defines
functor between categories as higher-order semantic mapping.

Game semantics with the concepts of validity on game theoretic concepts.

Axiomatic semantics works with logical formulas and Action semantics
describes program as a sequence of computational actions.
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Operational semantics

Operational semantics:

• the meaning of a construct is specified by the computation it induces
when it is executed on a machine,

• in particular, it is of interest how the effect of a computation is produced
and not merely what the results of execution are,

• the first version was formulated for Algol68,

• the meaning of program is described in terms of abstract machine,

• in this method we are interested in how the states are modified during
the execution of the statement,

• the meaning of statements is is specified by a transition system,

• we shall consider two different approaches to operational semantics:

• natural semantics,
• structural operational semantics.
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Natural semantics
Formulated by Gilles Kahn in 1985.
Natural semantics

• formulates the relationship between the initial and the final state of an
execution, therefore the transition relation will specify the relationship
between the initial and the final state for each statement,

• allows to specify many aspects of programming languages and
specification languages: type systems, static analysis, dynamic
semantics, etc.,

• allows to specify the parts of compiler and to translate them directly into
executable code,

• is known also as the big-steps semantics.
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Example in Natural semantics
We consider a trivial program:

z := x; x := y; y := z

We are interested into the resulting state after the program execution. In the
natural semantics, the execution of the example program in the input state is
represented by the following derivation tree:

〈z := x, s0〉 → s1 〈x := y, s1〉 → s2

〈z := x; x := y, s0〉 → s2 〈y := z, s2〉 → s

〈z := x; x := y; y := z, s0〉 → s

Let s0 = [x 7→ 5, y 7→ 7, z 7→ 0] be an initial state.

The resulting state s we obtain by applying particular steps:

s1 = s0[z 7→ 5],
s2 = s1[x 7→ 7],
s = s2[y 7→ 5]

= [x 7→ 7, y 7→ 5, z 7→ 5].
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Structural operational semantics
Formulated by Dana Scott (1970) and later by Gordon Plotkin (1981).

• the main idea is to formulate the behavior of program by its components,

• the emphasis is on the individual steps of the execution,

• provides an inductive view on operational semantics,

• also known as the small-steps semantics.
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Example in Structural operational
semantics

We consider again the trivial program:

z := x; x := y; y := z

and an initial state s0 = [x 7→ 5, y 7→ 7, z 7→ 0].

We shall record the execution of the example program in a state s0 by the
following derivation sequence:

〈z := x; x := y; y := z, [x 7→ 5, y 7→ 7, z 7→ 0]〉
⇒ 〈x := y; y := z, [x 7→ 5, y 7→ 7, z 7→ 5]〉
⇒ 〈y := z, [x 7→ 7, y 7→ 7, z 7→ 5]〉
⇒ [x 7→ 7, y 7→ 5, z 7→ 5]

The last element in the sequence is the resulting state.
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Denotational semantics
Authors of denotational semantics are Christopher Strachey (1911-1975) and Dana
Scott. They formulated denotational semantics in sixties of 20th Century.
Denotational semantics

• meaning of program is described by mathematical objects – the denotations,
• meaning of program is defined as semantic function from syntactic to semantic

domain,
• is fully compositional, i.e. the denotation of compound constructions is defined

only by the semantics of subconstructs,
• we are merely interested in the effect of executing a program – an association

between initial and final states,
• sometimes known also as mathematical semantics.
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Example in denotational semantics
We consider again the trivial program:

z := x; x := y; y := z

and an initial state s0 = [x 7→ 5, y 7→ 7, z 7→ 0].
Meaning of program is a composition of three semantic functions for
assignment statements:

S J z := x K, S J x := y K and S J y:=z K
S J z := x; x := y; y := z K = S J y := z K ◦S J x := y K ◦S J z:= x K.

The resulting state of the program execution from the initial state s0 we obtain
by application an initial state in this compound function:

S J z := x; x := y; y := z K([x 7→ 5, y 7→ 7, z 7→ 0])
= (S J y := z K ◦S J x := y K ◦S J z:= x K)([x 7→ 5, y 7→ 7, z 7→ 0])
= S J y := z K (S J x := y K (S J z := x K ([x 7→ 5, y 7→ 7, z 7→ 0])))
= S J y := z K (S J x := y K ([x 7→ 5, y 7→ 7, z 7→ 5]))
= S J y := z K ([x 7→ 7, y 7→ 7, z 7→ 5])
= [x 7→ 7, y 7→ 5, z 7→ 5]
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Axiomatic semantics
The first approach to axiomatic semantics formulated Robert Floyd (1967).
The second one (and more famous) formulated Sir Charles Antony Richard
Hoare (1969).

Axiomatic semantics
• the meaning of program is described by logical formulas (preconditions

and postconditions),
• is used for the proof of partial correctness of programs,
• one of the first applications was axiomatic definition of programming

language Pascal (1973).
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Example in axiomatic semantics
We consider again the trivial program:

z := x; x := y; y := z

and an initial state s0 = [x 7→ 5, y 7→ 7, z 7→ 0].
We put precondition at the beginning of program and the postcondition at the
end of program:

{x = n ∧ y = m} z := x; x := y; y := z {y = n ∧ x = m}

An initial state s0 = [x 7→ 5, y 7→ 7, z 7→ 0] fulfills the condition for n = 5 and
m = 7.
The proof of partial correctness is represented in the following proof tree:

{p0}z := x{p1} {p1}x := y{p2}
{p0}z := x; x := y{p2} {p2}y := z{p3}

{p0}z := x; x := y; y := z{p3}

where
p0 ≡ x = n ∧ y = m p1 ≡ z = n ∧ y = m
p2 ≡ z = n ∧ x = m p3 ≡ y = n ∧ x = m
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Action semantics
Authors of Action semantics are Peter David Mosses and David Watt (1992).

• is hybrid semantics – modularization of denotational semantics by dividing the
formalization process into two levels,

• the first level is macrosemantics and the second one is microsemantics,
• action semantics works with three kinds of entities: actions, data and yielders.
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Example in action semantics

We consider again the trivial program:

z := x; x := y; y := z

and an initial state s0 = [x 7→ 5, y 7→ 7, z 7→ 0].

Program is being transcribed into sequence of actions:
ExecuteJz := x; x := y; y := zK =
(ExecuteJz := xK and then ExecuteJx := yK) and then ExecuteJy := zK
The next step(s):
((Evaluate x and then store the given number in the cell bound to z)
and then
(Evaluate y and then store the given number in the cell bound to x))
and then
(Evaluate z and then store the given number in the cell bound to y) =
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((give the number stored in the cell bound to x then store the given number in
the cell bound to z)
and then
(give the number stored in the cell bound to y then store the given number in
the cell bound to x))
and then
(give the number stored in the cell bound to z then store the given number in
the cell bound to y)

The resulting state is obtained as follows:
(s1 [z 7→ x] (x = 5) and then s2 [x 7→ y] (y = 7)) and then s3 [y 7→ z] (z = 5)

Finally, the resulting state is s3 [x 7→ 7, y 7→ 5, z 7→ 5]
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Using of formal methdos
Generally, formal semantics:

• provides unambiguous meaning of programs written in programming
language,

• helps designers to prepare good and useful programming languages,

• serves for programmers to write correct compilers,

• encourages users/programmers how to use language constructions
properly.
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