
Semantics of arithmetic and Boolean
expressions

William Steingartner
william.steingartner@tuke.sk

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice, Slovakia

Semantics of programming languages

Spring 2022/2023

CEEPUS

Theme 02 – Semantics of expressions

Semantics of arithmetic and Boolean expressions 1/27

Topics

1 Formal definition of programming language.

2 Formal definition of binary numbers language.

3 Semantics of arithmetic expressions.

4 Semantics of Boolean expressions.

Semantics of arithmetic and Boolean expressions 2/27

Formal definition of programming
language

Formal definition of programming language has the following parts:

• definition of abstract syntax with:

• syntactic domains – the elements of one syntactic domain
must be of the same internal structure,

• production rules – they define acceptable forms of elements
in particular syntactic domains,

• definition of semantics with:

• semantic domains,
• specification of semantic functions, i.e. their domains and

ranges,
• semantic equations or derivation rules, that defines particular

semantic functions.

Semantics of arithmetic and Boolean expressions 3/27

Formal definition of language

Semantic domain is a structure which contains meanings of particular
syntactic forms from the given syntactic domain.
For simplicity we will use only semantic domains based on sets:

• simple sets like sets of integers Z,

• the results of set operations, e.g. union, intersection, etc.,

• sets of functions over defined semantic domains.

Semantic domain of programming language is an union of all semantic
domains of language. We say that this set is a model of programming
language.

Semantics of arithmetic and Boolean expressions 4/27

Formal definition of language

Semantic function maps syntactic domain into appropriate semantic
domain. Its specification is denoted in general form:

F : Synt→ Sem
where

• Synt is replaced by concrete syntactic domain, and

• Sem is replaced by appropriate semantic domain.

We specify one semantic function for each syntactic domain.

Semantic function is defined by:

• semantic equations or

• derivation rules,

which define the meaning of particular syntactic forms in production rule for
given syntactic domain.

Semantics of arithmetic and Boolean expressions 5/27

Formal definition of binary numbers
language

As an example, we present here the binary numbers language and the
definition of its syntax and semantics.

1. Formal syntax:

a. we need only one syntactic domain for binary numerals:

n ∈ Bin,

b. the abstract syntax could then be specified by production rule:

n ::= 0 | 1 | n0 | n1.

Semantics of arithmetic and Boolean expressions 6/27

Formal definition of binary numbers
language

2. Semantics

a. meaning of any numeral shall by unique number in decadic form, which
are elements of sets of integer Z.

b. we specify one semantic function (for one syntactic domain):

N : Bin→ Z,

and we want N to be a total function because we want to determine a
unique number for each numeral of Bin.

Semantics of arithmetic and Boolean expressions 7/27

Formal definition of binary numbers
language

c. we define four semantic equations, one for each alternative in
production rule.

They define the meaning of particular forms in production rule in terms of
semantic domain (Z) elements:

N J 0 K = 0,
N J 1 K = 1,
N J n0 K = 2⊗N J n K,
N J n1 K = 2⊗N J n K⊕ 1.

• ′[[′ and ′]]′ are semantic brackets, inside them syntactic form is
enclosed,

• N J n K is application of semantic function on element of syntactic
domain, the result here is meaning of binary numeral n, i.e. an integer
N J n K ∈ Z,

• ⊗,⊕ – are real arithmetic operations,
• 0, 1, 2 – are numbers in contrast to symbols 0, 1 and 2 in syntax.

Semantics of arithmetic and Boolean expressions 8/27

Example

The notation 101 is well-formed syntactic form of binary numeral. We find its
meaning.

A semantics is computed by applying the semantic function on the particular
alternatives in production rule.
Numeral 101 is of the 4th form in production rule – n1, so we apply the 4th

semantic equation and n be 10:

N J 101 K = 2⊗N J 10 K⊕ 1 =
Numeral 10 in semantic brackets is of the 3rd form in production rule, so we
apply the 3rd semantic equation. After that we continue until we find the
integer which is the meaning of binary numeral 101:

= 2⊗ (2⊗N J 1 K)⊕ 1 =
= 2⊗ (2⊗ 1)⊕ 1 =
= 5

�

Semantics of arithmetic and Boolean expressions 9/27

Problem as a motivation

There exists a complete canonical representation in the form of reduced
numerals (numerals without leading zeros). The syntax for these is:

n′::=0 | 1 | 1n

where n′ ∈ Bin′, the set of reduced numerals, and n ∈ Bin as defined
before. Notice that it is not quite as easy to give a semantic function

N ′ : Bin′ → Z,

for the reduced numerals.
The most convenient way is by means of an auxiliary function

L : Bin→ N
which gives the ”length“ of a number.

Define N ′!

Semantics of arithmetic and Boolean expressions 10/27

Structural induction

Structural induction is a proof method that is used in mathematical logic,
computer science, graph theory, and some other mathematical fields.

Structural induction is used to prove that some proposition P (x) holds for
all x of some sort of recursively defined structure.

In our course we will use proofs by structural induction on the structure of
particular syntactic domains.

Semantics of arithmetic and Boolean expressions 11/27

Mathematical and structural induction

By mathematical induction we prove some property P on natural numbers:

1 we prove the property for value 1, i.e. P (1),

2 we formulate an induction hypothesis:

• we assume that the property P holds for all naturals n ≤ k, i.e. P (k),

3 we prove that the property P holds for k + 1, i.e. P (k + 1).
Then the property holds for all naturals: P (n), n ∈ N.

The structural induction proves some property P for some syntactic domain:

1 we prove, that the property holds for simple (atomic) elements in syntactic
domain,

2 we formulate an induction hypothesis: we assume, that the property P holds for
sub-elements of each composite element,

3 we prove, that the property P holds for each composite element.

Then the property holds for all elements in syntactic domain.

Semantics of arithmetic and Boolean expressions 12/27

Example of proof

Lemma: Semantic function N : Bin→ Z is a total function.

Proof:

N is total function, if it is defined for all arguments, i.e.

if for all arguments n ∈ Bin there is exactly one number n ∈ Z such that

N J n K = n (∗)

To prove (∗) we have to prove it for all possibilities in production rule.

1 We prove the property for the basis elements of Bin:

• the case n = 0: only one of the semantic clauses defining
N can be used and it gives N J 0 K = 0; so clearly there is
exactly one number n in Z such that N J n K = n, namely 0;

• the case n = 1: the proof is similar.

Semantics of arithmetic and Boolean expressions 13/27

Proof by structural induction

2 Composite elements in Bin are n0 and n1.

• the case n = n′0:
we see that only one of the clauses is applicable and we
have

N J n′0 K = 2 ⊗ N J n′ K.

We can now apply the induction hypothesis to n′ and get
that there is exactly one number n′ such that N J n′ K = n′.

Then is is clear that there is exactly one number n (namely
2 ⊗ n′) such that N J n K = n.

• the case n = n′1: the proof is similar.

�

Semantics of arithmetic and Boolean expressions 14/27

Simple imperative language Jane

Syntax

Syntactic domains:
n ∈ Num — for numerals,
x ∈ Var — for variable,
e ∈ Expr — for arithmetic expressions,
b ∈ Bexp — for Boolean expressions,
S ∈ Statm — for statements.

Production rules:

e ::= n | x | e + e | e − e | e ∗ e | (e),

b ::= true | false | e = e | e ≤ e | ¬ b | b ∧ b | (b),

S ::= x := e | skip | S; S | if b then S else S | while b do S.

Semantics of arithmetic and Boolean expressions 15/27

Semantics of arithmetic expressions

Semantics of arithmetic expressions:

• is defined only for untyped expressions here,

• this allows us to define semantics of arithmetic expressions by uniform
way for different methods of semantics.

Semantic domains:

• meaning of each arithmetic expression is its value, in our language it is
integer, so we define semantic domain Z of integers,

• the meaning of an expression depends on the values bound to the
variables that occur in it. We shall therefore introduce the concept of a
(memory) state.

Semantics of arithmetic and Boolean expressions 16/27

Semantics of arithmetic expressions

We define semantic domain of states State, where the elements are
states s:

s ∈ State.

We shall represent a state as a function from variables to values:

s : Var→ Z,

which assigns to each variable occurring in an expression an exact value
from semantic domain Z.

Semantic domain State is a set of all functions from the set Var to the set Z.

We call this set also function space:

State = Var→ Z.

Semantics of arithmetic and Boolean expressions 17/27

Semantics of arithmetic expressions

State s is a function which provides value for variable x

s x ∈ Z.

When variables x and y occur in an expression and their values are 3 and 5,
resp., the state can be expressed as a list:

s = [x 7→ 3, y 7→ 5] or s x = 3, s y = 5.

State is an abstraction of computer memory for the purpose of semantics.

Semantics of arithmetic and Boolean expressions 18/27

Semantics of arithmetic expressions
Given an arithmetic expression e and a state s, we can determine the value
of the expression. Therefore we shall define the meaning of arithmetic
expressions as a total function E :

E : Expr→ State→ Z.

Function is written in Curry style.

Function E takes two arguments:
• the syntactic construct (an element of Expr), and
• the state, an element of State.

Haskell Curry (1900-1982)

Semantics of arithmetic and Boolean expressions 19/27

Semantics of arithmetic expressions

Semantic function

E : Expr→ State→ Z
is a function of two arguments. It takes its parameters one at a time.

1 We may supply E with its first parameter, for instance x + y − 5, and
study the function

E J x + y − 5 K : State→ Z.

Syntactic constructs are always enclosed in semantic brackets.

2 When we supply the function E J x + y − 5 K with a state s, we obtain the
value of the expression x + y − 5:

E J x + y − 5 K s ∈ Z

Here s is the second argument of the function, not an index!

Semantics of arithmetic and Boolean expressions 20/27

Semantics of arithmetic expressions

The semantics of arithmetic expressions is defined on each arithmetic
expression:

E J n Ks = N J n K

E J x Ks = s x

E J e1+e2 Ks = E J e1 Ks⊕ E J e2 Ks

E J e1 ∗ e2 Ks = E J e1 Ks⊗ E J e2 Ks

E J e1 − e2 Ks = E J e1 Ks	 E J e2 Ks

E J (e) Ks = (E J e Ks)

Here s is an input state, i.e. an input argument for semantic function. After
evaluation its value is unchanged.

Semantics of arithmetic and Boolean expressions 21/27

Semantics of arithmetic expressions:
Example

Let x + (y−5) be an arithmetic expression and suppose s = [x 7→ 2, y 7→ 10].

An expression is of the form e + e, so we start with an application of the third
semantic equation:

E J x + (y − 5) K s = E J x K s⊕ E J (y − 5) K s

= s x⊕ (E J y K s	 E J 5 K s)

= s x⊕ (s y 	N J 5 K)

= 2⊕ (10	 5)

= 7

�

Problem as motivation. Suppose we add the arithmetic expression −e to
our language. Define its semantics!

Semantics of arithmetic and Boolean expressions 22/27

Semantics of Boolean expressions

Meaning of Boolean expression is a truth value. Semantic domain of truth
values is a set:

B = {tt, ff}

where

• tt is used for true,

• ff is used for false.

The denotations true and false are considered as syntactic elements, not
truth values!

We define (total) semantic function

B : Bexp→ State→ B.

Semantics of arithmetic and Boolean expressions 23/27

Semantics of Boolean expressions
We define semantic clauses as follows:

BJ true K s = tt,
BJ false K s = ff ,

BJ e1 = e2 K s =
{

tt, if E J e1 K s = E J e2 K s,
ff , if E J e1 K s 6= E J e2 K s,

BJ e1 ≤ e2 K s =
{

tt, if E J e1 K s ≤ E J e2 K s,
ff , if E J e1 K s > E J e2 K s,

BJ¬b K s =
{

tt, if BJ b K s = ff ,
ff , if BJ b K s = tt,

BJ b1 ∧ b2 K s =
{

tt, if BJ b1 K s = tt and BJ b2 K s = tt,
ff , if BJ b1 K s = ff or BJ b2 K s = ff ,

BJ (b) K s = (BJ b K s) .

Semantics of arithmetic and Boolean expressions 24/27

Semantics of Boolean expressions:
Example

We find a meaning of an expression ¬(x + y ≤ 10). We suppose
s = [x 7→ 2, y 7→ 1].

Inner expression is of the form e = e, the outermost one of the form ¬b.
Firstly, we determine x + y in the state s.

E J x + y K s = E J x K s⊕ E J y K s = s x + s y = 3,
E J 10 K s = N J 10 K = 10,
BJ x + y ≤ 10 K s = E J x + y K s ≤ E J 10 K s =

= 3 ≤ 10
= tt.

It holds that 3 ≤ 10, so it follows that its negation is false:

BJ¬ (x + y ≤ 10) K s = ff .

�

Semantics of arithmetic and Boolean expressions 25/27

Semantics of expressions
When working with arithmetic and Boolean expressions, we need two more concepts:

1 a meaning of expression depends only on values of variables that occur in it.
The free variables of an expression is defined to be the set of variables
occurring in it. Formally, we may give a compositional definition of subsets
F V (e) of Var. We may define the set F V (e):

F V (n) = ∅
F V (x) = {x}
F V (e1 + e2) = F V (e1) ∪ F V (e2)
F V (e1 ∗ e2) = F V (e1) ∪ F V (e2)
F V (e1 − e2) = F V (e1) ∪ F V (e2)

Lemma: Let s and s′ be two states satisfying that

s x = s′ x

for all x ∈ F V (e) in an arithmetic expression e. Then

E [[e]] s = E [[e]] s′

Proof: using structural induction on the arithmetic expression. (Homework).

Semantics of arithmetic and Boolean expressions 26/27

Substitutions

2 an occurence of a variable in an arithmetic expression can be replaced
with another arithmetic expression.
Substitution is used also for state actualisation.
Change the initial state s to the new state s0 is denoted as follows:

s′ = s[y 7→ a]

which means that new state s0 is a state s except that the value bound
to y is a ∈ Z. Formally:

s′ x = (s[y 7→ a]) x =
{

a if x = y,
s x if x 6= y.

Semantics of arithmetic and Boolean expressions 27/27

	Main Part
	Outline
	Formal definition of language
	Formal definition of language: Semantic domain
	Formal definition of language: Semantic function
	Binary numbers
	Binary numerals: Semantics
	Binary numerals: Semantics
	Binary numerals: Example
	Binary numerals: Problem
	Structural induction
	Structural induction: Principle
	Structural induction: Example of proof
	Structural induction: Example of proof
	Language Jane
	Semantics of arithmetic expressions
	Semantics of arithmetic expressions
	Semantics of arithmetic expressions
	Semantics of arithmetic expressions
	Semantics of arithmetic expressions
	Semantics of arithmetic expressions
	Semantics of arithmetic expressions – Example
	Semantics of Boolean expressions
	Semantics of Boolean expressions
	Semantics of Boolean expressions – Example
	Semantics of expressions
	Substitutions

