
(c) Christoph Steindl
Test-Driven Development

(Acceptance) 1

Test-Driven Development
at the Acceptance Testing Level

Dr. Christoph Steindl

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 2

Iterative Software Development
At the start of the iteration, the
customer explains the expected
functionality to the team. The
customer sets the priorities, the
team estimates the effort.
Then the team thinks about the
necessary tasks to implement the
functionality, details the
estimation and assigns the tasks.
During the iteration, the team
holds 15 minutes status meetings
in order to discuss the current
tasks, the achievements and the
problems.
At the end of the iteration, the
team demonstrates to the
customer the increment of
potentially shippable functionality.

Prioritized
functionality

Increment of
functionalityOne iteration with

short feedback
loops

30 d

24 h

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 3

Acceptance Testing with Iterative
Software Development

Don‘t wait until the software
has been written in order start
with the acceptance testing.
Write the acceptance tests as
soon as possible.
Build the unit tests upon the
acceptance tests.
Execute the acceptance tests
during the iteration to
understand the progress.
Execute the acceptance tests
at the end of the iteration for
verifying that the requested
functionality has been built.

Prioritized
functionality

Increment of
functionalityOne iteration with

short feedback
loops

30 d

24 h
Write
acceptance
tests

Write unit
tests based
upon
acceptance
tests

Execute
acceptance
tests

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 4

Why?
Better collaboration between customer and developer,
faster feedback
Customer / Business / User / Domain Expert

Specifies the requirements
In the language of the business, focusing on the scenarios, the flow
of events, the dynamic behavior
In an executable form
Where the execution can be automated
Before the requirements are implemented

Verifies the requirements
Targets errors not found by unit testing

Requirements are mis-interpreted by developer
Interface of software is not as intended
Modules don‘t integrate with each other

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 5

Approaches to Acceptance Testing
Manually

User exercises the system manually using his creativity
But:

The developers don‘t know the goal, the tests that the system has to pass
this approach does not support Test-First-Design

Expensive, due to manual effort which has to be repeated whenever the system changes
Errors may be overlooked (no automated verification whether the actual matches the expected)
There can be big arguments about the pass/fail decision

GUI Capture & Replay
Capture user events (mouse, keyboard) in modifiable script, abstracting from screen
coordinates to GUI objects
But:

GUI has to exist, so this approach does not support Test-First-Design
Tools are expensive
Tests are brittle, have to be re-captured if the system changes

Framework for automating the functional tests
E.g. FIT, FitNesse
Easy for user to describe the requirements themselves (no programming, just text), easy for
developer to glue the requirements to the business logic

Tests are written before the code, so this approach supports Test-First-Design
Inexpensive because the frameworks are open source, execution of the tests can be
automated.
The developer has a clear goal to achieve!

But:
No capture & replay possible

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 6

What is FIT?
An open source framework (under the GPL) created by
Ward Cunningham: http://fit.c2.com

Supports Java, .NET, Python, Lisp, Scheme, Ruby, Perl, C++
has enough logic to parse HTML, run tests, capture results and
output them as a modified HTML document
For data-driven tests (input – processing – output) where the
tests look like spreadsheets

The customer write tests as HTML tables.
The framework interprets the tables, the glue code
passes the values to the test code, the test code
exercises the business logic.
The customer documents the test with free text between
the tables (which is ignored by the framework).

http://fit.c2.com/

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 7

How to Use FIT?
Fixtures are types of HTML tables with a specific behaviour
of interpreting the values in the table.
ColumnFixture: maps columns in the test data to fields or
methods; a new column fixture is created for each table that
uses one.
ActionFixture: executes the command in the first column

start aClass: create an object of aClass to work with
enter aMethod anArgument: invoke the method on the object
press aMethod: invoke the method on the object (without
parameters)
check aFunction aValue: invoke the (parameterless) function
and compare return value with the specified value

RowFixture: invokes methods on the objects and compares
the returned values to those in the table

binds the columns to variables and methods by reflection.
Executes the functions to get the result rows which will be
checked.
matches the expected and result rows and check the matches.
marks missing and surplus rows

Run FIT Fixtures
Within Eclipse:
http://www4.ncsu.edu/~cho/articles/FitRunner.html
For .NET: http://storytestrunner.sourceforge.net/

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 8

Eclipse plugin FitRunner
(http://www4.ncsu.edu/~cho/articles/FitRunner.html)

Install plugin, add fit.jar and junit.jar to project‘s
classpath
Define input
fixtures
Define output
directory
Run them
View the result

http://www4.ncsu.edu/~cho/articles/FitRunner.html

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 9

.NET StoryTestRunner
(http://storytestrunner.sourceforge.net/)

StoryTestRunner is a C#
based application that runs
.NET FIT fixtures.

Runs all story tests in
specified locations (specified
in an XML config file)
Ability to add additional tests
for 'one-time execution'
Context menu lets tests be
run individually.
Summary results are
displayed in the tree control
once a test is complete.
Detailed results are displayed
using a context menu.

http://storytestrunner.sourceforge.net/
http://fit.c2.com/

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 10

What is a Wiki?
A minimalistic Content Management System

Everyone can change every page
Changes are visible immediately (but are under
version control in case that you damage something)
There are abbreviations for often used HTML tags
Whenever a word is combined of several others
(TestFirstDesign), it becomes a link to a new page.
When the link is activated the first time, you can fill
the (originally) empty page.

First Wiki by Ward Cunningham:
http://c2.com/cgi/wiki

http://c2.com/cgi/wiki

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 11

What is FitNesse?
An open source framework (under the GPL) created by Robert Martin et al.:
http://fitnesse.org

Supports Java, .NET, C++
Combines FIT with a Wiki Web for writing the Fixtures (HTML tables)
Supports sub wikis for managing multiple projects
Supports virtual wikis for defining tests on the server (accessible by all) but for running them
locally (within the development environment).
Versions pages, searches pages, supports simple refactorings (rename, move, delete page)

A collaborative testing and documentation tool.
It provides a very simple way for teams to:

collaboratively create documents,
specify tests,
and run those tests and suites of those tests

A web server:
It requires no configuration or setup.
Just run it and then direct your browser to the machine where it is running.

A wiki:
You can easily create:

New Documents and pages.
Hyperlinks
Lists
Tables

http://fitnesse.org/

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 12

How to use FitNesse?
Install and start
Define project on the FitNesse Wiki
Write acceptance tests on the FitNesse Wiki.
Write the glue code, the unit tests and the business logic
in your favorite IDE.
Execute the acceptance tests.
But:

Not so tightly integrated into the automated build process, i.e.
no test coverage computed out of the box,…
Not so tightly integrated into the IDE, i.e. no end-to-end
debugging

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 13

Standard FitNesse Fixtures
ColumnFixture: operates on a single object; each row loads a data structure (domain
object) and then invokes functions upon it, often used for test object creation.
RowEntryFixture: (like ColumnFixture) to add a bunch of data to a database, or to
call a function over and over again with different arguments.
RowFixture: to match all the rows from a simple query, independent of order. Each
row is the data of a domain object, all rows are matched, missing and surplus rows
are reported; often used to check the results of a query (where the query is built into
the fixture or taken from a known static variable)
ParametricRowFixture: (like RowFixture) additionally you can pass arguments into
the RowFixture
ActionFixture: to write a script that emulates a user interface
CommandLineFixture: to execute shell commands in multiple threads
HtmlFixture: to examine and navigate html pages
SummaryFixture: displays a summary of all tests on a page; often added to
TearDown
TableFixture: lets you access the cells in a table by row and column
TimedActionFixture: (like ActionFixture) additionally with visual feedback on how
long certain functions take to execute

http://fitnesse.org/FitNesse.ColumnFixture
http://fitnesse.org/FitNesse.ColumnFixture
http://fitnesse.org/FitNesse.RowEntryFixture
http://fitnesse.org/FitNesse.RowEntryFixture
http://fitnesse.org/FitNesse.RowFixture
http://fitnesse.org/FitNesse.RowFixture
http://fitnesse.org/FitNesse.ParametricRowFixture
http://fitnesse.org/FitNesse.ActionFixture
http://fitnesse.org/FitNesse.CommandLineFixture
http://fitnesse.org/FitNesse.HtmlFixture
http://fitnesse.org/FitNesse.SummaryFixture
http://fitnesse.org/FitNesse.TableFixture
http://fitnesse.org/FitNesse.TimedActionFixture

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 14

Sub Wikis and Test Suites
A normal wiki is a collection of pages with a flat structure. All the pages are
peers.

Add a top-level page simply by placing a WikiWord on an existing top-level
page, and then clicking on the ?

FitNesse allows you to create sub wikis. Each wiki page can be the parent
of an entire new wiki.

Create a sub wiki page by the ^SubPage syntax, and then clicking on the ?
Each wiki (and sub wiki) can have its own

ClassPath
PageHeader, PageFooter
SetUp, TearDown
SuiteSetup, SuiteTearDown

Test Suites
A Test Suite executes all tests in the sub wiki (tree of pages)
SetUp and TearDown pages are invoked for each page of the suite.
To wrap an entire suite, define the operations on pages SuiteSetUp and
SuiteTearDown

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 15

Virtual Wikis
Fitnesse runs on the server the developer works on his own machine.

Virtual Wikis allow to run local code still under development using a central set of shared
test pages.
This is helpful in testing code before check-in.

How to…
The developer starts FitNesse on his own machine, points one of his local pages to a sub-
wiki on the global FitNesse server.
The entire sub-wiki from the global server then appears on the developer's local machine --
just as if the developer had written the pages there. But the pages are really still on the
server.
Pressing the Test button on such a page, causes the test to be executed locally.
The developer can create ClassPath pages on his machine that allow the acceptance tests
to be run in his local environment.
Thus, each developer can set up his own local environment and create a set of ClassPath
pages that bind that environment to his wiki.
Then he can use Virtual Wiki to merge the remote acceptance tests to his local ClassPath
environment.

See http://fitnesse.org/FitNesse.MarkupVirtualWiki for details
Set page property VirtualWiki URL to include the pages of the sub wiki as children of the
current page.

http://fitnesse.org/FitNesse.MarkupVirtualWiki

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 16

Testing the User Interface
HtmlFixture (http://fitnesse.org/FitNesse.HtmlFixture)

is used to exercise and test web pages
permits to make assertions about the structure of a page and to navigate between pages
can fire java script, submit forms, "click" links, etc
lets you navigate this structure and name the elements as you go
At any given time some element in the structure is the "current" element and the commands apply to this
element for the most part (called the "focus“).
Some commands are only legal if the focus has a certain type. For example, Submit applies only to anchor
elements and form elements.

HttpUnit (http://httpunit.sourceforge.net/)
emulates the relevant portions of browser behavior, including form submission, JavaScript, basic http
authentication, cookies and automatic page redirection
allows Java test code to examine returned pages either as text, an XML DOM, or containers of forms,
tables, and links
makes it easy to write Junit tests that very quickly verify the functioning of a web site
models the http protocol so you deal with request and response objects

HtmlUnit (http://htmlunit.sourceforge.net/)
Similar to HttpUnit, but models the returned document so that you deal with pages and forms and tables
Supports http/https, POST/GET, partial JavaScript, basic http authentication, cookies, proxy server
Makes it easy to submit forms, click on buttons, walk the DOM model of the html document

jWebUnit (http://jwebunit.sourceforge.net/)
Evolved from combined use of HttpUnit and Junit
provides a high-level API for navigating a web application combined with a set of assertions to verify the
application's correctness (includes navigation via links, form entry and submission, validation of table
contents)

http://fitnesse.org/FitNesse.HtmlFixture
http://httpunit.sourceforge.net/
http://htmlunit.sourceforge.net/
http://jwebunit.sourceforge.net/

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 17

Junit/HttpUnit jWebJunit
package net.sourceforge.jwebunit.sample;

import junit.framework.TestCase;
import com.meterware.httpunit.WebResponse;
import com.meterware.httpunit.WebConversation;
import com.meterware.httpunit.WebForm;
import com.meterware.httpunit.WebRequest;

public class SearchExample extends TestCase {

public void testSearch() throws Exception {
WebConversation wc = new WebConversation();
WebResponse resp = wc.getResponse(

"http://www.google.com");
WebForm form = resp.getForms()[0];
form.setParameter("q", "HttpUnit");
WebRequest req = form.getRequest("btnG");
resp = wc.getResponse(req);
assertNotNull(resp.getLinkWith("HttpUnit"));
resp = resp.getLinkWith("HttpUnit").click();
assertEquals(resp.getTitle(), "HttpUnit");
assertNotNull(resp.getLinkWith("User's Manual"));

}
}

package net.sourceforge.jwebunit.sample;

import net.sourceforge.jwebunit.WebTestCase;

public class JWebUnitSearchExample extends
WebTestCase {

public JWebUnitSearchExample(String name) {
super(name);

}

public void setUp() {
getTestContext().setBaseUrl("http://www.google.com");

}

public void testSearch() {
beginAt("/");
setFormElement("q", "httpunit");
submit("btnG");
clickLinkWithText("HttpUnit");
assertTitleEquals("HttpUnit");
assertLinkPresentWithText("User's Manual");

}
}

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 18

References
Kent Beck: Test-Driven Development: By Example, Addison-
Wesley, 2002.
David Astels: Test-Driven Development: A Practical Guide, Prentice
Hall, 2003.
Vincent Massol: Junit in Action, Manning Publications, 2003.
J. B. Rainsberger: Junit Recipes, Manning Publications, 2004.
Andrew Hunt, David Thomas: Pragmatic Unit Testing, Pragmatic
Bookshelf, 2004.
Johannes Link, Peter Fröhlich: Unit Tests mit Java, dpunkt.verlag,
2002.
Stefan Roock: Akzeptanztests mit FIT und Fitnesse,
http://www.stefanroock.de/downloads/Fitnesse.pdf
Mark Windholz: Fit & Fitnesse,
http://www.objectwind.com/present/FitNesse.htm

http://www.stefanroock.de/downloads/Fitnesse.pdf
http://www.objectwind.com/present/FitNesse.htm

(c) Christoph Steindl
Test-Driven Development

(Acceptance) 19

Online References
FIT: http://fit.c2.com/

http://fit.c2.com/wiki.cgi?JavaDownloads
http://fit.c2.com/wiki.cgi?DotNetDownloads

Fitnesse: http://fitnesse.org/
http://sourceforge.net/projects/fitnesse

http://fit.c2.com/
http://fit.c2.com/wiki.cgi?JavaDownloads
http://fit.c2.com/wiki.cgi?JavaDownloads
http://fit.c2.com/wiki.cgi?DotNetDownloads
http://fit.c2.com/wiki.cgi?DotNetDownloads
http://fitnesse.org/
http://sourceforge.net/projects/fitnesse
http://sourceforge.net/projects/fitnesse

	Test-Driven Developmentat the Acceptance Testing Level
	Iterative Software Development
	Acceptance Testing with Iterative Software Development
	Why?
	Approaches to Acceptance Testing
	What is FIT?
	How to Use FIT?
	Eclipse plugin FitRunner (http://www4.ncsu.edu/~cho/articles/FitRunner.html)
	.NET StoryTestRunner (http://storytestrunner.sourceforge.net/)
	What is a Wiki?
	What is FitNesse?
	How to use FitNesse?
	Standard FitNesse Fixtures
	Sub Wikis and Test Suites
	Virtual Wikis
	Testing the User Interface
	Junit/HttpUnit ? jWebJunit
	References
	Online References

