
Concurrent Bug Patterns and How to Test Them

Eitan Farchi
Yarden Nir
Shmuel Ur

IBM Labs in Haifa

2 Contest

Outline

Introduction
Abstract categories of concurrent bugs
Sub-categories of concurrent bugs
Testing: how to reveal concurrent bugs

IBM Labs in Haifa

3 Contest

Categorizing concurrent bugs

A concurrent event is a synchronization event or a memory access event
An interleaving is a sequence of concurrent events that occurred in a
specific execution of P (Java replay, Choi and Srinivasan, 1998)
For a given program P

I(P) is the space of all possible interleavings of P
C(P) is the space of all correct interleavings of P

IBM Labs in Haifa

4 Contest

Categorizing concurrent bugs (continued)

[I(P) – C(P)] is the set of erroneous interleavings
Objective: characterize the gap between I(P) and C(P)

C(P)

I(P)

IBM Labs in Haifa

5 Contest

Example

Given a two byte global variable X
Two threads execute

(X = 257) in parallel with (X = 0)

The programmer’s intended results are 0 or 257. Thus, C(P) contains:

Thread 1 Thread 2
X = 257

X = 0
and

Thread 1 Thread 2
X = 0

X = 257

IBM Labs in Haifa

6 Contest

Example (continued)

The programmer ignored the non-atomicity of the assignment operation
A possible interleaving in I(P) – C(P) is (X[0] is the least significant byte):

Thread 1 Thread 2
X[0] = 0

X[0] = 1
X[1] = 1

X[1] = 0

Result is 1

IBM Labs in Haifa

7 Contest

Outline

Introduction
Abstract categories of concurrent bugs

Explain why the I(P)-C(P) gap is created
Sub-categories of concurrent bugs or

Bug tales
Testing: how to reveal concurrent bugs

IBM Labs in Haifa

8 Contest

The gap is created when there is

1. A weak reality principle: the programmer incorrectly assumes that a code
segment is protected

As in the first example
2. Denial: the programmer incorrectly assumes that an interleaving is

impossible
Fork/join design pattern when the join is “implemented” using
sleep()

3. Blocking: the programmer incorrectly assumes that a code segment will
never block (i.e., wait for an event indefinitely)

A server assumes that incoming messages will arrive, but they
never do

IBM Labs in Haifa

9 Contest

Weak reality bug tales [Not-Atomic]

An operation is assumed to be atomic but is actually not
Source code operations often seem to the inexperienced programmer to
be atomic when they are not
Example: x++

IBM Labs in Haifa

10 Contest

Two stage access:
We are given two tables
To change a record in the second table, the first table is queried
and then the second
Each table is protected by a separate lock

lock [First query key1 -> key2]

window -> the tables can be changed here

lock [Second query key2 -> record to be changed]

Weak reality bug tales (continued) [Two-Stage-Access]

IBM Labs in Haifa

11 Contest

Weak reality bug tales (continued) [Wrong/No-Lock]

Wrong lock or no lock
Protection of thread one does not apply to thread two
There is an access protocol that is not followed due to:

A new team member
An attempt to improve performance

Thread 1 Thread 2

Synchronized (o){
x++; x++;

}

IBM Labs in Haifa

12 Contest

Weak reality bug tales (continued) [Double-Check-Locking]

Double-check locking
At object initialization time, the thread local copy of object fields is initialized but
not written to the heap
Result: heap view is partially initialized while reference is not null
Source code level is misleading (looks atomic)
Bug pattern is well-documented on the internet

IBM Labs in Haifa

13 Contest

Denial bug tales [Initialization-Sleep]

One example is adding sleep() statements to ensure that only the correct
interleavings occur

As in the fork/join example, partial non-consistent results are used
at the join stage

IBM Labs in Haifa

14 Contest

Denial bug tales [Lost-Notify]

Losing notify: the notify is “lost” because it occurs before the thread
executes the wait() primitive

The gap was created because the programmer didn’t think the notify
would occur before the wait

Thread 1 Thread 2
synchronized (o){

o.notifyAll();
}

Synchronized (o){
o.wait();

}

IBM Labs in Haifa

15 Contest

Denial bug tales [Condition-For-Wait]

Missing condition enclosing the wait
When returning from a wait the programmer forgets to check, or
checks incorrectly if the reason for which he waited still holds

When returning from a wait with timeout the programmer assumes that
a condition is met

IBM Labs in Haifa

16 Contest

Denial bug tales [Non-Commutative]

Order of operations matter when you take into account interference and
does not if the operations were atomic

A pool of some structure is handled by the system; a structure is
accessed by the users iff its global reference is not null
When returning the structure to the pool

A global reference to the structure is set to null in a way that is viewable
by other threads while keeping a local reference
Next, using the local reference, the fields of the structure are set to null
and then the structure is reused
If the CPU is lost after the global reference is set to null the non
consistent structure is not accessed

If the setting of the global reference is done after the setting of the
structure fields and the CPU is lost in the middle other threads would
access a non consistent structure

IBM Labs in Haifa

17 Contest

Denial bug tales [Unintentional-Different-Thread]

A call to an API (typically a GUI API) is assumed to be in the same
thread but is actually in a different thread causing the order of locking to
sometimes change resulting in a deadlock

IBM Labs in Haifa

18 Contest

Blocking bug tales [Blocking-Critical-Section]

Blocking critical section
In the design of a critical section protocol we assume that the
thread executing the critical section will eventually exit
This assumption might be broken if the code is written by a third
party or a different group

IBM Labs in Haifa

19 Contest

Blocking bug tales [Orphaned-Thread]

The tale of the orphaned thread
A single master thread drives actions of other threads
Messages are put on the queue by the master thread and processed
by the worker’s threads
Abnormal termination of the master thread results in the remaining
threads being orphaned

The system often blocks

IBM Labs in Haifa

20 Contest

Using ConTest to increase the probability that a concurrent bug
occurs

How can ConTest increase the probability that a concurrent bug occurs?
ConTest gains control of the execution before and after concurrent
events
ConTest randomly chooses a thread and prevents its advancement
until other threads stop advancing
The chosen thread executes:

otherAdvancing = true
While(otherAdvancing) { otherAdvancing = false; sleep(duration); }

Other threads execute: otherAdvancing = true;
Why is the probability of finding the lost notify() bug increased?

When the chosen thread is the thread about to execute the wait(),
the notify() will get lost

IBM Labs in Haifa

21 Contest

Summary

The interleaving space can be used to categorized concurrent bugs
In addition to the known deadlock bug, there are three types of
concurrent bugs

Weak reality: non-protected code assumed to be protected
Denial: interleaving assumed to never occur
Blocking: blocking code assumed to be non-blocking

Examples were given but more are needed
Identifying and categorizing concurrent bugs motivates the creation of
new testing techniques

	Concurrent Bug Patterns and How to Test Them
	Outline
	Categorizing concurrent bugs
	Categorizing concurrent bugs (continued)
	Example
	Example (continued)
	Outline
	The gap is created when there is
	Weak reality bug tales [Not-Atomic]
	Weak reality bug tales (continued) [Two-Stage-Access]
	Weak reality bug tales (continued) [Wrong/No-Lock]
	Weak reality bug tales (continued) [Double-Check-Locking]
	Denial bug tales [Initialization-Sleep]
	Denial bug tales [Lost-Notify]
	Denial bug tales [Condition-For-Wait]
	Denial bug tales [Non-Commutative]
	Denial bug tales [Unintentional-Different-Thread]
	Blocking bug tales [Blocking-Critical-Section]
	Blocking bug tales [Orphaned-Thread]
	Using ConTest to increase the probability that a concurrent bug occurs
	Summary

