
Advanced Compiler Construction Prof. Dr. H. Mössenböck

Project 1: Code Generation for a Register Machine

The goal of this project is to turn the concepts learned in this course into a practical
compiler. The project covers
 Symbol table managament
 Code generation for register machines
 Use of a compiler generator
The project is optional, but without the project the best possible mark for this course
will be 2 (gut). If you submit a correct project (and if you achieve at least 40 points in
the written exam) the mark from the exam will be automatically raised by 1. The
submission date for the project can be found on the web page of this course. The im-
plementation language for the project can be Java, C# or C/C++.

The Programming Language SL (simple language)
Syntax:

SL = "PROGRAM" {Declaration} "BEGIN" StatSeq "END" "." .
Declaration = VarDecl | ProcDecl.
VarDecl = "VAR" {IdList ":" Type ";"}.
IdList = ident {"," ident}.
Type = ident.
ProcDecl = "PROCEDURE" ident [Parameters] ";" {VarDecl} ["BEGIN" StatSeq] "END" ident ";".
Parameters = "(" [Param {";" Param}] ")" [":" Type].
Param = ["VAR"] IdList ":" Type.
StatSeq = Statement {";" Statement}.
Statement =
 [ident (":=" Expression | ActParameters)
 | "IF" Condition "THEN" StatSeq {"ELSIF" Condition "THEN" StatSeq} ["ELSE" StatSeq] "END"
 | "WHILE" Condition"DO" StatSeq "END"
 | "RETURN" [Expression]
].
Condition = Expression Relop Expression.
Expression = [Addop] Term {Addop Term}.
Term = Factor {Mulop Factor}.
Factor = ident [ActParameters] | number | charCon | "(" Expression ")".
ActParameters = "(" [Expression {"," Expression}] ")".
Relop = "=" | "#" | "<" | ">" | ">=" | "<=".
Addop = "+" | "-".
Mulop = "*" | "/" | "%".

Data types
 INTEGER 4 bytes; constants like 123
 CHAR 1 byte; constants like 'x'
Comments delimited by /* and */
Bult-in procedures
 Put(e) prints the expression e which is of type CHAR to the console
 PutLn starts a new line
 ORD(ch) converts the character ch to an integer
 CHR(i) converts the integer i to a character

Sample Program in SL

PROGRAM

 VAR i: INTEGER;

 PROCEDURE PutInt (x: INTEGER); /* largest printable number = 9999 */
 VAR c0, c1, c2, c3: CHAR;
 BEGIN
 c3 := CHR(48 + x % 10); x := x / 10;
 c2 := CHR(48 + x % 10); x := x / 10;
 c1 := CHR(48 + x % 10); x := x / 10;
 c0 := CHR(48 + x % 10);
 IF c0 > '0' THEN Put(c0); Put(c1); Put(c2)
 ELSIF c1 > '0' THEN Put(c1); Put(c2)
 ELSIF c2 > '0' THEN Put(c2)
 END;
 Put(c3)
 END PutInt;

BEGIN /* print odd numbers */
 i := 1;
 WHILE i < 100 DO
 PutInt(i); PutLn();
 i := i + 2
 END
END.

If the implementation of the full compiler is too much for you, you can drop the im-
plementation of procedures. But be ambitious and try to implement everything.

a) Symbol Table Management

Write an attributed grammar SL.ATG that can be processed by the compiler generator
Coco/R. The user manual, the executable and the sources of Coco/R (for Java, C# and
C++) can be found at http://ssw.jku.at/Coco/ .

The C# version of Coco/R, for example, generates a scanner (Scanner.cs) and a parser
(Parser.cs) from SL.ATG. You have to write a main program SL.cs which should look
like this (for details see the user manual of Coco/R):

public class SL {

 public static void Main (string[] args) {
 string file = ... source file name ...;
 Scanner scanner = new Scanner(file);
 Parser parser = new Parser(scanner);
 parser.Parse();
 Console.WriteLine(parser.errors.count + " errors detected");
 }

 }

Add semantic actions to SL.ATG to perform the following tasks:

• Build a symbol table with Obj and Struct nodes. Initialize the universe with prede-
fined Obj and Struct nodes for INTEGER and CHAR as well as for the built-in pro-
cedures Put, PutLn, ORD and CHR.

• Check the necessary context conditions in declarations and statements (e.g., all
names must be declared, there must not be double declarations, assignments and pa-
rameter passing must obey the usual type compatibility rules).

http://ssw.jku.at/Coco/

b) Code Generation
Extend SL.ATG such that IA32 code is generated during parsing. The generated code
should simply be written into a file (without header or linker information). The first
instruction, however, must be a jump to the program's body where execution should
start.
Use the mini loader (downloadable from the web page of this course) to execute the
generated machine code. The loader allocates memory for the code and the data ac-
cording to the figure below. After loading the code it does a CALL to address 0 of the
loaded code. At the end of the program's body there should be a RET instruction that
causes the program to return to the loader.

code data
0
4

Put

PutLn

Prog. Body

Proc1

Proc2

EDI

64K

0

64K

JMP

RET

Please note also the following:

• Addresses: The code will be executed in 32-bit mode. Thus, all addresses are 4
bytes in size. Also, you do not have to care for segment registers.

• Global (static) data: The loader allocates a global data area (64 KB) and loads its
address into register EDI. The first 8 bytes of the global data area hold the address-
es of the built-in procedures Put and PutLn. Therefore, the actual global data start at
[EDI+8]. Make sure that EDI is not used otherwise in your code. Operands of kind
Abs should be treated like operands of kind RegRel with EDI as the base register.

• Addressing: Global data are accessed relative to EDI, local data relative to EBP.
Jumps should always be done with relative jump distances.

• Stack: The loader allocates the stack and initializes the stack pointer ESP. The stack
grows towards lower addresses.

• Output: The loader provides the built-in procedures Put and PutLn. Their addresses
are installed into the first two words of the global data area so that they can be in-
voked in the following way:
- Put(ch): CALL [EDI] 0xFF 0x17
- PutLn(): CALL [EDI + 4] 0xFF 0x57 0x04
Note, that both procedures might modify registers. Thus, you have to save at least
EDI across such invocations (e.g., with PUSH EDI, ... POP EDI).

In order to debug the generated code you can use Visual Studio or some other IDE
with disassembly functionality.

