
Submitted by
Markus Hirth, BSc

Submitted at
Institute for System
Software

Supervisor
Dipl.-Ing. Dr. Markus
Weninger, BSc

December 2023

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Analyzing Collection
Staleness and Collection
Anti-Patterns that Lead
to Memory Problems

Master Thesis

to obtain the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computer Science

Master's Thesis
Analyzing Collection Staleness and Collection Anti-Patterns
that Lead to Memory Problems

Student: Markus Hirth
Advisor: Dipl.-Ing. Dr. Markus Weninger, BSc
Start date: October 2022

Modern programming languages such as Java are so-called managed languages that leverage
garbage collection to free the programmer from the error-prone task of manually managing
memory. While garbage collection prevents certain memory problems, anomalies such as
memory leaks can still happen. Such anomalies are often connected to the inproper use of
collections such as lists or maps.
For example, Xu and Rountev presented “Precise Memory Leak Detection for Java Software
Using Container Profiling” (https://doi.org/10.1145/2491509.2491511, https://doi.org/10.1145/1368088.1368110) in which
they present a technique on how to track accesses to containers, how to calculate the
staleness of the container’s elements (i.e., when each element was accessed the last time)
and how this information, together with information about the collection’s overall size and
growth, can be used to calculate a leaking confidence factor. This leaking confidence factor
tells how probable it is that a collection exhibits a memory growth problem.

In previous work (“Collecting Memory Monitoring Data using Aspect-oriented Programming” by
Markus Hirth), we have shown that it is possible to collect information about collections
(creation, additions, removes, accesses, size) in Java using aspect-oriented programming,
opposed to the established way of using (native) agents and bytecode manipulation. This
information is written to a trace file while the monitored application is running.

The goal of this master’s thesis is to utilize such trace files to analyze the staleness of
collections and to inspect general anti-patterns that can lead to memory problems. As a first
step, the student has to develop a parser that can process the trace files. Secondly, inspired by
the work by Xu and Rountev, the student should develop data structures that allow us to
reconstruct staleness information similar to the one presented in their papers – this should
allow us to also calculate a leaking confidence factor. The student might also have to improve
the trace collection with new event types and information for this. Once the subgoal of
replicating the leaking confidence factor metric is achieved, the trace collection, the parser and
the data structures should be extended to detect other memory anti-patterns. The student
might find inspiration in “Patterns of Memory Inefficiency” by Chis et. al (https://doi.org/10.1007/978-3-642-

22655-7_18) regarding possible patterns that might be detected using the trace data.
The written thesis should also contain an evaluation of the implemented approach, showing
how the resulting tool can be used to detect memory problems in applications and how the tool
helps users fixing these problems.

Modalities:
The progress of the project should be discussed at least every four weeks with the advisor. A time schedule and a
milestone plan must be set up within the first 3 weeks and discussed with the advisor and the supervisor. It should
be continuously refined and monitored to make sure that the thesis will be completed in time. The final version of
the thesis must be submitted not later than 30.09.2023.

Dipl.-Ing. Dr. Markus Weninger, Bsc
Institute for System Software

T +43-732-2468-4361
markus.weninger@jku.at

Abstract

Executing programs allocates memory on the system. As a result, it is vital, that programs use
the memory efficiently. But bugs in the program code can lead to unnecessary consumed memory,
a memory leak. Because of this, it is essential to identify possible memory leaks in the program.
Hence, there are different approaches with their own advantages and disadvantages to identify
possible memory leaks. With our approach, we want to achieve similar results to an existing
approach and want to explore whether there are advantages and disadvantages, when tackling
the problem of memory leak analysis with the concept of aspect-oriented programming (AOP).
Furthermore, we explored if it is possible to identify patterns of memory inefficiency in the data
of the tracked program.

Kurzfassung

Die Ausführung von Programmen allokiert Speicher auf dem System. Daraus resultiert, dass
es für Programme unabdingbar ist, den Speicher effizient zu nutzen. Aber Fehler im Pro-
grammcode können zu unnötig genutzten Speicher führen, genannten Speicherlecks. Dadurch
ist es unerlässlich, mögliche Speicherlecks in Programmen zu identifizieren. Deshalb existieren
viele verschiedene Ansätze, wobei jeder Ansatz seine eigenen Vorteile und Nachteile besitzt, um
mögliche Speicherlecks zu identifizieren. Wir wollen mit unserem Ansatz ähnliche Resultate zu
einem bereits existierenden Ansatz erreichen und erforschen dabei, ob es Vorteile und Nachteile
gibt, wenn wir das Problem mit dem Konzept der aspekt-orientierten Programmierung (AOP)
angehen. Außerdem erforschen wir, ob es möglich ist, bereits vordefinierte Muster für Speicher-
ineffizienz in den Daten des nachverfolgten Programmes zu identifizieren.

i

Table of Content

Contents

Abstract i

Kurzfassung i

1 Introduction 1

2 Background 3
2.1 Java . 3
2.2 Memory Management . 4
2.3 Aspect-oriented Programming . 4

2.3.1 AspectJ . 6
2.4 Javascript Library d3 . 7

3 Overview 13

4 Trace File 15
4.1 Data Collection with AOP . 15
4.2 Structure of the Trace File and Symbols File . 15

5 Backend 21

6 Parser 23
6.1 Parser Structure . 23
6.2 Staleness Calculation . 24

6.2.1 Problem of Duplicate Elements . 27
6.2.2 Problem of Reinserting Elements . 27

6.3 Aggregation of the Elements . 27

7 Frontend 31
7.1 User Interface . 32

7.1.1 Element Size . 32
7.1.2 Collection Staleness . 33
7.1.3 Operations Count . 34
7.1.4 Element Get Count . 35
7.1.5 ADDs per ADD Location . 36
7.1.6 GETs per GET Location . 36
7.1.7 REMOVEs per REMOVE Location . 37

7.2 Anti-Patterns of Memory Inefficiency . 37
7.2.1 Implemented Anti-Patterns . 39

8 Evaluation / Usage 41

9 Related Work 45

ii

10 Limitations and Future Work 47
10.1 Limitations . 47
10.2 Future Work . 48

11 Conclusions 51

Literature 53

iii

1 Introduction

A lot of variables and data structures are used over the execution time of a program. The program
needs a space for the values assigned to these variables and data structures. This space is provided
by the system on which the program runs. As there is only a limited amount of memory in a
system, the programs running on the system share the memory. If a single program consumes
more memory than it should over its execution time, there is a high chance that a variable or a
data structure in the program is unnecessarily kept alive. This phenomenon is known as leaking
memory. This causes a problem, because if a lot of programs have leaking memory problems, the
limited memory of the system will be used up far faster and fewer programs can request memory
from it.

There are different possibilities how it comes to a leaking memory problem. For example, if the
program developer needs to manage the memory manually, it could be that he forgot to free the
memory. Another example would be that elements are added to data structures, even though they
are never accessed or removed afterwards. This way, these elements consume memory without
being used until the data structure is deallocated. There are different approaches to identify
memory leaking problems or prevent the memory leaking problems. When manual memory
management in programming languages (for example C and C++) causes problems, then the
problem can be prevented by designing programming languages where memory management is
automated (for example Java). But such a prevention mostly has advantages and disadvantages.
On the one hand, the automatic memory management solves the problem of forgetting to free
memory. On the other hand, to automate the memory management comes with a program
execution time overhead. When prevention for a type of memory leak is not possible or the
disadvantages of the prevention outweigh the advantages, then the memory leak needs to be
identified on the source code level. There are different approaches, some of which can only be
applied on certain programming languages. [1]

One such approach was described by Xu et al. [30]. In the programming language Java,
they modified selected collection classes to collect which operations are performed on them.
These operations were classified into three types: adding, getting and removing. The memory
consumption was monitored through the use of Java agents. The gathered data was then used
to calculate two metrics, the staleness, which is generally defined as the unused time between
the removal and the last access, and the memory consumption, which were then combined into
a so-called leaking confidence score. This leaking confidence score shows how likely it is that a
collection leaks memory.

Our approach in this work uses different concepts to try to achieve similar results. For
gathering the operations on the collections, the concept of aspect-oriented programming (AOP)
is used. AOP enables us to extract crosscutting concerns, such as gathering data before and/or
after methods with a certain name pattern. As we tried to not use Java agents, gathering data
on memory consumption of the collections became extremely difficult. In the end, we decided to
not collect information about the memory consumption, as the scalability for more collections or
larger collections performed extremely poorly. Once we finalized the implementation of gathering
staleness data, a parser was written to process the data, so that it can be visualized to the user
in the frontend. In the frontend, the user can interact with the visualized data, to find bad code
practices, that are defined as anti-patterns for memory inefficiency.

The following chapter will first introduce terminologies that are used throughout the work.

1

Then, a short overview of our approach is provided, where the connections between the steps
of gathering the data to visualizing the gathered data are shortly explained. Afterwards, each
part of the approach is explained in more detail. After explaining the approach, the results
of applying our approach on a known memory leaking application and how well the approach
performed for this problem are presented. Afterwards, limitations that were encountered, such
as the scalability of memory consumption analysis using AOP, will be shortly discussed, before
presenting possible ways on how to improve and extend the work in the future.

2

2 Background

This chapter introduces concepts, that are needed for understanding parts of this work.

2.1 Java

Java is a high-level programming language with automatic memory management, that the appli-
cations we test in this work are written in. For that reason, we want to clarify certain Java-specific
terminologies that are will be encountered throughout this work.

Java Virtual Machine The Java Virtual Machine (JVM) is an abstract computing machine,
that has its own instruction set (Java bytecode, also called class files) and manipulates various
memory areas at run time. As long as a programming language can compile to Java’s class
file format, the JVM is able to host it. Because of this, the JVM knows nothing of the Java
programming language per-se, but it can host the binary format that Java applications are
compiled to. [22]

Collection Types Java has a collection framework that is based on two main interfaces,
Collection and Map, which other collections inherit from. Most collection types are based on
the Collection interface and extend it with their own specific functionalities. Map is the basis
for the collection types that map keys to values. Each of the two main interfaces provides a
specific set of basic method calls on which the collection framework is build upon. [15, 19]

In this work the following collection types (that implement one of the two main interfaces)
are directly mentioned:

• HashMap : HashMap is a hash-table-based implementation of the Map interface. It allows
null values and is not suitable for the access of multiple threads at the same time, meaning
that it is not thread safe. [17]

• ConcurrentHashMap : A ConcurrentHashMap is also based on a hash table such as the
HashMap. But the ConcurrentHashMap is a thread-safe variant. [16]

• HashSet : A HashSet is backed by a hash table and implements the Set interface, which
inherits from the Collection interface. Because of this, a HashSet allows no duplicate
elements. The HashSet is not a thread-safe collection type. [18]

• ArrayList : An ArrayList is a resizable-array-based implementation of the List interface,
which inherits from the Collection interface. It expands the functionality by methods for
manipulating the size of the internal array. An ArrayList is not thread-safe. [14]

System.identityHashCode The method System.identityHashCode(Object x) returns a
hash code for objects that will be calculated based on the original implementation for hash code
in the Object class. This means that, even if a class has overridden the hash-Code method, the
Object hash-Code method will be used. [21]

3

WeakReference A WeakReference references a object weakly. When a garbage collector
determines that an object is only reachable through a weak reference, the garbage collector will
clear the object and free the memory. [23, 25]

2.2 Memory Management

Programming languages need memory to save values and information. For this reason, memory
management that controls and coordinates the computer memory is essential. Programming
languages such as C or C++ use manual memory management, where the memory has to be
allocated and deallocated by the developer. But it is well known that manual memory man-
agement can cause many problems. An example is to forget the deallocations of objects that
are no longer needed, resulting in wasted heap memory. Opposed to manual memory manage-
ment is the automatic memory management, that is used in many high-level object-oriented
programming languages (OOP) such as Java. The automatic memory management uses efficient
garbage collection algorithms to free the memory from objects that are no longer referenced
from the program. The garbage collection operations are performed automatically at regular in-
tervals. Consequently, automatic garbage collectors (GC) eliminate many difficulties associated
with manual memory management such as forgotten deallocations and wrongly freed memory at
the cost of performance. [1]

As the approach presented in this work focuses on Java, the memory management of the JVM
has to be considered. The JVM has three core components for efficient memory management
that developers need to be aware of, the heap, the compiler and the garbage collector [1].

Heap memory The heap memory holds the objects used by a program. The JVM forms the
heap memory at startup and all object instances produced at run time share it. The JVM is also
responsible for initiating automatic memory management operations for the heap memory. [1]

Just-In-Time (JIT) Compiler Just-In-Time compilation controls the operating program
by tracing data to make decisions with the goal of memory optimizations. The JIT compiler
repeatedly analyzes the executed code for areas where the cost of compiling is outweighed by the
benefits of the optimizations. This makes the JIT compiler a form of dynamic compilation that
enables adaptive optimization. [1]

Garbage Collector (GC) The garbage collector removes unreferenced objects from the heap
memory. This frees memory space to be able to create new objects. In the JVM, a GC automat-
ically takes care of the memory management. This frees the developer from manually managing
the memory and thus prevents its possible mistakes. However, this error prevention comes with
the cost of extra run-time overhead. [1]

2.3 Aspect-oriented Programming

Aspect-oriented programming (AOP) is a methodology that separates crosscutting concerns from
core concerns. The core concerns are the primary functionality of the program that are bundled
in core modules. Crosscutting concerns, such as logging, are scattered across multiple core
modules, as shown on the left (a) in Figure 1. This leads to the undesirable situation, where the

4

introduction of new crosscutting concerns or the modification of existing crosscutting concerns
requires the modification of all the relevant core modules. Shown on the right (b) in Figure 1
is the separation of the crosscutting concern from the core modules. To achieve separation of
core concerns and crosscutting concerns, AOP introduces a new unit of modularization, Aspects,
which crosscuts the other modules. For a better manageability it is recommended to have one
crosscutting concern per Aspect. Aspects also need to be combined with the core modules. This
combination of the core modules and Aspects is done by the Aspect weaver, a compiler-like
entity. Consequently, the process of combination is called weaving. When a new crosscutting
concern is added, only a new Aspect has to be created. Similarly, to modify existing crosscutting
concerns, only the existing Aspect must be modified. [10]

A B

OOP

A B

AOP

Crosscutting
Concern

Crosscutting
Concern

Core
Modules

Core
Modules

(a) The coupling of core concerns and crosscutting
concerns in different core modules practiced in OOP.

(b) The separation of the crosscutting concern from the
core modules into an aspect.

Figure 1: The different approaches to crosscutting concerns from OOP and AOP.

...
list.add(value);
execute logging(value);
...

A B

execute logging

BA

...
list.add(value);
...

OOP AOP

(a) Logging values that are added to lists in OOP. (b) Logging values that are added to lists in AOP.

① ② for each list.add(value)

Figure 2: OOP and AOP have the same behavior when executed.

5

Example In Figure 2 we see an example of writting a log message whenever an element is
added to a list, once in the OOP-methodology on the left (a) and once in the AOP-methodology
on the right (b). Both methodologies result in the same runtime behavior. We see in (a) that at
least one call to the logging method 1 needs to be done every time an add to the list occurs.
When additional information should be logged later on, each call to the logging method needs to
be changed in each core module. In contrast, we see in (b) that the execution of the logging code
was separated into an aspect. The aspect catches when a list adds an element and executes the
logging code. Therefore, we just need to modify the aspect later on, when additional information
should be logged.

2.3.1 AspectJ

One concrete implementation of AOP for Java is called AspectJ. It has a compiler named ajc that
allows to weave the AspectJ code directly into a Java application. Weaving can be done while
compiling the Java application or later in the already compiled Java binaries. When weaving
while compiling, it is called compile-time weaving. Weaving Java binaries after compilation is
called post-compile time weaving. For the weaving to be possible, ajc is able to also compile
Java files. [10]

The AspectJ code is defined by four main terminologies, as described in [10], which will be
demonstrated in the form of an example after giving their definitions:

1. Join point : A join point is an identifiable point of execution in the program. Some examples
for such identifiable execution points are method calls and assignments to variables.

2. Pointcut : The pointcut specifies which join points should be captured in the program
execution. They can be declared in aspects and Java classes.

3. Advice: Advices specify which actions should be executed at caught join points specified by
a pointcut. The actions can be executed in three different ways: (1) Before the join point
is executed, (2) after the join point is executed or (3) around the join point. The around
execution of a join point is a little special, because the caught join point must be executed
from within the advice. Also, when a value is returned from a joined method, that return
value must also be returned manually from within the advice.

4. Aspect : An Aspect contains mainly definitions of pointcuts and advices. Therefore, aspects
are constructs similar to Java classes. Yet, they cannot be instantiated directly. Also,
Aspects can only inherit from abstract aspects and from Java classes.

Limitations AspectJ cannot weave the Java standard library without especially modifying the
Java project through special methods, such as Java bytecode instrumentation. But this special
methods bring their own risk. For example, Java bytecode instrumentation is difficult and may
crash the JVM. [26]

Example In this short example we examine a small Aspect shown in Listing 1. In the first
line 1 , we see that similar to a Java class, there is an access specification, the keyword aspect
instead of the keyword class and the name. The second line 2 defines a pointcut that catches
all calls to add methods (independent of their parameters, thus the .. in the parameter list) of

6

List (and inheriting classes, thus the + after List) objects. The * indicates that the access
modifier does not matter. Then, we create an advice 3 that executes code before each join
point caught by the specified pointcut. We also can define another advice 4 that executes code
after the same join points. As we can see, one advice is locked to one execution way, but we are
still allowed to simply create another advice.

public aspect ListAddAspect { 1
pointcut callAllListAdd () : call(* List+.add (..)); 2

before () : callAllListAdd () { 3
System.out.println("Before adding element!");

}

after () : callAllListAdd () { 4
System.out.println("After adding element!");

}
}

Listing 1: Example AspectJ Aspect.

2.4 Javascript Library d3

The d3 library (which stands for data-driven-documents) is a free, open-source JavaScript library
that takes a low-level approach for visualizing data. The library was created by Mike Bostock in
2011 and has since then been used for data visualizations in newsrooms, websites and personal
portfolios. Because of its low-level approach, d3 does not provide ready-to-use charts. Instead,
it allows the flexible design of charts as needed, providing easy-to-use utility functions. Thus, it
is often used in higher-level charting libraries as the foundational building block. [12]

Example - Rectangle To understand how d3 works, a small example provides the best way
to explain it. Listing 2 shows a small HTML file. First, we see the declaration that it is an
HTML file. Then we declare the head, where we define the title of the page, and more impor-
tantly, load in a script tag the d3 library 1 . Following the header is the body, where we define
an svg tag 2 . The svg tag provides us with a space where we can draw on. Now that the d3
library is loaded and a space to draw on was created, we start our script. First, we select 3
the drawing space through d3 and save the selection in a variable. Then we define an array with
the information (the starting point defined by x and y, the width and height of the rectangle
and the color of the rectangle) of a single green rectangle and an array with the information of
two different rectangles 4 . Afterwards, we define a redraw function 5 that takes an array and
draws it onto the drawing space. To achieve this, in the redraw function all existing rectangles
in the drawing space, which we saved prior to this in a variable, are selected. After setting the
rectangle data from the parameters for the selection, the join appends or updates a rectangle
through the provided data and deletes rectangles that are no longer present in the data. Then
the position, size and color of each rectangle is set through the information provided by the data.
Now we call the redraw function two times, first with an array of an green rectangle and then

7

with an array of an red rectangle and blue rectangle 6 . This results in first drawing a green
rectangle which is shown in Figure 3. Then the second redraw draws a red rectangle and blue
rectangle and deletes the green rectangle because it does not exist in the array. Figure 4 shows
the result of the second redraw. In this example, the second redraw should happen so fast, that
the green rectangle should not be noticed at all. Finally, we draw a border at the edges of the
drawing space 7 for a better visibility in Figure 3 and Figure 4.

This short example should help to understand that using d3 data can be transformed into vi-
sualization quite easily. For example, developing a bar chart is achieved quite easily, while still
having the possibility to change little details, which would not be possible with other libraries.

8

<!DOCTYPE html >
<html lang="en">
<head >

<script type="text/javascript"
src="https :// unpkg.com/d3@7 .8.4/ dist/d3.min.js"> 1

</script >
<title >Rectangle Example </title >

</head >
<body >

<svg id="rectangleSVG" width="300" height="300" ></svg > 2

<script type="text/javascript">
let rectSVG = d3.select("#rectangleSVG"); 3
let rectDelete =

[{x: 50, y:50, w: 100, h: 100, c: "green"}];
let rectsArray =

[{x: 100, y: 100, w: 50, h: 100, c: "red"},
{x: 200, y: 80, w: 20, h:200, c: "blue"}]; 4

function redraw(rects) { 5
rectSVG

.selectAll("rect")

.data(rects)

.join("rect")

.attr("transform", d =>
‘translate(${d.x},${d.y}) ‘)

.attr("width", d => d.w)

.attr("height", d => d.h)

.attr("fill", d => d.c);
};
redraw(rectDelete);
redraw(rectsArray); 6
rectSVG.append("rect") 7

.attr("width", 300)

.attr("height", 300)

.attr("fill", "none")

.attr("stroke", "black")

.attr("stroke -width", 3);
</script >

</body >
</html >

Listing 2: Example d3 code.

9

Figure 3: The deleted green rectangle of Listing 2.

10

Figure 4: Resulting view of Listing 2.

11

3 Overview

Memory leaks occur because of different reasons in a program. In the programming language
Java, the GC handles the allocation and deallocation of memory, which eliminates memory
leaks through manual allocation and deallocation. Instead, when an object is referenced in the
program, for example from a local or static variable, the GC is not able to free the memory.
Furthermore, objects are often saved as elements in long-living collections and maps and might
be forgotten to be removed or might be kept alive far longer than necessary. To track the
program’s execution to identify the leaking collections, Java offers various approaches. A well
known concept is the concept of (native) java agents, that attach to the execution of a Java
program and are able to access the JVM deeply to monitor the memory changes. In this work,
we try to achieve similar results with a different approach based on the concept of AOP by
modifying the code prior to execution. Then the gathered data is visualized to show possible
memory leaks.

Steps of data gathering and analyzing

①AOP ②Trace file ③Parser

File X
Nodejs

REST

"String"

⑤Frontend

Mem

Time

Hotspots
Staleness

AOP Symbols

3
...

2
1

"main"
"HashMap"

...

Server

④Backend

Hosts

use

Figure 5: Overview of the steps of data gathering and analysis.

Figure 5 presents the steps that lead from gathering and saving the data with AOP, to
the visualization in the frontend. The following list describes each of them shortly, while the
explanation in more detail is done throughout the rest of the work.
1 AOP is used to weave aspects and Java classes for all Java classes of the chosen application.
The aspects catch calls to specific methods of Java classes. More specifically, all calls to methods
of Collection and Map objects. Information about the respective method call is then saved to
a trace file.
2 The trace file contains events about five different kinds of method calls: allocation of collec-
tions, adds to collections, reads from collections, removes from collections and deallocations of
collections. The allocation of collections contains the specific type of allocated Collection, the
adding of collections contains the specific class name of the added element and all kinds except
the deallocation contain at which source code location (file name + line number) the method call
occurred. As this information is frequently the exact same and takes far more disk space to save,
a separate Symbols file with the information is created. Only integer numbers that reference the
content are saved in the trace file directly. That means a unique integer number was assigned to

13

the information and then both are saved in the Symbols file, where they can be looked up when
needed.
3 The parser was written in Typescript and runs on the runtime environment nodejs [13].
The parser reads the trace file and the symbols file and reconstructs the call history for each
Collection separately. Also, the calculation of staleness for each Collection and its elements
for a specified time frame is done by the parser.
4 The backend hosts the frontend, creates when requested the parser and manages the commu-
nication between the frontend and the parser.
5 The visualization is done in the browser. Because of this, the visualization is separated
from the parser into the frontend, which accesses the data through representational state trans-
fer (REST) interface [7]. The visualization in the frontend enables the user to find hotspots in
the program through choosing an interesting time frame. The chosen time frame is then more
deeply analyzed on the staleness of the elements in the collections.

14

4 Trace File

After the brief introduction in Section 3, this chapter goes into more detail on how AOP is used
to collect the data and how the trace file and symbols file are created from the collected data.
Afterwards, the structure of the trace file and the structure of the symbols file are introduced in
more detail.

4.1 Data Collection with AOP

This work uses AOP to weave Aspects and Java classes into already compiled Java classes and
collect data on collections. This data is then steadily written into the trace file and symbols file.

Figure 6 shows the AspectJ aspects and Java classes and their interactions with each other.
The ConstructorAspect 1 catches all collection allocations (i.e., the creation of Collection
objects and Map objects), defined in Table 2, through its defined pointcuts. Only the explicitly
excluded Java classes or Aspects in the notWithin pointcut(which is comprised of all Aspects
and Java classes in Figure 6) are ignored. The allocated Collection or Map is then saved in
a HashMap in ObjectIdentifier 2 with its System.identityHashCode(Object x) as key and a
WeakReference<Object> as value. Every GC run, every entry in the HashMap is checked, because
when its value is null, the collection was deallocated. The CollectionAspect 3 catches
methods of the Collection interface and Map interface defined in Table 1 and breaks them
down to only ADD, GET and REMOVE events. It is also checked whether the collection exists
in ObjectIdentifier. When the collection does not exist, a new allocation for the collection
is added first and then an ADD for all already existing elements in the collection is added.
This is necessary, because it is possible to create a object in Java without a constructor (i.e.,
for example through reflection) that is not catchable through AOP. The ConstructorAspect,
CollectionAspect and ObjectIdentifier use the record methods in Recorder 4 to create
a DataRecord that is written in SaveToDisk through a separate thread to the trace file. For
that purpose, Time 5 saves the first time any pointcut is caught, which we use as start time
of our application. Then, Time is used to calculate the time for the DataRecord of all other
caught pointcuts and deallocations based on the saved start time, i.e., we report for every event
its elapsed time since application start. Also, some information that ConstructorAspect and
CollectionAspect save are texts which are often the exact same (for example method names
or type names). It would take a lot of space to save these strings multiple times in the trace file.
Thus, each string is assigned a unique number in Symbols 6 and is saved into a separate file
called symbols. For each event, we then do not store the string but its symbol number, which
can then be resolved using the symbol file during parsing.

4.2 Structure of the Trace File and Symbols File

The trace file is built on five different kinds of entries that are visualized in Figure 7. The first
kind 1 is a collection allocation with the specified collectionID, i.e., its
System.identityHashCode(Object x). The size represents how many objects are currently
stored in the collection. This should typically be always zero, with the following exception: if
an allocation was missed, its allocation event has to be recorded when another kind of event
is encountered for said collection. As such, a different size for the collection can exist. The

15

Recorder ④

+ SINGLETON_RECORDER: Recorder
- running: boolean
- toWrite: ArrayBlockingQueue<DataRecord>
- FILE_PATH: String
- recordWriter: DataOutputStream
- t: Thread

- Recorder()
+ recordAccess(Records, int, int, int, int, int, int): void
+ recordAllocate(Records, int, int, int, int, int): void
+ recordDeallocation(Records, int, int, int)
+ stop_save_to_disk(): void

Symbols ⑥

+ SINGLETON_SYMBOLS: Symbols
- symbols: Map<String, Integer>
- count: int
- symbols_writer: DataOutputStream

- Symbols()
+ put(String): void
+ get(String): Integer
+ remove(String): Integer

ObjectIdentifier ②

+ SINGLETON_OBJECT_IDENTIFIER: ObjectIdentifier
- objectReferences: WeakHashmap<int, Object>
- keys: ArrayList<int>

- ObjectIdentifier()
+ add(int, obj): void
+ get(int): obj
+ remove(int): void
+ containsReference(int): bool
+ checkContainerExist(): void

Time ⑤

+ SINGLETON_TIME: StartTime
- startTime: long

- Time()
+ getStartTime(): long
+ timeSinceStartTime(long): int

- SaveToDisk

+ SaveToDisk()
+ run(): void

- DataRecord

- allocationSite: int
- type: int
- effect: int
- size: int
- collectionID: int
- elementID: int
- elementType: int
- time: int

+ DataRecord(int, int, int, int, int, int, int, int)

+ Records

+ EFFECT_ALLOCATION(0)
+ EFFECT_ADD(1)
+ EFFECT_GET(2)
+ EFFECT_REMOVE(3)
+ EFFECT_DEALLOCATION(4)
- value: int

 Records(int)
+ getValue(): int

ConstructorAspect ①

pointcut: notWithin()
pointcut: collectionConstructors()
pointcut: collectionConstructorsIV(Object)
pointcut: mapConstructors()
pointcut: mapConstructorsIV(Object)

after() returning(Object) : collectionConstructors()
after(Object) returning(Object) :
collectionConstructorsIV(Object)
after() returning(Object) : mapConstructors()
after(Object) returning(Object) : mapConstructorsIV(Object)

CollectionAspect ③

pointcut: notWithin()
pointcut: addCP()
pointcut: getCP()
pointcut: removeCP()
pointcut: addAllCP(Object)
pointcut: removeAllCP(Object)
pointcut: retainAllCP(Object)
pointcut: containsAllCP(Object)
pointcut: toArrayCP()
pointcut: iteratorCP()
pointcut: putMP()
pointcut: getMP()
pointcut: removeMP()
pointcut: putAllMP(Object)
pointcut: keySetMP()
pointcut: valuesMP()
pointcut: entrySetMP()
pointcut: clearMP()

after() returning(): addCP()
after() returning(obj): getCP()
after() returning(obj): removeCP()
after(Object) returning(): addAllCP(Object)
before(Object): removeAllCP(Object)
before(Object): retainAllCP(Object)
after(Object) returning(): containsAllCP(Object)
after() returning(): toArrayCP()
after() returning(): iteratorCP()
after() returning(obj): putMP()
after() returning(obj): getMP()
after() returning(): removeMP()
before(Object): putAllMP(Object)
after() returning(): keySetMP()
after() returning(): valuesMP()
after() returning(): entrySetMP()
before(): clearMP()

Use UseUseUse UseUse

Use

Use

Use Use

Figure 6: Structure of the Aspects and Java classes that collect the data.

16

Container Method Call Interpretation

(a)

A.add(o) ADD(A, o)
o=A.get(..) o=GET(A)
o=A.remove(..) REMOVE(A, o)
A.addAll(B) ∀o ∈ B, o=GET(B)

∀o ∈ B, ADD(A,o)
A.removeAll(B) ∀o ∈ B, o=GET(B)

∀o ∈ A ∩B, REMOVE(A, o)
A.retainAll(B) ∀o ∈ B, o=GET(B)

∀o ∈ A \B, REMOVE(A, o)
A.containsAll(B) ∀o ∈ B, o=GET(B)
A.toArray() ∀o ∈ A, o=GET(A)
A.iterator() ∀o ∈ A, o=GET(A)
A.clear() ∀o ∈ A, o=REMOVE(A)

(b)

v = A.get(k) k=GET(A) if v ̸= null
r=A.put(k, v) ADD(A,k) if r ̸= null

k=GET(A) otherwise
r = A.remove(k) REMOVE(A, k) if r ̸= null
A.putAll(B) ∀k ∈ B.keySet(), k=GET(B)

∀k ∈ B.keySet() : if k ∈ A.keySet(), k=GET(A)
otherwise, ADD(A, k)

A.keySet() ∀k ∈ A.keySet(), l=GET(A)
A.values() ∀k ∈ A.keySet(), k=GET(A)
A.entrySet() ∀k ∈ A.keySet(), k=GET(A)
A.clear() ∀k ∈ A.keySet(), REMOVE(A, k)

Table 1: (a) methods defined in java.util.Collection; (b) methods defined in java.util.Map. [30]
For (a) the method clear was added in comparison to [30].

callSite describes the source location (file name + line number) where the allocation happened
(or where the collection was first encountered, in the case we missed the allocation). As the
collections can have different types (for example ArrayList or LinkedList), the name of the type
is saved as type. Finally, the time of the allocation, relative to the startTime as described in
Section 4.1, is saved. The second kind 2 shows an addition to the collection. The collectionID,
size, callSite and time are the same as in allocation. The new field elementID is the identifier,
i.e., the System.identityHashCode(Object x), of the element that was added to the collection.
The elementType is the type of the element. The third kind 3 and the fourth kind 4 are similar
to the second kind 2 , but don’t save the elementType. The third kind 3 shows the access of
an element for the specified collection, while the fourth kind 4 shows the remove of an element
for the specified collection. The last kind 5 shows the deallocation of the specified collection
and at what time it was checked that it is deallocated.

As already mentioned above in Section 3 and Section 4.1, the strings are exchanged for unique
int identifiers. This is done to reduce the file size, as the strings are frequently the exact same.

17

Container Allocation Call Interpretation

(a)
A=new Collection() A=ALLOC Collection
A=new Collection(initV als) A=ALLOC Collection,

∀v ∈ initV als, ADD(A, v)

(b)
A=new Map() A=ALLOC Map
A=new Map(initV als) A=ALLOC Map,

∀v ∈ initV als, ADD(A, v)

Table 2: (a) supported allocations for instantiable java.util.Collection implementors; (b) sup-
ported allocations for instantiable java.util.Map implementors.

int int int String String

ALLOCATION collectionID size callSite type time
int

①

int

② ADD collectionID elementID size callSite elementType time

REMOVE collectionID elementID size callSite time④

Stringint int int int int

GET collectionID elementID size callSite time③

String intintintintint

⑤

int intint

DEALLOCATION collectionID time

String Stringint int int int

Figure 7: The initial design of the five different kinds of event entries in the trace file, where
textual information such as callSite or elementType is stored uncompressed as a separate string
in every event.

The size of a String, that is longer than two characters, is far larger than a single integer number
in Java.

In Figure 8, the conversion through the Symbols file is visualized with the add kind. The first
step is to identify which fields are strings. In the add kind, the fields callSite and elementType 1
are both String data types. Both of them are added to the Symbols 2 file when the exact string
does not exist already. Then the Unique Identifier which is represented as an integer, is written
to the trace file 3 .

The trace file and symbols file are written as binary files to save file size. As the size of an
int is 4 bytes [20] in Java, each kind can be easily read from the trace file. In contrast, the
symbols file has a variable length per entry, as the Strings can vary in length. The solution for
the variable length of Strings can be seen in Figure 8 Symbols 2 . First, the Unique Identifier
is saved. Second, the string length in bytes is saved, which is for the first entry 7 characters and
the second entry 9 characters. As each character in Java has a size of 2 bytes [20], this means
we actually save 14 bytes on the first entry and 18 bytes on the second one. Finally, the String

18

Symbols ②

1 14 Main:17

2 18 ArrayList

...

ADD collectionID elementID size callSite elementType time

int int int int intintintData Types:

Kind:

ADD collectionID elementID size callSite elementType time

int int int int intStringStringData Types:

Kind:

①

Unique
Identifier

String
length

String

③

Figure 8: Changing String to unique int identifiers to reduce filesize.

itself is converted to bytes which can be read back in later through the use of the string’s length.

Example Listing 3 shows a small Java program which creates 1 an ArrayList, adds 2 the
element ’1’ to the ArrayList and accesses 3 that element after a short waiting period of 10ms.
At the end, we add 4 another element. When we weave this program with the classes and
aspects from Section 4.1, a trace file and a symbols file are created in binary form. These files
are shown in human-readable form with ’|’ as a delimiter in Listing 4 and Listing 5. In the trace
file, the first line 1 is the allocation of the ArrayList, which is symbolized by kind 0. Then,
the collectionID and the current size of the ArrayList follow. Following them is the callSite,
which is substituted with 1 from the symbols file, which represents "Main:5". After the callSite
is the type of the ALLOCATION. Looking up the type’s number in the symbols file, we can
find out that we allocated an ArrayList. At the end, the time of the ALLOCATION is written.
Here, this ALLOCATION is the first entry, and as such, it sets the start time and gets the value
0. The second line 2 is an ADD, represented by the kind 1. The collectionID is the same as
in ALLOCATION, and we have the elementID from the added element. Because of the ADD,
the size of the list is now 1. Then we have the callSite and elementType, which we have to look
up in the symbols file for their String values. At the end, the time slightly elapses compared
to the ALLOCATION. But it could also have the same time, if the execution was done in the
same millisecond. The third line 3 is a GET and extremely similar to the ADD, except it has
no elementType. The collectionID, elementID and size are the same, as we call the previously
added element from a different callSite. The time here jumps from 1ms to 11ms, as we have in
the code a waiting period of 10ms. The fourth line 4 is another ADD with a different element.
After comparing this second ADD to the first, we find that the elementType is the same number.
This is the case, because we have the same type of element, and we can reuse the already saved
String in the symbols file.

19

1 import java.util.ArrayList;
2
3 class Main {
4 public static void main() {
5 ArrayList <Integer > myList = new ArrayList <>(); 1
6 myList.add(1); 2
7 Thread.sleep (10);
8 myList.get(0); 3
9 myList.add(2); 4

10 }
11 }

Listing 3: Simple program to create an ALLOCATION, ADD and GET on an ArrayList.

1 0|285377351|0|1|2|0 1
2 1|285377351|156727562|1|3|4|1 2
3 2|285377351|156727562|1|5|11 3
4 1|285377351|146123415|2|6|4|12 4

Listing 4: Generated trace file in human readable form with | as delimiter.

1 1|12| Main:5
2 2|18| ArrayList 1
3 3|12| Main:6
4 4|14| Integer 2
5 5|12| Main:8 3
6 6|12| Main:9 4

Listing 5: Generated symbols file in human readable form with | as delimiter.

20

5 Backend

After the generation of the trace file and the symbols file, the backend introduces the server that
hosts the frontend and creates the parser for data processing.

Server Structure Figure 9 shows the responsibilities of the server 1 . When the server 1
is started, the frontend 3 will be hosted. Because of this, it is possible to interact with the
server through a browser(i.e., a local running web application). Depending on the interaction
from the user in the frontend, the frontend will request specific data from the server 1 . For
example, when the user requests the processing of a selected trace file and a selected symbols file
in the frontend 3 , the server 1 will in response create a parser 2 instance which processes
the files. Afterwards, the requests will be piped through the server 1 to the parser 2 instance
and the returned data (e.g., the staleness of collections) will be sent through the server 1 to
the frontend.

Server

Parser

Frontend

Use

Trace file

Symbols file

reads

reads

requests

sends

hosts

Node.js

For example:
- stalenessOf(collection)

①

②

③

Node.js

Figure 9: The backend for the communication between the frontend and the parser.

The server is needed to host the frontend but the extraction of the parser from the frontend
was a design decision. The runtime environment node.js, which the parser and server use, allows
for better file processing and easier debugging then the native javascript in the browser.

21

6 Parser

After the backend, the parser that handles the file reading and the calculations will be introduced
in more detail.

6.1 Parser Structure

ReadTrace ③ReadSymbols ②

Server

Manager ①

CollectionInfo ④

reads reads

Use

return

Use
return

Usereturn

have

0..n

return

Use

Trace fileSymbols file

Figure 10: Simplified structure of the parser to process the trace file and symbols file.

In Figure 10 a simplified structure of the parser is illustrated. The following list introduces
the purpose of each part of the parser.

23

1 Once the Manager is created, ReadSymbols and ReadTrace are created with the filepaths
received from the frontend. The data received from ReadTrace is handled through the kind of
the data. When an ALLOCATION event is received, a CollectionInfo object will be created.
For ADD events, GET events and REMOVE events, the corresponding CollectionInfo object
is updated. When a DEALLOCATION event for a collection is received, the time for the DEAL-
LOCATION event will be set in the respective CollectionInfo. When a request from Main
occurs, the necessary data from the collections is gathered and returned as a JSON String to
Main.
2 The ReadSymbols class reads the symbols file and saves the data in a map. It then provides
access to the map.
3 The ReadTrace uses the listener pattern to allow clients to process the read data. For that
reason, the reading of the trace file needs to be explicitly started, after listeners, i.e. Manager,
have been be added. After the start, it reads the file event by event, converts it into an event
object and then informs all listeners.
4 In CollectionInfo, all accesses read from the trace file for one specific collection are saved.
Also, the calculations for that specific collection happens here. The calculations include for
example the staleness calculation and the aggregation, i.e., the summation, of the elements that
are added, accessed and removed from the same location.

6.2 Staleness Calculation

The staleness of an element in a collection is defined as t2 - t1, where the element is removed
at t2 and the last access happened at t1. When the element is never removed, t2 is set to the
deallocation of the collection. When the remove or deallocation happens after the ending time
of the viewed region te, then t2 is set to te. When there is no access for setting t1, then t1 is
set to the time when the element was added to the collection. Should the last access happen
before the start time of the viewed region ts, then t1 is set to ts. To make the staleness values
of elements better comparable, the staleness is normalized to a value between 0 and 1, where
0 is the least stale and 1 is the most stale. This is done by dividing (t2 - t1) by (te - ts). For
the whole collection, the staleness of all elements are added and then divided by the amount of
elements. [30]

Figure 11 shows the different possibilities that occur when calculating the staleness for one
element. But it must be mentioned, that for simplicity, only removes and no deallocations were
used in the graphic, but wherever a remove is done, a deallocation of the collection could also
have happened.
1 The basic choice for t1 and t2, where t1 is the last access through a GET and t2 is the
REMOVE of the element from the collection.
2 Here, t1 is set to be the ADD time of the element, as no access happened between the ADD
and the REMOVE. t2 is here also set to the REMOVE.
3 The REMOVE happened after the end time te, which means we have to set t2 to te. t1 will
be set to the last access, which happens to be here a GET.
4 The last access, which is here the adding of the element, was before our start time ts. As
such, we need to set t1 to ts and t2 to the remove that happened in the viewed region.
5 This is the worst case possible, as the last access happened before the start time ts and the
remove happened after the end time te. Because of that, we need to set t1 to ts and t2 to te.

24

Add
Element

Get
Element

Remove
Element

ts te

Collection A:

t1 t2②

ts te

Collection A:

t1 t2①

ts te

Collection A:

t1 t2③

ts te

Collection A:

t1 t2④

ts te

Collection A:

t1 t2⑤

Figure 11: The different possibilities to calculate the staleness of one element in a collection.

25

This means that the element exists through the whole viewed region. Therefore, the elements
staleness value is the maximum possible amount for this region, i.e., 1.

Example Figure 12 illustrates the calculation of the staleness of a collection with only two
elements.

Add
Element

Get
Element

Remove
Element

ts = 10 te = 60

Collection A:

t1 t20,2 ①

40 503015

ts = 10 te = 60

Collection A:

t1 t20,8 ②

205

0,5 ③

Collection
Staleness:

(0,2 + 0,8)/2=

Figure 12: Staleness of a collection with two elements.

In Figure 12, the first element was added at time 15, was accessed at time 30, was accessed
at time 40 and finally removed at time 50. We view the region from the start time ts = 10 to
the end time te = 60. As the element was removed at time 50, the element was removed in the
viewed region. Therefore, we set t2 = 50. The last access was the GET at time 40, which means
we set t1 = 40. Now we calculate the staleness for this one element, which means we fill in the
values for the formula t2−t1

te−ts
. That results in 50−40

60−10 = 10
50 = 1

5 = 0, 2 1 . The second element has
the same ts and te, but the last access was at time 20 and the remove did not happen at all. As
such, we get t1 = 20 and t2 = te = 60. Now we insert this also in the formula and get 60−20

60−10 = 40
50

= 4
5 = 0,8 2 . We have now calculated the staleness value for the only two elements in collection

A in the viewed region. Therefore, we can now calculate the staleness for the whole collection A
by adding the calculated staleness of the elements in the viewed region. Then, divide the sum by
the amount of elements to get the average staleness of the whole collection in the viewed region.
When inserting the values, we get the average staleness

∑
element staleness

amount of elements = 0,2+0,8
2 = 1

2 = 0,5
3 as a result for the staleness of collection A.

26

6.2.1 Problem of Duplicate Elements

The approach of calculating the staleness for each element has problems. One such problem is
that we can have the same identifier for two elements in a collection. After all, it is allowed to
add the same element multiple times in some collection types such as lists.

Add
Element

Get
Element

Remove
Element

ts te

Collection A:

x x x xy y y

id(x) == id(y)

ignored

Figure 13: Problem: Having multiple elements with the same identifier (x and y) in the same
collection at the same time.

Figure 13 visualizes this problem, where element x and y have the exact same identifier.
Therefore, it is impossible to match the operations to the correct element. To solve this problem,
the ADDs and REMOVEs, except the first ADD and the last REMOVE, are deleted. This leaves
in Figure 13 the ADD and REMOVE of x. Then, all accesses between the remaining ADD and
the remaining REMOVE are handled, as if the accesses are for one element.

This solution distorts the results of the staleness calculation. But normally, there should not
exist too many duplicates at the same time in larger collections, so that the overall staleness
would not be distorted by much.

6.2.2 Problem of Reinserting Elements

Another problem that may occur for the parser is reinserting an already removed element into the
same collection. The problem by reinserting elements is the associated data which is identified
by the element identifier. The reinsert problem is visualized in Figure 14. We see that there
is no crosscutting between the two operations. Therefore, the solution is simply renaming the
reinserted element. In this work, it was chosen to add a ’+’ to the end of the identifier.

6.3 Aggregation of the Elements

We want to be able to identify the locations of a collection where ADD events, GET events
and REMOVE events occurred. For this reason, it is necessary to aggregate GET events and

27

Add
Element

Get
Element

Remove
Element

ts te

Collection A:

x x x x+ x+ x+

renamed

Figure 14: Problem: Reinserting the same element after removing the element from the collec-
tion.

REMOVE events and save for each element the ADD location, i.e., the location where the element
was added to the collection. We achieve this by saving each encountered GET location (i.e.,
the location where the elements were accessed) of a collection and each encountered REMOVE
locations (i.e., the location where the elements were removed from the collection) of a collection
into a map and aggregate the values when a GET event or a REMOVE event for that specific
collection occurred. The ADD location is saved directly with the element, so that it is possible
to associate the calculated staleness value of the element with the ADD location.

AddLocations

{location: "Main:4",count: 3000, staleness: 0.45}

{location: "foo:40", count: 400, staleness: 0.2}

{location: "bar:20", count 800, staleness: 0.78}

Figure 15: The array of JSON Strings that is created for ADD locations.

When requested, each location data is transformed into a JSON String and then added to
an array that is returned. Figure 15 illustrates how this transformed state looks for the ADD
locations. First, the location where the elements were added is provided. Second, the amount
of elements added at that location is given. Finally, the average staleness of the added elements
in the selected time frame will be send. In Figure 15 we have three different locations, "Main:4"
with 3000 elements and an average staleness of 0.45, "foo:40" with 400 elements and an average
staleness of 0.2 and "bar:20" with 800 elements and an average staleness of 0.78. For GET
locations and REMOVE locations it works similar except that there will be no average staleness

28

of the elements calculated. For example, it seems not useful for GET locations, as the same
element could be accessed multiple times from the same location.

29

7 Frontend

Now that the the symbols file and the trace file were processed, we explore in this chapter how
the processed data is visualized.

Example The visualization is explained best through an example, as such the trace file and
symbols file created from the example code in Listing 6 will be used throughout this chapter for
the creation of the charts.

import java.util .*;
public class Main {

public static void main(String [] args) throws Exception {
ArrayList <Integer > list = new ArrayList <>();
Map <Integer , Integer > map = new HashMap <>(); 1
for(int i = 0; i < 1000; i++) { 2

list.add(i);
map.put(i, i);

}
Thread.sleep (100); 3
for(int i = 0; i < 500; i++) { 4

System.out.println(list.get(i));
System.out.println(map.get(i));

}
Thread.sleep (100);
for(int i = 1000; i < 1100; i++) { 5

list.add(i);
}
Thread.sleep (100);
for(int i = 0; i < 100; i++) { 6

System.out.println(list.get(i));
}
Thread.sleep (100);
int n = 0;
for(int i = 800; i < 900; i++) { 7

System.out.println(list.remove(i - n));
System.out.println(map.remove(i));
n++;

}
Thread.sleep (100);
System.out.println("List: " + list.size());
System.out.println("Map: " + map.size());

}
}

Listing 6: Example Java program that will be used for the visualizations of the frontend.

31

Listing 6 first allocates 1 an ArrayList and a HashMap. Then, 1.000 elements are added 2
to both collections. For better visibility in the charts, a waiting time 3 of 100ms is added
between each operation. Then, the first 500 elements are accessed 4 once for each collection.
To showcase a second add location, another 100 elements are added 5 to the ArrayList. In
addition, to also have elements with a different amount of accesses, the first 100 elements of the
ArrayList are accessed 6 a second time. At the end, both collections remove 7 100 elements
from the collection.

7.1 User Interface

At the beginning, the user interface asks the user for filepaths to the symbols file and to the trace
file. Figure 16 illustrates how this looks, when visualized. The path to the symbols file 1 and the
path to the trace file 2 have to be entered starting from the root directory. It is done this way,
because for privacy reasons a file chooser would give a fake path to the file name. Also, node.js
has better file processing capabilities then native Javascript in the browser. Furthermore, the
complexer methods would be too time-consuming for this project. Finally, the submit button 3
sends the file paths to the parser.

①
②

③

Figure 16: Choosing the paths of the symbols file and the trace file for the parser.

7.1.1 Element Size

After the submission the parser will start reading the files. The parser sends a progress infor-
mation for every ten percent of the trace file read. When the trace file is completely read, the
parser will send one hundred data points equally distributed over the entire captured program
execution time. One data point contains the element size of all collections at the data points
specified time.

Figure 17 shows the loading progress of the trace file, the line chart generated from the data
points and the choice of the time frame for which the calculations shall be done. The following
list describes the interesting parts of Figure 17 in more detail.
1 The loading progress bar is filled in ten steps. Each step is executed when the parser sends
that ten percent more of the trace file was read.
2 In this part of the line chart, we see the 2.000 elements that were added to the two collections
in Listing 6 2 .
3 This small increase symbolizes the 100 elements added in Listing 6 5 . When the increase
of elements or decrease of elements is too small to be seen, then hovering over the points on the
line will show the element size and the time of that data point.

32

①

② ③ ④

⑤a ⑤b

Figure 17: Overview of the data read from the trace file and symbols file generated from Listing 6.

4 The 200 elements removed at the end in Listing 6 7 is visualized here. When looking closer,
a slight decrease of elements happened at first, before the bulk of the elements was removed at
once.
5 The blue line (5 a) is the start time for the calculation time frame and the red line (5 b)
is the end time for the calculation time frame. The times can be chosen with the sliders below
where the first slider is for the start time and the second slider is for the end time.

For the rest of the charts below in Section 7.1, the start time was chosen as 0 and the end
time was chosen as the maximal available value of 471ms. These values were than sent to the
parser through the submit button.

7.1.2 Collection Staleness

After selecting the calculation time frame and sending it to the parser, the parser calculates the
staleness of the collections. The staleness data is then displayed in a bar chart where at most
ten collections at the same time are displayed. The limit of a maximum of ten collections was
chosen for all bar charts, because there could be more than 1.000 bars, and it would become
hard to read.

The ordering of the staleness chart is based on the size of the collection multiplied with the
average staleness value of the collection. Only using the average staleness value for ordering
has the risk that only small, very stale collections are shown. Larger collections that could leak
would then be basically ignored.

Figure 18 shows this bar chart with two sliders that allow the user to change the staleness
threshold as well as the maximal size of the displayed collections.
1 The staleness threshold changes in the bar chart the distribution of the blue and red parts.
The blue part of the bar represents the numbered elements of the collections which have a
staleness value below the threshold or equal to the threshold. The red part of the bar represents
the numbered elements of the collections which are above the threshold.
2 The maximum size changes the displayed collections. When there are collections that could
not be displayed because of the limit, the slider allows to restrict to a lower maximum size. This

33

①

②

③ ⑤

50%
Duplicates: 0

④

Figure 18: Staleness bar chart for collections over the whole program execution of Listing 6.

allows to also analyze smaller collections after we analyzed the larger ones. In our example the
ArrayList with 1.100 elements is the largest, which means 1.100 is our maximum size that we
can choose. When we change the slider to display only collections with 1.050 elements or below
1.050 elements in Figure 18, we will only be able to see the HashMap.
3 The type of the collection and in which file on which line it was allocated is displayed on
the left. There can be multiple collections with the same type and allocation location. But even
then, when there is a possible leaking collection it can be reduced to that specific location.
4 The text displayed when hovering over the bar. The staleness in percent of the colored part
of the bar is displayed as well as the amount of duplicates in the whole collection.
5 The right text displays the element amount of the collection as size, as well as the average
staleness value (SN) for the whole collection.

We acquire from this bar chart a first view of the different collections that are memory leaking
candidates and how frequently their data is accessed. Based on this, the less frequently accessed
collections are more likely to leak and should be viewed more closely by clicking on the bar of
the collection.

7.1.3 Operations Count

After clicking on a bar, more charts specifically for the selected collection are shown. The first
chart displays the number of ADDs, GETs and REMOVEs, as shown in Figure 19. The type
and ALLOCATION location 1 of the chosen collection is displayed on the top. The chart below
displays the amounts of ADDs 2 , GETs 3 and REMOVEs 4 . At first glance we see that we
picked to view the ArrayList from Listing 6. The ArrayList had a lot more ADDs than GETs.
Also, only 100 elements were removed from the collection at all. This shows that we had added
elements in Listing 6 that were never accessed and only wasted memory space until the end of
the program.

In this chart we would have ideally way more GETs than ADDs. This would then mean that
the data in the collection is far more often accessed and it is more unlikely that we have elements
that only waste memory space.

34

①

②

③

④

Figure 19: Displays the amount of ADD, GET and REMOVE operations for the ArrayList
from Listing 6.

7.1.4 Element Get Count

Right afterwards we take a closer look at how the accesses were distributed between the elements.
When there are a lot of elements with zero accesses, even when we have a lot more accesses than
ADDs, the collection becomes a prime candidate for leaking memory.

Figure 20 shows how frequently elements were accessed. The max get count slider 1 allows
changing which counts are displayed in the bar chart. The elements above the chosen value that
are not displayed will add up every access and then shown it as count others 4 . Here, that
are the 100 elements in Listing 6 6 that were accessed a second time. In addition we have 600
elements that were never accessed 2 and 400 elements that were accessed once 3 . If we add
the 400 elements with one access and the 100 elements with two accesses, we get the 600 accesses
from the operation chart in Figure 19.

①

②

③

④

Figure 20: Elements with different amounts of accesses.

Through this chart it is possible to better see the accesses of the elements and find problems
such as a lot of not accessed elements or only a few highly accessed elements while most elements
were only accessed a few times.

Now that we viewed the operation counts and the access counts it would be interesting to know
from which locations in the code the adding, accessing and removing was done.

35

7.1.5 ADDs per ADD Location

This section explains our "ADD per location" feature. It counts all ADD events that happened
for each specific line of code in the files of the traced program for our viewed collection. The
result will be displayed in a bar chart where the maximum amount can be changed through a
slider. This is shown in Figure 21 where we have the slider 1 for the maximum size for ADD
locations at the top. The first ADD location 2 in the bar chart and the second ADD location 3
in the bar chart are the locations in Listing 6 where elements were added to the ArrayList. It
is also possible to display the average calculated staleness of the elements 1 for each line as the
color of the bar and display it in percent when hovering over the bar. The redder the bar is, the
more stale the elements added at this location are. In contrast, the bluer the bar, the less stale
the elements added at this location. Here, we see that the first line 2 has more stale elements
added than the second line 3 .

①

②

③

Hover: Size: 1000,
Final element staleness for ADD location: 77,08%

Figure 21: The location in the code where the elements were added to the collection. The bar
color shows the average element staleness for the ADD location.

The ADD locations show a nice overview from where in the code the elements of our viewed
collection were added. And through the feature of showing the average element staleness of our
time frame as color and in percent when hovering over the bar, it is easily distinguishable from
where the stale elements were added to the collection.

7.1.6 GETs per GET Location

Second, we count all accesses for each specific line of code in the program. The resulting chart
shown in Figure 22 has the same structure as the chart in Figure 21. Only the function to
show the average element staleness is missing because it would make little sense. After all, it is
possible that the same element was accessed multiple times from this location or in an extreme
case, the same element was only accessed from this location. As such, the average staleness for
the elements would have little value.

This chart allows for a better understanding where in the code the accesses to the viewed
collection occurred. The most accessed locations may be interesting for optimization while the
least accessed locations, when not done on purpose, hold a higher potential for an error.

36

Figure 22: The location where the accesses of the viewed collection occurred.

7.1.7 REMOVEs per REMOVE Location

Finally, we have the chart were the removes of the viewed collection were counted. The chart in
Figure 23 has the same structure as the chart in Figure 22. What is different is that only one
line in Listing 6 removed elements from the viewed collection. As such, the bar takes up more
space as it does not need to share the space with other lines.

Figure 23: Remove locations of the viewed collection.

The REMOVE locations of the elements of the viewed collection allow checking if the pro-
gram works as anticipated. It gives a lead where to start the search in the program, when there
are a lot of removes at a not anticipated location.

All charts together provide a lot of leads for possible memory leaks. But looking closer, they
also allow to detect patterns of inefficient memory consumption.

7.2 Anti-Patterns of Memory Inefficiency

The larger the tested applications become, the more often they suffer from excessive memory
consumption. This mostly happens because common design mistakes are made. For example,
a collection is allocated through the standard constructor in Java and no elements were added.
Then, there was a specific amount of memory space allocated for the overhead of managing the
collection and an initial capacity for the references to the elements. This results in a fixed cost
in memory space while no elements were added to the collection. Such common mistakes are
mostly easily understood and easily fixable. Therefore, the common mistakes can be summarized

37

in patterns that should be avoided or in short, anti-patterns. The example of the empty collection
above is as such called the empty collection pattern. [5]

Chis et al. [5] introduced a few different patterns, that help to reduce unnecessary consumed
memory. A few of the more interesting patterns for this work will be introduced in more detail
in the following list.

1. Empty collection: A completely empty collection that was allocated and had no elements
added over the program execution. Depending on the type of the collection, there is a
different fixed cost that is consumed regardless. For example, according to Chis et al. [5] is
in the Java standard library on a 32-bit JVM the fixed cost of a HashSet around 100 bytes
of memory while a ConcurrentHashMap has a fixed cost of around 1600 bytes.

2. Small collection: Small collections have a few elements added. But the overhead for man-
aging the collection takes up a large portion of the memory used by the collection. This
gets even worse if there is unused allocated memory space for elements.

3. Fixed collection: The fixed collection describes a special case of a small collection where
always the exact same number of elements exists in the list. When there are only a few
elements, the overhead and possibly the initial capacity take up more memory space than
the elements themselves. A better solution for such a usage would be an array instead of
a collection.

4. Sparsely populated collection: Most array-based implementations of collections have a ten-
dency of being sparsely populated. This means, that only a few entries from the overall
allocated entries point to elements. This is shown in Figure 24 where the first and the
seventh entries contain a reference to an element. The other eight entries are empty.

There are different causes why this can happen: 1) the initial capacity of the collection is
too large, or 2) after removing a lot of elements, the collection was not trimmed-to-fit, or
3) the collection’s growth policy is way too aggressive and starts allocating new memory
space while there are still a lot of entries empty.

5. Boxed scalar collections: In Java the standard collections do not support primitives for
keys, values or entries. This results in boxing up the primitives into wrapper objects that
consume more memory than the actual data. This wrapping also happens in Listing 6 1
where Integer had to be used in the collections instead of the primitive int.

6. Nested collections: As the name nested collections implies, this pattern describes the com-
mon case of collections added as a whole to collections. For example, such a case would
be HashMap with HashSets, so that multiple values per entry key can exist. Generally, the
problem here is when the outer collection is significantly larger than the inner collections
and a larger overhead cost exists. Switching the outer collection with the inner collection
can reduce collections used and as such it is possible to save a significant amount of memory.

From this list, the first four anti-patterns describe problems that occur to the initial allocated
capacity or where the overhead takes up a significant part of the memory footprint. This can
mean that the standard constructor allocated more memory than actually needed or that the
user specified a larger initial capacity than actually needed. The other two anti-patterns describe

38

ArrayList

Object[]

String String

Figure 24: An example of the sparse collection pattern, in this case with eight null slots inspired
from Fig. 3 in [5].

more specific problems. From the described anti-patterns by Chis et al. [5], this six show the
most potential to be applied to the approach of this work.

7.2.1 Implemented Anti-Patterns

From the listed anti-patterns above, the first anti-pattern, i.e., empty collection pattern and the
second anti-pattern, i.e., small collection pattern are fully functional. The collections can be
filtered in Figure 18 for collections at a specified size or below a specified size. As such, when the
maximum size is set to zero, empty collections will be listed and show where they were allocated
in the code. In the same way it is possible to filter for small collections.

However, the fixed collection pattern is harder to identify. The user would need to check
the same collection over different time frames. The checked collection should have the same
collection size at all of them. But even then it can not be guaranteed that the collection is really
fixed to that size or if the checked time frames were unluckily chosen. Unfortunately, the time
schedule for this thesis did not leave more time to implement anymore anti-patterns than this
three in a meaningful manner. Nevertheless, the tool resulting from this work allows more visual
inspections based on staleness then originally anticipated.

39

8 Evaluation / Usage

After introducing the approach in more detail, let us evaluate how well it works by comparing it
to the results of another work.

Commons HttpClient Weninger et al. [27] did an evaluation on the leaking version 3.0.13 of
the Commons HttpClient library written in Java with their created tool. The Commons Http-
Client library is a library that can be used to send HTTP requests. As such, a small driver
application that creates HTTP connections in multiple batches was developed by Weninger et
al. [27]. Each batch creates 10.000 connections and deletes them shortly afterwards. With their
developed tool they saw a continuous memory growth instead of only spikes of memory usage.
After analyzing the problem more deeply with their tool, they found that objects in HostCon-
nectionPool were kept alive by a HashMap. The tool provided also the name of the method
in which the HostConnectionPool objects were allocated which gave them enough information
to investigate the problem on the source code level. The result of that investigation was that
the HostConnectionPool objects were added to the HashMap but never deleted from it, which
resulted in the memory leak. [27]

This problem of leaking memory is a good leaking memory example to try out the developed
approach in this work. To evaluate the approach as good as possible, it will be assumed that
we do not know that the Commons HttpClient library has a leaking memory that is caused by
a HashMap not correctly deleting the elements.

Test Results on Commons HttpClient Library

First, the jar file with the small example driver and the Commons HttpClient library is woven
and executed to generate the trace file and symbols file.

① ②

Figure 25: Generated line chart from the trace file and symbols file created through the small
example driver and the Commons HttpClient library.

Afterwards, the two files are loaded and the line chart in Figure 25 is generated. Figure 25
shows that the total elements in the collections are steadily growing over time. We know from
the small example driver that we execute HTTP requests multiple times where all collections
used should be deleted each time. Therefore, there should be no growth in elements between

41

each request. Analyzing the visualized data, we see that there have been eight batches and each
batch increased the kept total element amount. Now we start the search for the problem of the
continuous growth. We choose a time frame where the interesting part, the continuous growth,
is completely included. Here, the time frame is almost the whole traced execution time, except
the last part(see 1 and 2 in Figure 25).

①

②

③

50%,
Duplicates: 4

Figure 26: Staleness chart over the continuous growing elements.

The resulting staleness chart, shown in Figure 26, lists the ten most likely leaking candidates.
When viewing the staleness threshold 1 of 0.5, the first two collections as well as the tiny
collections in the middle 3 , that have too few elements to be seen, are red. But the tiny
collections are in files starting with the names ’DefaultParameter’ and ’Log’. That probably
means that they will only be queried when logging happens or if a default parameter is requested.
In both cases the small example driver is probably too specific to use them and thus we exclude
them from the initial search. Far more interesting are the top two candidates. The red bar
visualizes a staleness of 50 percent. When we check the size and staleness value(SN) on the right
side 2 , we see that they are both around 80.000 elements. When hovering over them, we see
that the collection smaller than 80.000 elements has the problem of duplicate IDs for elements
but is in fact also the size of 80.000 elements. They are both extremely stale with a SN of around
0.47. Hence, they are the most interesting candidates for closer inspection.

①

② ③

Figure 27: Three different staleness thresholds tested on the staleness chart.

First, lets check how the elements added to them change with a different staleness threshold.
In Figure 27 we test the three different staleness thresholds 0.1, 0.5 and 0.8. With the smallest

42

staleness threshold, we see that only 10.000 elements of the first two collections have a lower
staleness value. When we increase the staleness threshold to 0.5, suddenly only half the elements
in both collections are above the threshold. When checking the last staleness threshold of 0.8,
we have only the last 10.000 elements over the threshold. From this we conclude that both
collections grow continuously over time without regular accesses, which correlates with the data
seen in Figure 25.

Figure 28: The operation charts for the two most suspicious collections.

Now we take a closer look at these two suspicious collections. Figure 28 shows the operation
charts for both collections. The LinkedList on the left has the exact same amount of accesses
as the amount of added elements. The HashMap on the right has three times the amount of
accesses to the amount of added elements. Suspiciously both collections have no removes at
all. When combining the knowledge of no REMOVEs and the staleness distribution seen in
Figure 27, it seems that it was forgotten to delete the elements after each batch. To get a lead
where most likely the removing of the elements in the source code files was forgotten, we check
the distribution of the ADD locations. Figure 29 illustrates on the left (a) the LinkedList and
on the right (b) the HashMap. Both are adding elements only in one location in the same file as
their ALLOCATION. That gives a strong hint to start the search from there.

(a) LinkedList@MultiThreadedHttpConnectionManager:683 (b) HashMap@MultiThreadedHttpConnectionManager:683

Figure 29: The ADD locations for the (a) LinkedList and for the (b) HashMap.

For this particular problem the charts displaying the amount of accesses and the GET lo-
cations and REMOVE locations were not really useful. That was because the operation chart
already showed us that both collections had no REMOVEs at all for all batches.

Concluding, we have two leaking collection suspects. One of them is a HashMap, which is the
same collection type that was also found with the approach of Weninger et al. [27]. In conclusion,
the approach of this work performed really good for this type of problem. The staleness thresh-
old was really useful by identifying how many extremely stale elements existed in a collection.
Therefore, this approach allows to find out when a collection has only few elements with a high
staleness value that increases the staleness value significantly or when the elements are rather

43

similarly distributed, as seen in this case. When there are multiple ADD locations, the staleness
distribution per ADD location has a large potential to help restrict the search space on the source
code level even further.

44

9 Related Work

There is a lot of prior work for detecting memory leaks and some works defined staleness for
better detection.

First, the approach of Michael D. Bond et al. [2, 3, 4] tracks each objects staleness, i.e., the
time span since the program last used a object, through a stale counter. Second, the approach
taken by Trishul M. Chilimbi et al. [9] saves information for each heap object and guesses through
different staleness predicates (e.g. Never Accessed, i.e., every object that has never been accessed
is considered a leak) whether the object is leaking or not. Finally, Yan Tang et al. [24] based
the staleness part of their approach on a modified version of Michael D. Bond et al. [2, 3, 4].
All three approaches are focused on tracking the staleness for each object and thus suffer from
various problems (e.g. scalability, reflection, etc.) as described by Xu et. al [30].

The approach of Xu et al. [29] focuses on container profiling, i.e., the tracking of interactions
with data structures instead of tracking the interactions with single objects. To achieve this
tracking for each different and tracked data structure (e.g. in Java Collection classes and Map
classes have a different method name for adding elements) a wrapper class, also called "glue
class", is created. The purpose of the wrapper classes is to simplify the different methods of
each data structure to only the operations ADD, GET and REMOVE. But for the wrapper
classes to be able to simplify the methods, they need to be introduced to the source code of the
monitored application. Because of this, the operations on the contained objects of the tracked
data structures can be tracked. The authors choose to focus on data structures as they assumed
that the misuse of them were one of the major reasons for memory leak and also led to systemic
bloat.

The approach of this work was based on the work of Xu et al. [30]. But instead of creating
wrappers that have to be used in the tracked applications source code, the concept of AOP was
used to track selected interactions with the data structures.

45

10 Limitations and Future Work

The outcome of this master thesis suffers from a few limitations, but the approach still offers
room for future improvements.

10.1 Limitations

There were three main limitations encountered in this work:

1. Memory tracking : In Java, the memory consumption of collections can only be approx-
imately measured without using Java agents. This measuring adds extra time to the
program execution for each time a collection is measured. This works fine if there are only
a few collections and all collections are small. But if there is a huge amount of collections
and/or very large collections, then the extra time added to the program execution for each
time measuring the collections becomes very large. Depending on how many collections
there are and how large these collections are, the extra time added could be far larger than
the program execution of the original program. After encountering this problem without
finding a solution to improve the program execution time while measuring, the measuring
for memory consumption was removed entirely.

2. Unique identifier : Without having a unique identifier in all objects added using Java
agents, the best solution found was using the method System.identityHashCode(Object
x) to calculate an identifier for all collections and for each element in these collections.
Using this method has the detriment of not getting a unique identifier every time due to
overlapping hashcodes, which led to a more severe problem of duplicate identifiers and
reinserted identifiers than should normally be encountered. Another solution that would
provide a unique identifier would be tracking the memory changes for each object and all
collections every GC run. But this solution also suffers, because tracking the elements of
many collections and/or large collections adds a significant amount of time to the program
execution.

3. Parser heap memory : The parser used in this work holds large parts of the data read from
the trace file and symbols file in the heap memory. As more and more program functions
were added, more and more data was held in the heap memory to provide the data on
request. This led to the problem that for programs, that generate a larger trace file and/or
a larger symbols file, the program would run out of heap memory space.

The first two limitations were encountered through restrictions of the programming language
Java in which the tracked applications are written. When this approach is used on applications
written in a different programming language, this limitations may not apply. But this also
depends on how the programming language would handle memory access and if it is possible to
get unique identifiers without a large performance hit.

The third limitation was a wrong design decision of this work. Instead of having that much
data in the heap memory, all the data from the trace file and symbols file should have been saved
into a database. The database then provides all the data needed for calculations or the data
requested by the frontend. Yet, also this approach has a downside, namely poorer performance
due to the required database requests.

47

10.2 Future Work

Due to time constraints, certain design decisions taken in this work could not be rectified. Also,
there are features that could not be implemented as efficiently as we wished for.

Database The first improvement would be to correct the design decision taken in the parser
and completely redesign the whole parser to use a database instead. This would allow saving data
that was discarded in the current parser in favour of saving as much heap memory as possible.
For example, we could store the type for each element in the collections, information we currently
discard. But this has also has demerits such as the database taking up a lot of disk space and
the requests for the database are slower then to the heap.

Better Element Access Tracking Saving all access locations for every element in each col-
lection takes a huge amount of memory. Thus, only the last access location for each element
was saved. Through the database it would be possible to save each accessed location in order.
This would allow identifying for each GET per GET location which elements were accessed in
this location. Also, it would be possible to group the elements per access time for each GET per
GET location.

Element Type In Java, classes can inherit from other classes or implement interfaces. A
collection in Java allows to define the type to save all elements that inherited from a specified
class or implemented a certain interface. Therefore, it is possible that there are different specific
types of elements in the Java collections. A chart that shows when there are different types
of elements in a collection and how the different element types are distributed would help the
user to understand the viewed collection in more depth. Even though this is not interesting for
memory leak detection, it would be interesting for program comprehension [29, 8], i.e. the active
acquiring of knowledge about a software system.

Searching When searching through the staleness bar charts for a specified collection type or to
display only collections of a specified file would improve the frontend enormously. This searching
ability could be expanded to different charts such as the ADDs per ADD location bar chart,
GETs per GET location bar char and REMOVEs per REMOVE location bar chart to display
locations from certain files.

Anti-Patterns As already mentioned in Section 7.2, only two anti-patterns were completely
implemented. But there are more anti-patterns that hold potential to be used. Consequently,
more of this anti-patterns should be checked for the possibility to be implemented in a meaningful
way. In addition, it should also be checked if it is possible to improve the already implemented
anti-patterns.

Frontend The frontend should be improved to be more user-friendly. Moreover, some features
were implemented in a certain way in the beginning when it seemed to be a good idea. These
features should be rewritten in a more user-friendly way.

48

Different Programming Languages The approach of AOP for collecting data should be
tested with different programming languages and then compared how well it worked in compar-
ison to Java. Some interesting candidate programming languages that have an AOP implemen-
tation would be Python (for example aopy [11]), C/C++ (for example AspectC++ [28]) and
JavaScript (for example AspectJS [6]).

49

11 Conclusions

This thesis explored if the collection data gathered through the approach of AOP could deliver
similar results in detecting memory leaking collections in Java to existing approaches with mod-
ifying classes and instrumenting the code with Java agents. To achieve this, aspects and Java
classes were introduced to record the ALLOCATION events and DEALLOCATION events of
collections, as well as converting a specified subset of collection methods to ADD events, GET
events and REMOVE events.

After explaining how the data was recorded, the parser was introduced. The parser reads the
data and saves the accesses per collection. The parser communicates with a graphical frontend
and when requested, calculates the staleness for a specified time frame and processes the saved
data.

The frontend sends requests to the parser through the users input and displays the received
data. The frontend allows the user to change the time frame, which influences the data shown
by most of the generated charts. For the chosen time frame a chart with the most likely candi-
dates for leaking memory is displayed. Every candidate can be checked more closely to see the
operations that occurred for it. Through the adjustable sizes for displayed candidate collections,
anti-patterns for memory inefficiency can be identified. When there are irregularities, either
by the staleness of the candidates or by the operations, then the source code locations for the
ALLOCATION and the locations of the operations help the user to investigate the problem on
the source code level.

There were parts of the approach with AOP that worked really well and other parts that did
not work at all. For example, a possible memory leaking problem in the evaluation was identified
rather fast and the information provided would help to directly investigate on the source code
level if there is really a problem. This shows the potential of our approach. It is especially
useful to inspect the behavior of the collections. Thus, there is the potential that the approach
also may identify different problems beside memory leaks or that it may be used in program
comprehension.

51

List of Tables

1 (a) methods defined in java.util.Collection; (b) methods defined in java.util.Map. [30]
For (a) the method clear was added in comparison to [30]. 17

2 (a) supported allocations for instantiable java.util.Collection implementors; (b)
supported allocations for instantiable java.util.Map implementors. 18

List of Figures

1 The different approaches to crosscutting concerns from OOP and AOP. 5
2 OOP and AOP have the same behavior when executed. 5
3 The deleted green rectangle of Listing 2. 10
4 Resulting view of Listing 2. 11
5 Overview of the steps of data gathering and analysis. 13
6 Structure of the Aspects and Java classes that collect the data. 16
7 The initial design of the five different kinds of event entries in the trace file, where

textual information such as callSite or elementType is stored uncompressed as a
separate string in every event. 18

8 Changing String to unique int identifiers to reduce filesize. 19
9 The backend for the communication between the frontend and the parser. . . . 21
10 Simplified structure of the parser to process the trace file and symbols file. 23
11 The different possibilities to calculate the staleness of one element in a collection. 25
12 Staleness of a collection with two elements. 26
13 Problem: Having multiple elements with the same identifier (x and y) in the same

collection at the same time. 27
14 Problem: Reinserting the same element after removing the element from the col-

lection. 28
15 The array of JSON Strings that is created for ADD locations. 28
16 Choosing the paths of the symbols file and the trace file for the parser. 32
17 Overview of the data read from the trace file and symbols file generated from

Listing 6. 33
18 Staleness bar chart for collections over the whole program execution of Listing 6. 34
19 Displays the amount of ADD, GET and REMOVE operations for the ArrayList

from Listing 6. 35
20 Elements with different amounts of accesses. 35
21 The location in the code where the elements were added to the collection. The

bar color shows the average element staleness for the ADD location. 36
22 The location where the accesses of the viewed collection occurred. 37
23 Remove locations of the viewed collection. 37
24 An example of the sparse collection pattern, in this case with eight null slots

inspired from Fig. 3 in [5]. 39
25 Generated line chart from the trace file and symbols file created through the small

example driver and the Commons HttpClient library. 41
26 Staleness chart over the continuous growing elements. 42

53

27 Three different staleness thresholds tested on the staleness chart. 42
28 The operation charts for the two most suspicious collections. 43
29 The ADD locations for the (a) LinkedList and for the (b) HashMap. 43

Listings

1 Example AspectJ Aspect. 7
2 Example d3 code. 9
3 Simple program to create an ALLOCATION, ADD and GET on an ArrayList. . 20
4 Generated trace file in human readable form with | as delimiter. 20
5 Generated symbols file in human readable form with | as delimiter. 20
6 Example Java program that will be used for the visualizations of the frontend. . 31

54

References

[1] D. Beronic, N. Novosel, B. Mihaljevic, and A. Radovan. Assessing contemporary automated
memory management in java - garbage first, shenandoah, and Z garbage collectors com-
parison. In N. Vrcek, M. Koricic, V. Gradisnik, K. Skala, Z. Car, M. Cicin-Sain, S. Babic,
V. Sruk, D. Skvorc, A. Jovic, S. Gros, B. Vrdoljak, M. Mauher, E. Tijan, T. Katulic,
J. Petrovic, T. G. Grbac, and B. Kusen, editors, 45th Jubilee International Convention on
Information, Communication and Electronic Technology, MIPRO 2022, Opatija, Croatia,
May 23-27, 2022, pages 1495–1500. IEEE, 2022.

[2] M. D. Bond and K. S. McKinley. Bell: bit-encoding online memory leak detection. In
J. P. Shen and M. Martonosi, editors, Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS 2006,
San Jose, CA, USA, October 21-25, 2006, pages 61–72. ACM, 2006.

[3] M. D. Bond and K. S. McKinley. Tolerating memory leaks. In G. E. Harris, editor, Pro-
ceedings of the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN,
USA, pages 109–126. ACM, 2008.

[4] M. D. Bond and K. S. McKinley. Leak pruning. In M. L. Soffa and M. J. Irwin, editors,
Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2009, Washington, DC, USA, March 7-11,
2009, pages 277–288. ACM, 2009.

[5] A. E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky, P. O’Sullivan, T. Parsons, and J. Murphy.
Patterns of Memory Inefficiency. In M. Mezini, editor, ECOOP 2011 - Object-Oriented
Programming - 25th European Conference, Lancaster, UK, July 25-29, 2011 Proceedings,
volume 6813 of Lecture Notes in Computer Science, pages 383–407. Springer, 2011.

[6] Dodeca Technologies Ltd. AspectJS. https://www.aspectjs.com/, 2023. [Online; accessed
14-November-2023].

[7] T. Domínguez-Bolaño, O. C. Fernández, V. Barral, C. J. Escudero, and J. A. García-Naya.
An overview of IoT architectures, technologies, and existing open-source projects. Internet
Things, 20:100626, 2022.

[8] W. Fenske, J. Krüger, M. Kanyshkova, and S. Schulze. #ifdef directives and program
comprehension: The dilemma between correctness and preference. In IEEE International
Conference on Software Maintenance and Evolution, ICSME 2020, Adelaide, Australia,
September 28 - October 2, 2020, pages 255–266. IEEE, 2020.

[9] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection using adaptive
statistical profiling. In S. Mukherjee and K. S. McKinley, editors, Proceedings of the 11th
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS 2004, Boston, MA, USA, October 7-13, 2004, pages 156–164. ACM,
2004.

55

https://www.aspectjs.com/

[10] R. Laddad. Aspectj in action: enterprise AOP with spring applications. Simon and Schuster,
2009.

[11] M. Matusiak. aopy. https://github.com/numerodix/aopy, 2023. [Online; accessed 14-
November-2023].

[12] Mike Bostock and Observable, Inc. D3. https://d3js.org/what-is-d3, 2023. [Online;
accessed 14-November-2023].

[13] OpenJS Foundation. NodeJS. https://nodejs.org/en, 2023. [Online; accessed 14-
November-2023].

[14] Oracle and/or its affiliates. Java ArrayList. https://docs.oracle.com/javase/8/docs/
api/java/util/ArrayList.html, 2023. [Online; accessed 14-November-2023].

[15] Oracle and/or its affiliates. Java Collection Interface. https://docs.oracle.com/javase/
8/docs/api/java/util/Collection.html, 2023. [Online; accessed 14-November-2023].

[16] Oracle and/or its affiliates. Java ConcurrentHashMap. https://docs.oracle.com/
javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html, 2023. [Online;
accessed 14-November-2023].

[17] Oracle and/or its affiliates. Java HashMap. https://docs.oracle.com/javase/8/docs/
api/java/util/HashMap.html, 2023. [Online; accessed 14-November-2023].

[18] Oracle and/or its affiliates. Java HashSet. https://docs.oracle.com/javase/8/docs/
api/java/util/HashSet.html, 2023. [Online; accessed 14-November-2023].

[19] Oracle and/or its affiliates. Java Map Interface. https://docs.oracle.com/javase/8/
docs/api/java/util/Map.html, 2023. [Online; accessed 14-November-2023].

[20] Oracle and/or its affiliates. Java Primitive Types. https://docs.oracle.com/javase/
tutorial/java/nutsandbolts/datatypes.html, 2023. [Online; accessed 14-November-
2023].

[21] Oracle and/or its affiliates. Java System.identityHashCode. https://docs.oracle.com/
javase/8/docs/api/java/lang/System.html#identityHashCode-java.lang.Object-,
2023. [Online; accessed 14-November-2023].

[22] Oracle and/or its affiliates. Java Virtual Machine Specification. https://docs.oracle.
com/javase/specs/jvms/se20/html/jvms-1.html, 2023. [Online; accessed 14-November-
2023].

[23] Oracle and/or its affiliates. Java WeakReference. https://docs.oracle.com/javase/
8/docs/api/java/lang/ref/WeakReference.html, 2023. [Online; accessed 14-November-
2023].

[24] Y. Tang, Q. Gao, and F. Qin. Leaksurvivor: Towards safely tolerating memory leaks for
garbage-collected languages. In R. Isaacs and Y. Zhou, editors, 2008 USENIX Annual
Technical Conference, Boston, MA, USA, June 22-27, 2008. Proceedings, pages 307–320.
USENIX Association, 2008.

56

https://github.com/numerodix/aopy
https://d3js.org/what-is-d3
https://nodejs.org/en
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#identityHashCode-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#identityHashCode-java.lang.Object-
https://docs.oracle.com/javase/specs/jvms/se20/html/jvms-1.html
https://docs.oracle.com/javase/specs/jvms/se20/html/jvms-1.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ref/WeakReference.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ref/WeakReference.html

[25] Tarnum Java SRL. Java WeakReference. https://www.baeldung.com/
java-weak-reference, 2023. [Online; accessed 14-November-2023].

[26] A. Villazón, W. Binder, and P. Moret. Aspect weaving in standard Java class libraries.
In L. Veiga, V. Amaral, R. N. Horspool, and G. Cabri, editors, Proceedings of the 6th In-
ternational Symposium on Principles and Practice of Programming in Java, PPPJ 2008,
Modena, Italy, September 9-11, 2008, volume 347 of ACM International Conference Pro-
ceeding Series, pages 159–167. ACM, 2008.

[27] M. Weninger, L. Makor, and H. Mössenböck. Memory Cities: Visualizing Heap Memory
Evolution Using the Software City Metaphor. In Working Conference on Software Visualiza-
tion, VISSOFT 2020, Adelaide, Australia, September 28 - October 2, 2020, pages 110–121.
IEEE, 2020.

[28] Xerox Corporation. AspectC++. https://aspectc.org/, 2023. [Online; accessed 14-
November-2023].

[29] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Measuring program comprehension:
A large-scale field study with professionals. IEEE Trans. Software Eng., 44(10):951–976,
2018.

[30] G. Xu and A. Rountev. Precise memory leak detection for java software using container
profiling. ACM Trans. Softw. Eng. Methodol., 22(3):17:1–17:28, 2013.

57

https://www.baeldung.com/java-weak-reference
https://www.baeldung.com/java-weak-reference
https://aspectc.org/

	Abstract
	Kurzfassung
	Introduction
	Background
	Java
	Memory Management
	Aspect-oriented Programming
	AspectJ

	Javascript Library d3

	Overview
	Trace File
	Data Collection with AOP
	Structure of the Trace File and Symbols File

	Backend
	Parser
	Parser Structure
	Staleness Calculation
	Problem of Duplicate Elements
	Problem of Reinserting Elements

	Aggregation of the Elements

	Frontend
	User Interface
	Element Size
	Collection Staleness
	Operations Count
	Element Get Count
	ADDs per ADD Location
	GETs per GET Location
	REMOVEs per REMOVE Location

	Anti-Patterns of Memory Inefficiency
	Implemented Anti-Patterns

	Evaluation / Usage
	Related Work
	Limitations and Future Work
	Limitations
	Future Work

	Conclusions
	Literature

