
Author
Mathias Wöß, BSc
k11709064

Submission
Institute for System
Software

Thesis Supervisor
o.Univ.-Prof. Dr.
Hanspeter Mössenböck

February 2024

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

A Profiler for Java
Programs

Master Thesis
to obtain the academic degree of

Diplom-Ingenieur
in the Master’s Program

Computer Science

Abstract

Profilers are an important aid for developers to find bottlenecks and unused code in
programs. Over the years many such tools have been developed for the Java language and
ecosystem, each with their own advantages and caveats. We present a novel profiling tool
that is fully open-source, has a permissive license and is simple to set up and use. While
most Java profilers use bytecode instrumentation, our profiler inserts counter statements
directly into the source code. To analyze raw Java files we leverage the Coco/R compiler
generator, coupled with a small and reusable fuzzy grammar. The grammar is designed
to be robust against future language changes and is tailored to gather only necessary
metadata about Java source files. In its core, our profiler is a multi-platform command-
line tool that generates HTML reports. The report serves as a structured, sorted and
detailed overview of how often methods, blocks and statements were executed. To ensure
correctness and the compatibility of our profiler to Java Version 17, we relied upon an
extensive unit test suite and the successful instrumentation of large code repositories
(like jUnit 5). For improved usability and comfort, we additionally provide a JavaFX user
interface to easily configure the parameters for our tool and to automatically execute it
with the press of a button.

i

Kurzfassung

Profiler sind eine wichtige Hilfe für Entwickler, um Engpässe und unbenutzten Code
in Programmen zu finden. Über die Jahre wurden viele solche Werkzeuge für Java und
sein Ökosystem entwickelt, jedes mit seinen eigenen Vor- und Nachteilen. Wir stellen ein
neuartiges Profiling-Tool vor, das Open Source ist, über eine freizügige Lizenz verfügt
und einfach einzurichten und zu verwenden ist. Während fast alle anderen Java-Profiler
Bytecode-Instrumentierung verwenden, fügt unser Profiler Zähleranweisungen direkt
in den Quellcode ein. Für die Analyse von Java-Code-Dateien verwenden wir den Par-
sergenerator Coco/R zusammen mit einer kleinen und wiederverwendbaren “fuzzy”
Grammatik. Diese ist so gestaltet, dass sie robust gegen zukünftige Sprachänderungen
ist und nur die notwendigen Metadaten aus Java Dateien extrahiert. Im Kern ist unser
Profiler ein plattformübergreifendes Befehlszeilentool, das HTML-Berichte generiert. Die
Berichte dienen als eine strukturierte, sortierte und detaillierte Übersicht darüber, wie
oft Methoden, Blöcke und Anweisungen ausgeführt wurden. Um die Korrektheit und
Kompatibilität unseres Profilers zur Java-Version 17 sicherzustellen, verlassen wir uns auf
eine umfangreiche Unit-Test-Suite und das erfolgreiche Instrumentieren von großen Code-
Repositories (wie jUnit 5). Für Benutzerfreundlichkeit und Komfort wurde zusätzlich
eine JavaFX-Benutzeroberfläche bereitgestellt, mit der die Parameter für das Tool einfach
konfiguriert und per Knopfdruck ausgeführt werden können.

ii

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Related Work . 4
1.3 Outline . 8

2 Background 9
2.1 Sources . 9
2.2 Attributed grammars and Coco/R . 10
2.3 Other used software . 12

3 Architecture 14
3.1 General idea . 14
3.2 Blocks and regions . 17
3.3 Counter class . 20
3.4 Java fuzzy parsing . 22
3.5 Directory structure . 23

4 Implementation 26
4.1 Steps . 26
4.2 Classes . 30
4.3 Special handling of language features . 32
4.4 Control flow breaks . 38

5 Usage 44
5.1 Installation . 44
5.2 Command-line usage . 45
5.3 Graphical interface usage . 47
5.4 Report . 52

6 Evaluation 56
6.1 Unit tests . 56
6.2 Larger test cases . 58
6.3 Runtime impact . 60
6.4 Limitations . 63

7 Conclusion and Outlook 65

iii

1 Introduction

Software profilers are commonly used to find hot-spots in programs and to determine code
coverage. Hot-spots are frequently accessed methods and code blocks that contribute most
to the execution time of a program. When trying to optimize run-time performance, they
are the main focus, as improving the associated code of these methods should induce the
biggest gains in efficiency. Re-writing rarely accessed code usually leads to less significant
results. Ain et al. [1] describe in their work, how the Just-in-Time (JIT) compiler of Java
already identifies hotspot methods automatically. It then tries to compile their bytecode to
native machine code to speed up programs. This is achieved by keeping counters for each
method and by optimizing frequently accessed ones first [2].

Finding parts of the code that are never executed during a representative execution of a
software program helps us identify dead and obsolete code, that might be due to removal
or require further testing. Often the underlying problem of code not being executed at all,
is due to semantic errors in the source code. Without the help of coverage analysis, this
can lead to unintended behavior and bugs.

Tengeri et al. [3] write how code coverage is used as an effective white-box testing tool
and as a measure for test completeness. It is a general software quality assessment and
can be used for fault localization, test case generation and test prioritization.

Profilers can be grouped into two main categories: Sampling and instrumenting profilers.
In Table 1.1 the two main differences between these types are listed.

Sampling Instrumenting
Run-time overhead Minimal Significant

Accuracy Representative Exact

Table 1.1: Main differences between sampling and instrumenting profilers

1

1 Introduction

According to Mytkowicz et al. [4], sampling profilers work by interrupting the program
in intervals and recording which method the program is currently executing. Depending
on the sampling rate, this commonly results in a low run-time impact but inaccurate
results.

While hot-spots will still be found, rarely executed parts might never be sampled, espe-
cially if their execution times are short. These type of profilers also require longer runs to
get representative statistics. The longer the software is executed, the closer we get to the
actual distribution of method executions.

Instrumenting profilers work by inserting counter increment instructions into the source
code. Whenever a piece of instrumented code is executed, the program increases its
associated counter value by one. This way, we get an exact number of how often each
block or method was entered during execution [5]. The consequence is a bigger slow-
down of the program, because the original control flow is interrupted more frequently.
This approach, however, leads to exact results for quick, single-run programs, providing
reliable accuracy about the non-covered code parts.

In the scope of this thesis, an instrumenting profiler for Java programs was developed.
The target version at the time of writing was Java 17. When implementation efforts
began, it was the most recent long-term-support (LTS) release. While most existing Java
profilers are implemented using bytecode instrumentation, our profiler uses source code
instrumentation with a parser generated by Coco/R [6]. Figure 1.1 sketches the main
difference between these types of instrumentation.

Source code Bytecode Execution

Source code
Instrumentaiton

Bytecode
Instrumentation

offline

Compilation Class-Loader

online

Figure 1.1: Difference between source code instrumentation and bytecode instrumentation. Source
code instrumenters are modifying the code before compilation, bytecode instrumenters
inject counter code into the bytecode before execution (either offline or online [3]).

2

1 Introduction

Source code instrumentation is done on the raw *.java project files by inserting additional
statements into the code. For bytecode instrumentation we first have to translate the code
into *.class files (using the Java bytecode format [7]). These are then altered before usage
by injecting instrumentation code. Modifying and writing new class files before starting the
program is called offline bytecode instrumentation. Dynamically adding counters during
the class-loading phase is referred to as online instrumentation [3]. Offline can also be
referred to as static while online is called dynamic instrumentation [8].

In the end, a profiler should generate overviews of the entire project for a program
execution and allow interactive exploration. The user should be presented with statistics
about the most frequently used classes, methods and statements in the program.

1.1 Motivation

Java is a widely used language and Java profiling tools are crucial to optimize application
performance and to find bottlenecks. There are many existing profiler tools available
for the Java ecosystem, but many have drawbacks like being proprietary, expensive or
complex to setup and use.

To address these limitations, we present a novel Java profiler using source code instrumen-
tation, that is open-source and free to use. While most available profilers use bytecode
instrumentation due to its many advantages, ours needs access to the source code itself.
This offers several advantages.

Source code instrumentation over bytecode instrumentation

The decision to utilize source code instrumentation allows for more precise profiling as
it can access and modify the actual source files. Tengeri et al. [3] mention how bytecode
instrumentation can be problematic for correctly mapping the profiling data back to the
sources. When we translate to bytecode, we lose the direct correlation between the source
code positions of statements and the executed code. It is then challenging to annotate
the sources correctly with the coverage data. Thus, source code instrumentation is more
intuitive, straightforward and comprehensible.

3

1 Introduction

Accessibility and Compatibility

Many existing tools are restricted by the target Java version, the operating system or a
prohibitive price tag. This often makes their usage unfit for developers and researchers
alike. Our tool is compatible with Java code up to Version 17, independent of the runtime
or VM implementation used. It is platform-independent and has open and free access.
Altering bytecode online or offline can lead to unintended side-effect (like preventing the
Java VM to successfully bootstrap [8]), which is also avoided by our approach.

Maintainability and Simplicity

The core of our profiler uses fuzzy parsing, tailored to its use case, providing high maintain-
ability and robustness against Java language changes. The parser specification grammar
can handle diverse code bases reliably and can be easily customized and re-used for new
applications, related to Java source code analysis and processing.

In the spirit of simplicity, our profiler generates HTML reports over the command-line
interface, as opposed to the conventional GUI-based tooling. User interfaces are often
cluttered, unintuitive or slow. They usually depend on platform-specific and fast-aging
toolkits that pose extra maintainability overhead. Our reports can be inspected on prac-
tically any device, without installing additional software (just a browser is needed) and
remain future-proof for a long time.

The intention of our work was to create an open-source, simple to understand and free to
use tool to analyze Java projects. The profiler code itself does not depend on any external
libraries.

1.2 Related Work

A plethora of Java profiling and coverage tool already exist, working in different ways
and having diverse advantages and disadvantages. We looked into several of them and
compared some key points.

4

1 Introduction

Prof-It

A similar project to ours was developed in 2004 at the Institute of System Software (SSW)1

of the Johannes Kepler University of Linz. It was called “Prof-It” [9] and is a source code
instrumenting profiler for C# 3.0 programs. As seen in Figure 1.2, it uses a dated graphical
user interface for all of its usecases and only works on Windows. Upgrading it to a new
UI toolkit, while keeping all functionality intact, would be a tedious task.

Figure 1.2: Screenshot of the Prof-It application’s main window (taken from its website [9]).

Prof-It also uses (a modified version of) Coco/R as a parser generator and a fully specified
attributed grammar (ATG). Our project is roughly inspired by this work, although we
tried to provide all functionality as a cross-platform command-line tool for Java programs.
Compared to our Java 17 fuzzy grammar of roughly 200 lines of code, their fully-fledged
C# 3.0 grammar consists of several thousands of lines (including the semantic actions).

Java Flight Recorder

This tool for collecting diagnostic and profiling data is part of the HotSpot JVM itself. It
was released and open-sourced with the release of OpenJDK 11 (see also JEP 328 [10]).
For production usage it requires a commercial license [11]. The efficiently stored binary

1https://ssw.jku.at/

5

https://ssw.jku.at/

1 Introduction

data reported by this utility can be visualized and explored using Java Mission Control
(JMC) [12] and other tools.

Java Flight Recorder (JFR) collects an abundance of data by recording VM events. Event
types include locks, garbage collection, methods, thread states, I/O operations, class
loading and many others. The tool and the API were designed to have a minimal run-time
performance overhead of roughly 1%. Which events to listen for can be specified when
starting or attaching the recorder.

In Figure 1.3 we see a screenshot of the Eclipse-based user interface of JMC showing the
visualization of a sample dump, recorded while opening a Java project using IntelliJ IDEA.
JMC is free-to-use and can be downloaded from its Oracle homepage2.

Figure 1.3: Screenshot of the JDK Mission Control UI, showing method profiling data
from opening a Java project using IntelliJ IDEA. The data indicate that
java.io.BufferedInputStream.read() was the most used method.

The JFR and JMC utilities are very advanced, provide detailed information about all kinds
of useful events, support versatile visualizations and allow for detailed exploration. It
is not an exact profiler, but rather designed for gathering data about production-level
applications without causing significant slowdowns.

The important distinction between JFR and our profiling software is that recording VM
events is independent of source code. No coverage and statements hit-counts can be
retrieved directly from this diagnostics data.

2https://www.oracle.com/java/technologies/javase/products-jmc8-downloads.html

6

https://www.oracle.com/java/technologies/javase/products-jmc8-downloads.html

1 Introduction

VisualVM

Similar to JFR and JMC, VisualVM [13] was also once part of the JDK itself, but starting
with JDK 9 it has moved to GitHub as a standalone distribution.

This NetBeans-platform-based software works in a similar way as these previously men-
tioned tools and is focused on directly attaching to programs running in the JVM. It allows
for CPU, memory and other profiling methods. It is also open-source and free to use.

VisualVM is also not source-code-oriented and should primarily be used to monitor
run-time performance and memory management behavior.

Coverage tools

Cobertura [14] is a code coverage library, providing line and branch coverage. It can
generate detailed HTML reports from the result data, gathered by running bytecode-
instrumented code. It also features an Eclipse plugin to directly add it into the Integrated
Development Environment (IDE). Its main disadvantage is that it has problems with Java
8 bytecode and is not compatible with recent Java versions.

JaCoCo [15] delivers source code and branch coverage and the cyclomatic complex-
ity [16] measure. It supports the most recent Java versions and is actively maintained.
Many integrations into build tools and IDEs are available3, making it an excellent choice
for anyone interested in Java code coverage. Again, this is achieved by bytecode instrumen-
tation of Java class files, compiled with debug information available. However, JaCoCo
focuses only on coverage. No hit counts and execution frequency measures are provided.
Rather, the report focuses on coverage and missed instructions. Also, its documentation4

states that:

Not all Java language constructs can be directly compiled to corresponding
byte code. In such cases the Java compiler creates so called synthetic code
which sometimes results in unexpected code coverage results.

3https://www.jacoco.org/jacoco/trunk/doc/integrations.html
4https://www.jacoco.org/jacoco/trunk/doc/counters.html

7

https://www.jacoco.org/jacoco/trunk/doc/integrations.html
https://www.jacoco.org/jacoco/trunk/doc/counters.html

1 Introduction

Proprietary profiling software

Many additional profilers for the Java ecosystem exist. Most of them come with a price tag.
jProfiler5 is a popular commercial tool, similar to JMC and VisualVM, providing excellent
insight into the VM state while running Java programs. YourKit6 is another fully-featured
profiling software for the JVM. It offers many integrations and modern visualizations. The
popular development tool IntelliJ IDEA, in its Ultimate edition, has a Java profiler [17]
built-in. Many popular inspections like call trees, flame graphs and CPU and memory
visualizations are available. It is also interoperable with JFR. One can start an application
directly with it or attach the profiler to running programs. Again bytecode profiling is
used. A separate coverage analysis tool is also available in this IDE and is included in the
free-to-use Community Edition.

1.3 Outline

The further structure of this thesis is as follows: In Chapter 2 we introduce the technologies
used and mention sources of truth, relied upon during the implementation of the parser.
In Chapter 3 we describe the general idea and steps of our profiler and provide insight into
how the object model is build. It contains some details about how counters are placed and
incremented and what the profiler outputs to the file system. In Chapter 4 we elaborate
further on the implementation, how the project is structured and the special handling of
tricky language features. Chapter 5 explains how to install and use the software. Our
systematic tests, evaluation of run-time performance and current limitations can be found
in Chapter 6. Finally, we give a short summary and an outlook into future work in
Chapter 7.

5https://www.ej-technologies.com/products/jprofiler/overview.html
6https://www.yourkit.com/java/profiler/features/

8

https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.yourkit.com/java/profiler/features/

2 Background

In this section we go over the software and resources we relied upon to create our profiler
and to make sure that it is working correctly.

2.1 Sources

The foundation on which we based our initial approach was the advanced knowledge of
the Java language acquired through many years of school and university teachings, but
also personal corporate experience. We already knew how programs can look like, which
statements exist and how they are executed. We also knew how to correctly use the Java
compiler, how directories should be structured and much more.

Additionally, the main source of truth while designing our ATG was the official Java
Language Specification [18] from the Oracle website. It defines fixed rules of which types
of statements can appear where and what types of symbols can follow. The Java compiler
follows these definitions exactly, giving us an error if any part of the source code does not
adhere to these rules.

All implementation and test code was written using IntelliJ IDEA. Its pre-compile checker
and semantic validity analysis provides instant aid before even attempting to compile a
sample. It can be used to experiment and verify possible statement combinations.

The Coco/R ATG for Java 1.4 from the SSW homepage1 has also given us a jump-start
and some hints for how to design the basic grammar elements. Although it was made for
a very outdated Java version and is not designed for fuzzy parsing, it gave us invaluable
pointers for designing the initial scanner token definitions (like floatLit and charLit).

1https://ssw.jku.at/Research/Projects/Coco/Java/Java.ATG

9

https://ssw.jku.at/Research/Projects/Coco/Java/Java.ATG

2 Background

Lastly, internet resources like the Java Documentation and Help Center [19] and tutorial
sites like Baeldung2 provided quick and helpful elaboration about what is possible, using
code-samples-based explanations.

2.2 Attributed grammars and Coco/R

Programs are written as structured text in programming languages defined by a set
of grammatical rules. To be able to parse and interpret a program’s instructions and
declarations, these rules are specified in a language grammar. From these rules alone, we
can generate a parser for this language. Parsers can be used to check the syntax of a source
file, find errors and create compilers.

Coco/R [6] is a recursive descent compiler generator. It builds a scanner and a parser from
an attributed grammar. Both the scanner and parser specification should be written in the
Extended Backus-Naur Form (EBNF) [20].

The scanner description defines character sets and terminal classes. Listing 2.1 shows
a minimal Coco/R scanner definition, declaring the character sets letter and digit

and a token declaration ident. An ident always starts with a letter (or an underscore)
and is followed by any number of letters and digits. The recognition of the token will
be terminated when any other character is encountered. This scanner would correctly
identify any variable, type or class name in a program. The specification also defines
which symbols to ignore, namely the tabulator character, line-feed and carriage-return.
Comments start with "//" and tehir contents will be ignored until the next line-feed
character.

1 CHARACTERS
2 letter = ’a’..’z’ + ’A’..’Z’ + ’_’.
3 digit = ’0’..’9’.
4 TOKENS
5 ident = letter {letter | digit }.
6 COMMENTS FROM "//" TO ’\n’
7 IGNORE ’\t’ + ’\r’ + ’\n’

Listing 2.1: Scanner definition for the token ident and its character sets. It also specifies how
comments are made and what characters to ignore.

2https://www.baeldung.com/

10

https://www.baeldung.com/

2 Background

The generated scanner is a deterministic finite automaton (DFA). It provides a stream
of tokens that can be consumed by the parser. The parser has to be specified as a set of
productions following a context-free EBNF format.

An example can be found in Listing 2.2. This parser specification will produce a parser
that can process Java files and find all class definitions, including nested classes, in a fuzzy
way. A java file starts with an optional package declaration, followed by zero or more
class definitions. The ANY token will match any token that is not an alternative to this ANY,
i.e., any other token except for "class". After "class" ident in the non-terminal symbol
(NTS) Class, we skip all tokens until the next opening brace "{". Inside the class body
there can be zero or more nested class declarations, curly-brace expressions or any other
tokens. A BraceExpr can be arbitrarily nested and lets us ignore all methods and inner
blocks without missing any following class definitions.

1 PRODUCTIONS
2 JavaFile = [PackageDecl] {Class | ANY}.
3 PackageDecl = "package" ident {"." ident} ";".
4 Class = "class" ident {ANY} "{" {Class | BraceExpr | ANY} "}".
5 BraceExpr = "{" {BraceExpr | ANY} "}".

Listing 2.2: Parser definition to find all class definitions in a Java file including nested classes.

We can then augment these productions with semantic actions and attributes to add
custom logic into the generated parser. Attributes are specified in angle brackets "<[out]
attr>", which will be added to productions as method parameters. Semantic actions can
be defined inside "(." and ".)" and can contain any code in the target language.

1 PRODUCTIONS
2 JavaFile = [PackageDecl] {Class<null> | ANY}.
3 PackageDecl = ...
4 Class<String parent> =
5 "class" ident (. String className = t.val;
6 System.out.println("found class " + className
7 + (parent != null)
8 ? " inside parent class " + parent
9 : ""); .)

10 {ANY} "{" {Class<className> | BraceExpr | ANY} "}".
11 BraceExpr = ...

Listing 2.3: Augmented parser definition with a semantic action to print out the name of each
class and its parent.

11

2 Background

In Listing 2.3 we inserted a parent attribute to the Class NTS and a semantic action to
print the current class name and its parent (if not null) to demonstrate this.

We heavily used these semantic actions and attributes in our full fuzzy grammar to gather
all necessary metadata for our profiler about each Java file. Attributes in combination with
recursive descent are especially useful, because we store scoped information on the Java
method stack itself without additional data structures.

2.3 Other used software

To build our full working profiler we relied upon a few additional dependencies besides
Coco/R and the predefined classes of the Java SDK.

javac the Java compiler command-line utility, used to compile our instrumented code
into executable class files. It is part of every JDK installation. Without any kind of wrapper-
library, we run it on the system command-line using a ProcessBuilder3 instance. Calling
it on any Java source file will automatically detect and locate other imported source files
and compile them in the process.

java the command-line utility to execute Java programs. In the default mode of our
profiler we execute the instrumented program automatically. For this we again use a
ProcessBuilder to run this utility.

jUnit 5 4 is the unit test framework we use to ensure the quality and stability of our
profiler. We used it heavily during the construction of our grammar to verify continued
correctness after any extension.

JavaFX [21] is a GUI framework to build modern graphical Java applications. We
leveraged it to create a user interface for configuring and running our tool in a convenient
and user-friendly way.

3https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/ProcessBuilder.html
4https://junit.org/junit5/

12

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/ProcessBuilder.html
https://junit.org/junit5/

2 Background

Gradle 5 is used to build and run our source code and to create release binaries. It is a
popular cross-platform build tool that can automatically retrieve dependencies, specified
in a declarative way.

jQuery 6 a widely known and used JavaScript library for traversal and modification of
HTML documents, animations and event handling. We used it to do the initial highlighting
in our annotated source code detail reports and to process mouse-over hovering events.

5https://gradle.org/
6https://jquery.com/

13

https://gradle.org/
https://jquery.com/

3 Architecture

3.1 General idea

There are five main steps involved to successfully profile a Java project using our tool.
Figure 3.1 shows them in their sequential order.

Analyze Instrument Compile Run Report

Figure 3.1: The five main steps of the profiler. First we parse all Java files and instrument them.
Then we compile and run the instrumented program. Finally, we create a report from
the results.

Analyze

First we use our generated parser program to extract metadata about all *.java files of a
project. This data is then persisted to the file system and contains information about every
file’s classes, methods and code blocks. We use it to successfully instrument the program,
to initialize the counters before execution and for the final report generation.

Instrument

In the next phase we create copies of each source file and insert counter statements at the
beginning of code blocks. This is demonstrated on the example of a Fibonacci program in
Listing 3.1.

14

3 Architecture

1 class Fibonacci {
2 static int fib(int n) {
3 if (n <= 1) {
4 return n;
5 }
6 return fib(n - 1) + fib(n - 2);
7 }
8 public static void main(String [] args) {
9 int N = Integer.parseInt(args [0]);

10 for (int i = 1; i < N; i++) {
11 System.out.print(fib(i) + " ");
12 }
13 }
14 }

Listing 3.1: A Fibonacci Java program

Using the line numbers and character positions from the metadata, we add additional
counter increment instructions __Counter.inc into every executable code block. The same
program, in its instrumented version, would look like the version in Listing 3.2.

1 import __Counter;
2 class Fibonacci {
3 static int fib(int n) {__Counter.inc(0);
4 if (n <= 1) {__Counter.inc(1);
5 return n;
6 }
7 return fib(n - 1) + fib(n - 2);
8 }
9 public static void main(String [] args) {__Counter.inc(3);

10 int N = Integer.parseInt(args [0]);
11 for (int i = 1; i < N; i++) {__Counter.inc(4);
12 System.out.print(fib(i) + " ");
13 }
14 }
15 }

Listing 3.2: Instrumented version of the Fibonacci program

The argument to the inc method is the unique ID of each block. IDs are assigned to blocks
in the order of their appearance. For more details see Sections 3.2 and 3.3.

15

3 Architecture

Note, that we also have to import the __Counter class to use it. The import statement is
inserted at the beginning of every Java file right after the package declaration. Section 3.3
describes this in more detail.

Numerous Java language constructs require special handling for this approach to work.
For example, single-statement blocks can be used in common control flow statements
such as if, else, for and while. If the block consists of only a single statement, it can be
written without the opening and closing braces. This makes it impossible for us to add
a counter statement at the beginning of this block, without wrapping the statement in a
curly-brace block.

Again referencing our Fibonacci example, the contents of the fib method can be written
in two lines of code as demonstrated in Listing 3.3:

1 static int fib(int n) {
2 if (n <= 1) return n;
3 return fib(n - 1) + fib(n - 2);
4 }

Listing 3.3: Version of method fib with a single-statement if

In this case we have to insert an opening ’{’ before our increment instruction and a
closing ’}’ character after the statement ends. The code snippet in Listing 3.4 shows how
the result would look like.

1 static int fib(int n) {__Counter.inc(0);
2 if (n <= 1){__Counter.inc(1); return n;}
3 return fib(n - 1) + fib(n - 2);
4 }

Listing 3.4: Instrumented version of fib with a single-statement if

This also applies to arbitrarily nested single-statement blocks, where after instrumenting
the inner blocks we still have to close the surrounding one with a closing brace.

More details on how we handled problematic Java language features can be found in
Section 4.3.

16

3 Architecture

Compile and execute

In this step of the program workflow, we simply use the javac and java command line
utilities, installed with every JDK.

Calling the Java compiler on the instrumented copy of the main file (containing the
main entry point) will automatically find and compile other imported source files. For
successfully locating said files, we must follow the Java directory hierarchy rules [22]. See
Section 3.5 for information about how the program output directory is structured.

After successful compilation we use the java [23] utility to run the compiled version of
the main class. Any additional arguments to the profiler are forwarded to the executed
program. At the end of the program execution the counter values are automatically written
to the file system by the __Counter class (described in Section 3.3).

Report

Finally, we generate a report from the metadata of the original sources and the resulting
counter values. The main page of the report is an overview page of all Java classes in the
project. From there we can drill-down into any of the classes. Selecting one of them will
forward us to a list of methods in this class, sorted by execution frequency. When trying
to inspect a method, an annotated view of the source code is presented, giving insight into
how often each statement was executed. Section 5.4 describes the navigation through the
report in more detail.

3.2 Blocks and regions

Blocks

The most important class in our object model is the Block class. It contains fields holding
information about the following key data:

• id - the unique id of a block (corresponds to the counter index)

• beg - the code position where the block begins (in the original file)

17

3 Architecture

• end - the code position where the block ends

• blockType - the type of the current block (one of 11 types)

• isSingleStatement - whether or not the block is a single-statement (important for
instrumentation)

• class - the Java class object this block is contained in

• method - the parent method object

• parentBlock - a pointer to the outer block when nested

• innerBlocks - the list of blocks directly nested inside this one

• controlBreak - the control flow break statement of this block (null by default and
set by the parser if this block ends with break/continue/return/throw/yield)

• labels - the (list of) labels assigned to this block

• codeRegions - a list of regions in this block

• incInsertOffset - the char-position offset to insert the __Counter.inc statement at
(relative to beg)

• hits - the number of times the block was entered during execution (will be set before
report generation; extracted from resulting counts file)

• innerJumpBlocks - needed for region count calculation (see Section 4.4)

There are many types of blocks in Java programs. For example, class members are defined
in the class block. Classes may feature a static initializer block. Methods and constructors
have a method block containing executable statements and any number of nested code
blocks inside it. Array definitions can have an initializer block, switch statements list their
cases in a block. In case of the last two we do not add an increment statement.

To correctly instrument a program, we need to store the type of each found block in our
metadata. Only blocks that are executable can and should be extended with a counter
instruction.

The object model of our profiler currently defines a total of 11 block types. 10 for special
kinds of blocks and one default BLOCK type. While there are a lot more block kinds to be

18

3 Architecture

considered, these suffice to correctly handle all use cases that the profiler was designed
for. Other block kinds (such as array initializers) are skipped by the parser without being
added to the metadata.

Regions

Each block contains 1..n CodeRegion objects and each region has exactly one parent block.
A region spans over a range of statements, inside said block, that share the same hit count.
In the simplest form a block contains exactly one region that spans over all its statements.
When encountering an inner block, we end the current region and start a new region when
we get back to the outer block. Inner blocks can contain control flow break statements such
as return, that might reduce the effective hit-count of later statement regions (elaborated
further in Section 4.4). Figure 3.2 shows the relationship between blocks and regions on
an example method.

b0

b1

boolean isPrime(int number) {
 if (number <= 1) {
 return false;
 }
 int sqrt = (int) Math.sqrt(number);
 for (int i = 2; i <= sqrt; i++) {
 if (number % i == 0) {
 return false;
 }
 }
 System.out.println("Number is prime.");
 return true;
}

b2 b3

r0_0

r1_0

r2_0
r3_0

r0_1

r0_2

Figure 3.2: A simple isPrime method demonstrating how blocks and regions are related. The
curly brackets depict spans of a block (named bx where x is the block id). Highlighted
parts with a bubble next to them correspond to code regions (named rx_y where x is
the parent block id and y the region id inside this block. In this example, only block b1
has more than one region.

19

3 Architecture

For source code visualization and annotation in the report, regions are our most actively
used resource. Only they contain the real effective hit-counts for each statement group.
Regions start with the first statement of a block and end with the last one, purposely
omitting the opening and closing braces. As curly braces of a block commonly do not
contain a statement in the same line, this reduces visual overhead and confusion. Also see
Section 5.4 for more information on how the report is structured.

3.3 Counter class

The auxiliary.__Counter class is used for storing and updating block counter data. It
has to be imported in all instrumented source files and must exist at the expected path
(relative to the source directory) during compilation. Its compiled .class version will be
extracted automatically from the profiler’s JAR file before compilation. The “__” prefix
is used to avoid naming conflicts with any possibly preexisting “Counter” classes of the
project to profile.

1 public class __Counter {
2 static {
3 init(".profiler/metadata.dat");
4 Runtime.getRuntime ().addShutdownHook(
5 new Thread (() -> save((".profiler/counts.dat"))));
6 }
7 private static void init(String fileName) { /* init array */ }
8 private static void save(String fileName) { /* save counts */ }
9

10 private static long[] blockCounts;
11 public static void inc(int n) { blockCounts[n]++; }
12 synchronized public static void incSync(int n) { inc(n); }
13 ...
14 }

Listing 3.5: Source code excerpt of the __Counter class

Listing 3.5 previews the class’s most important members. Only the increment methods
are accessible from outside the class, the rest is handled internally. Before the first use,
when the class is loaded, the class’s static block calls init to initialize the blockCounts

array with a size that is equal to the amount of blocks found in the analyzed project. This
number is read from the metadata file. Additionally, a shutdown hook [24] is added to

20

3 Architecture

the runtime to save block hit-counts when the VM shuts down. The 64-bit integer array
represents the hit-counts of each block. By indexing the array with a block’s id, the value
for how often this block was entered can be accessed.

If the same block is accessed very frequently by different threads in a multi-threaded
application, the final counts might not be accurate. Therefore instrumentation can be done
with atomically incrementing counters (see Section 5.2 for details on the ––synchronized

option). In this case, instead of the inc method, the incSync method will be inserted at
the beginning of each block. This will ensure correct counter values, but will lead to a
significant performance slowdown.

After conducting a series of run time experiments (evaluated in Section 6.3), we came
to the conclusion, that our approach of locking the __Counter class for each incSync

invocation (by use of the synchronized modifier) can result in a severe overhead for
highly concurrent programs. Therefore we improved our initial approach by adopting the
AtomicLongArray1 of the Java standard library. We now create two arrays of the same size
in the init method. One is used by inc as before while incSync uses the AtomicLongArray.
When saving the results, we write the sum of both arrays to the counts.dat. In Listing 3.6
the updated version of the class can be found. A comparison of the run-time impact of
these two approaches can be found in Section 6.3.

1 public class __Counter {
2 private static void init(String fileName) { /* init both arrays */ }
3 private static void save(String fileName) { /* save sum of counts */ }
4

5 private static long[] blockCounts;
6 private static AtomicLongArray atomicBlockCounts;
7

8 public static void inc(int n) { blockCounts[n]++; }
9 synchronized public static void incSync(int n) {

10 atomicBlockCounts.incrementAndGet(n);
11 }
12 ...
13 }

Listing 3.6: Usage of the AtomicLongArray in the __Counter class instead of methods with the
synchronized modifier

1https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/
atomic/AtomicLongArray.html

21

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/AtomicLongArray.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/AtomicLongArray.html

3 Architecture

3.4 Java fuzzy parsing

The ATG for generating the Scanner and Parser files is using so-called “fuzzy” parsing.
We skip non-relevant parts of the input file using Coco/R’s ANY symbol [6]. This way our
grammar is kept small in size and is more robust and maintainable against many updates
and extensions to the Java Language Specification [18]. The ATG consists of a reduced set
of NTS, that cover the most important aspects of the Java 17 syntax tailored for our main
use case (finding the begin and end position of blocks).

Some of the non-relevant tokens we skip with the ANY symbol are:

• access modifiers (public, private, ...)

• interfaces that a class implements (or superclasses)

• class-level constants and member variables

• generic type definitions within angle brackets <Type1<Type2,...>, ...>

• array initializer blocks (starting with "{"), but we do not insert a counter here

• a method’s argument list (within the parentheses)

• remaining tokens in a GenericStatement up to the semicolon

• the switch-case label(s) or constant(s) before the colon

Our JavaFile.atg completely omits the common Expression and Term productions. The
language specification defines complex variants for expressions, that are not essential
for finding blocks. Instead we attempted to capture all these statements in one short
GenericStatement NTS. 2

2for the entire grammar see https://github.com/matwoess/java-profiler/blob/main/profiler-tool/
src/main/java/tool/instrument/JavaFile.atg

22

https://github.com/matwoess/java-profiler/blob/main/profiler-tool/src/main/java/tool/instrument/JavaFile.atg
https://github.com/matwoess/java-profiler/blob/main/profiler-tool/src/main/java/tool/instrument/JavaFile.atg

3 Architecture

3.5 Directory structure

Every step of the workflow adds new files to the output directory. Subsequent steps
depend on the previous files. By default, all output of the profiler is written to the (hidden)
.profiler subdirectory inside the current working directory. The tool will automatically
create folders that do not exist yet. Results of previous runs are removed before writing
new files.

Based on the directory structure of the minimal sample project in Listing 3.7, we will now
describe which files are created when and where inside the output directory.

1 project
2 Main.java
3 util
4 Helper.java

Listing 3.7: Sample project directory structure

Figure 3.3 illustrates the changes and additions of every step of the profiling workflow
(the five steps described in the “General idea” of Section 3.1). Executing the program from
within the project directory will store all files in the project/.profiler subdirectory.

In the first step, all Java files are found and analyzed. The resulting project metadata
will be stored in metadata.dat directly in the output directory. At the same time, an
instrumented copy of every Java file is created inside the .profiler/instrumented/ sub-
directory. The original structure of the project is replicated. Thus, the instrumented version
of Helper.java will also be located in a util subfolder. At the root of the instrumented di-
rectory, an auxiliary package subfolder is created containing only the __Counter.class

file. It is important that __Counter is not in the default package to be able to import it
anywhere.

Next, all instrumented sources are compiled and their .class files are written to a new
classes directory. This is done to declutter the contents of the instrumented directory
and to separate functionally different files. The auxiliary/__Counter.class file is also
present within the classes directory to successfully load it during execution with a single
classpath target folder.

After executing the instrumented and compiled version of the project, the counts.dat

results file should automatically be written to the .profiler directory.

23

3 Architecture

Main.java

metadata.dat

__Counter.class

project util

.profiler

instrum. auxiliary

util

classes auxiliary

util

counts.dat

report sources util

Helper.java

Helper.java

Main.java

__Counter.class

Helper.class

Main.class

Helper.html

highlighter.js

index.html

index_Main.html

index_Helper.html

Main.html

Initial
Directory
Structure

Analyze &
Instrument

Compile

Run

report.html
 ./.profiler/report/index.html

Report

1-2

3

4

5

Figure 3.3: Visualization of the output directory structure. Each step is highlighted in a colored
box. At the top (in light red), the directory project contains the already existing files.
The .profiler subdirectory and all files in yellow will be added in steps 1 and 2. The
green area is added in step 3, the counts are written in step 4 (blue) and all report
related files in step 5 (in violet).

24

3 Architecture

The metadata.dat and counts.dat files are then used, together with the original sources,
to generate the HTML report in the report folder. In its sources subfolder, the annotated
code listings of each original Java file can be found and used for detailed inspection.
The relative paths of the original package structure are again replicated. Outside the
sources subfolder are the index files and the highligther.js helper script (for dynamic
highlighting and mouse-hover event handling). The index.html is the main report page,
listing all the Java classes of the profiled project. At the same hierarchical level there are
additional index files (index_ClassName.html) index files for each Java class. These are
the method overviews that can be navigated to from the main index.

Finally (if the system allows it), a symbolic link report.html is generated in the cur-
rent working directory. This link points to ./.profiler/report/index.html for quickly
opening the report without navigating into the (hidden) .profiler output directory.

25

4 Implementation

This section goes a little deeper into details about how the Java profiler was implemented.
We elaborate on how the project is structured, which classes are responsible for what and
how special cases are handled.

4.1 Steps

Analyze and Instrument

When executing the profiler in the default run mode (other modes can be found in
Section 5.2), we always need to specify the main class file of the project. This is required
for our logic of automatic compilation and execution of the instrumented code. Specifying
the sources directory will find all contained Java files recursively and will instrument
them, too.

First, a single Instrumenter instance is created and the list of java files is passed to it. The
Instrumenter creates a separate Coco/R parser for every file to analyze. Using semantic
actions in the productions of our ATG, we insert ParserState methods into the generated
Parser code. The ParserState is responsible for building the model for every file during
parsing. JavaFile objects store the full metadata for every Java file.

Finally, the Instrumenter exports all metadata to the file system. This is done by serializing
the list of JavaFile objects. Therefore, all classes of the tool.model package implement
the Serializable interface. As a first value in the metadata before the Java files, we
write the total amount of blocks found (in the entire project). This helps speeding up the
initialization of the counters array at run time. In __Counter.init we just read the first
value and create an array of this size. During the profiling run we do not require any
information about parsed files.

26

4 Implementation

Compile and run

After all Java files are instrumented and the metadata is exported, we instantiate a
Profiler object. It is responsible for compilation, execution and the report generation.
To compile the instrumented sources to .class files and to output them to the classes

directory, the command from Listing 4.1 is issued.

1 $ javac -cp .profiler/instrumented \
2 -d .profiler/classes \
3 .profiler/instrumented/<relPathToMain >

Listing 4.1: The command line that is executed to compile instrumented sources and to output
the compiled files to the classes directory.

Each JavaFile object stores the original file’s relative path to the sources directory. This
path is used to locate its associated files in the instrumented and classes directories. Once
the class files are compiled, we use a ProcessBuilder to execute the command line in
Listing 4.2. Here the ".java" extension is removed from the relative path to reference the
class containing the main entry point. Additional arguments to the profiler are appended
to this command.

1 $ java -cp .profiler/classes .profiler/classes/<relPathToMain_noExt > ARGS

Listing 4.2: The command line to execute the instrumented main file and to pass arguments

For compilation and execution, we do not change the current directory. Relative path
arguments and hard-coded path strings in the source code would still work as expected.

At this stage the profiler waits for the program to terminate. Once completed, the counts
are automatically written by the __Counter shutdown hook. We can now create the
report.

Report generation

The report is also generated based on the list of JavaFile objects from the metadata. All
information about classes, methods, blocks and regions already exist. The only missing
data is the number of hits of every block. Every instance of class Block has a member hits.
It is transient (will not be serialized) and is populated right before the report generation
with the counter values from counts.dat.

27

4 Implementation

First, the list of top-level Java classes is written to the index.html as a sorted HTML table.
Sorting is done, based on the aggregated method invocations. As inner classes are not
listed here, their counts are included in the sum of its top-level class. Next, we loop over
all JavaFile objects. Files without a single detected block are skipped. We then generate
the coverage report and a method index for all top-level classes of each file. Method
indexes include the methods of inner classes in the sorted table.

The source file coverage report is a table of three columns: region hit counts, line numbers
and source code (see Section 5.4 for more details). Highlighting is done by wrapping code
in span elements and assigning CSS classes to it. Every source code report file imports
the highlighter.js script. Using jQuery it updates the background color, depending on
CSS classes assigned to the span elements. Table 4.1 lists the possible span class types and
what they represent.

Class Meaning Effect
c covered Will be highlighted in green

nc not covered Will be highlighted in red
bx block with id x All spans inside the xth block have this class

rx_y yth region in block x All spans in this region have this class

Table 4.1: List of span element classes in the report and what they are used for

Because we wrap the entire source code in an HTML table (each line is one table row), we
need to end the current span when a line ends and start it anew in the next line, to produce
valid HTML. We extended the sample from Figure 3.2 to show how block tags and region
tags are represented in the report files. Refer to Figure 4.1 for this comparison.

Most regions start from the beginning of the line (not from the first statement) due to a
post-processing step. We eliminate empty spans and spans at the beginning of each line
containing only whitespace. This leads to a smaller file size, more consistent highlighting
and less visual overhead.

When hovering over any span in the source code, a jQuery mouseenter event will be fired.
We then extract the last class inside the current span element and check whether it is a
region or a block. If it is a region, the second-last class is also determined, which will
always be a block class. We use this class to update the ’background-color’ CSS values
of all span tags containing the currently selected block or region class. For example, if we

28

4 Implementation

b0

b1

boolean isPrime(int number) {
 if (number <= 1) {
 return false;
 }
 int sqrt = (int) Math.sqrt(number);
 for (int i = 2; i <= sqrt; i++) {
 if (number % i == 0) {
 return false;
 }
 }
 System.out.println("Number is prime.");
 return true;
}

b2 b3

r0_0

r1_0

r2_0
r3_0

r0_1

r0_2

<td> boolean isPrime(int number) { </td>
<td> if (number <= 1) { </td>
<td> return false; </td>
<td> } </td>
<td> int sqrt = (int) Math.sqrt(number); // asdf </td>
<td> for (int i = 2; i <= sqrt; i++) { </td>
<td> if (number % i == 0) { </td>
<td> return false; </td>
<td> } </td>
<td> } </td>
<td> System.out.println("Number is prime."); </td>
<td> return true; </td>
<td> } </td>
<td> ... </td>

Source Code Report

HTML Representation

Figure 4.1: Exemplary demonstration of how blocks and regions are currently tagged inside the
HTML code of report source files. On the top-left we have the example from Figure 3.2.
To the right of it we see how it would be displayed in the report. On the bottom we
see the HTML code for how this is represented in a table.

hover over the println statement region in Figure 4.1, all spans containing the b0 class
will be highlighted. Additionally, the region’s ’font-weight’ will be set to bold.

Whenever we move our mouse away from a span, jQuery will recieve a mouseleave event.
This is used to reset all colors and font weights to the default values. The source report file
will again look like when we first opened it.

The popup for indicating how often a region or block was entered is realized by adding a
title attribute [25] to every span in the code. This will lead to a tooltip opening when
hovering over the HTML element.

29

4 Implementation

4.2 Classes

At the time of writing our software repository consisted of more than 90 Java class
files (including test classes), distributed over three separate Java modules. Hierarchical
diagrams were drafted to create a rough overview over the project. The three Java modules
and their connections are shown in Figure 4.2.

profiler-common

profiler-fxui

profiler-tool

Figure 4.2: The project’s Java module dependencies. The fxui and tool modules both depend
on the common module. fxui only uses the tool when executing its main method, but
does not depend on any other implementations of it.

The common module contains universal utility methods for both tool and fxui, related to
the operating system or filesystem operations. Its class diagram, with available public
methods, can be found in Figure 4.4.

The tool module contains the most important classes that handle all the instrumentation
and profiling logic. Showing all its classes and connections would result in an overloaded
picture. Therefore a stripped down overview, including the most important Java classes
and how they are used, can be inspected in Figure 4.3.

The class diagram for the fxui module is excluded for brevity. The GUI is subject to
change and might be fully replaced by alternatives like IDE integrations in the future.

30

4 Implementation

Figure 4.3: The class diagram of the profiler-tool module. For each Java class, the public
methods are listed.

Block CodeRegion

<<creates>

<<uses>>

<<creates>>
<<creates>>

Instrumenter

JClass

JavaFile

JumpStatement

<<creates>><<creates>>

<<creates>>

Main

<<uses>>

<<record>>
Metadata

Method

<<creates>>
<<uses>>

Parser

<<creates>>
<<creates>>

ParserState

<<uses>

<<uses>

<<creates>>

<<creates>>
<<creates>

Profiler

ReportClassIndexWriterReportMethodIndexWriterReportSourceWriter

Scanner __Counter

<<uses>><<uses>

<<creates>>

Figure 4.4: The simplified class creation-and-usage diagram of the profiler-tool module. Only
the most important classes and connections are shown. First, the Main class creates
JavaFile objects and passes them to a new Instrumenter. The Instrumenter creates
a Scanner and Parser per Java file. Each Parser has an associated ParserState that
builds the object model. The Instrumenter then stores this data in the JavaFile
objects, that will be persisted as the Metadata record. Finally, the Profiler uses the
Metadata, together with counts read from the file system, to generate the report. The
three report writers share a common AbstractReportWriter parent class.

31

4 Implementation

4.3 Special handling of language features

Recent Java versions support many special language constructs that are non-trivial to
instrument with counter statements. In this section we elaborate on how we handled the
most prominent ones.

Single-statement blocks

One such example are single-statement blocks with omitted braces. As previously men-
tioned in Section 3.1, we have to add curly braces before our inserted __Counter.inc

statement and after the original statement ends. In case of nested single-statement blocks,
we have to do this multiple times. For this purpose, each block has a boolean member for
whether or not it is a single-statement block. In the grammar, all statement productions
that support this short-hand use the BlockOrSingleStatement NTS instead of Block.

The method in Listing 4.3 defines four single-statement blocks. Blocks in lines 3-5 are
nested in each other. How this method would look like after instrumentation can be seen
in Listing 4.4.

1 boolean containsZero(int [][] array) {
2 if (array == null) return false;
3 for (int i = 0; i < array.length; i++)
4 for (int j = 0; j < array[i]. length; j++)
5 if (array[i][j] == 0) return true;
6 return false;
7 }

Listing 4.3: A method with nested single-statement blocks

1 boolean containsZero(int [][] array) {__Counter.inc(261);
2 if (array == null){__Counter.inc(262); return false;}
3 for (int i = 0; i < array.length; i++){__Counter.inc(263);
4 for (int j = 0; j < array[i]. length; j++){__Counter.inc(264);
5 if (array[i][j] == 0){__Counter.inc(265); return true;}}}
6 return false;
7 }

Listing 4.4: Instrumented version of the method with nested single-statement blocks

32

4 Implementation

Overloaded constructors

Java supports multiple “overloaded” constructors in the same class. If we use super()

or this() invocations, the language enforces that it must be the first statement in the
method [26]. The example code in Listing 4.5 shows, how a naive instrumentation could
be done. Compilation of this code will fail.

1 class SmallDog extends Dog {
2 public SmallDog(String name , int age) {__Counter.inc(3);
3 super(name , age);
4 size = Size.SMALL;
5 super.speak();
6 }
7 public SmallDog(String name , int age , Size s) {__Counter.inc(4);
8 this(name , age);
9 this.size = s;

10 }
11 ...
12 }

Listing 4.5: Constructor methods that are incorrectly instrumented. A statement preceding this()
or super() is not allowed.

The corrected version can be found in Listing 4.6, where we insert our counter increment
statement right after the call to other constructors. While it might not be fully correct to
only increment a method’s counter after it already executed code, it is still reasonable and
the best we could come up with.

1 class SmallDog extends Dog {
2 public SmallDog(String name , int age) {
3 super(name , age);__Counter.inc(3);
4 size = Size.SMALL;
5 super.speak();
6 }
7 public SmallDog(String name , int age , Size s) {
8 this(name , age);__Counter.inc(4);
9 this.size = s;

10 }
11 ...
12 }

Listing 4.6: Corrected instrumentation of constructor methods using incInsertOffset.

33

4 Implementation

If the method block has the block type CONSTRUCTOR and we encounter a super() or this()
invocation, we store the character offset between the beginning of the block and the ";"

after the invocation. Therefore, blocks have an incInsertOffset member, that will be
considered during instrumentation. This way, the begin position of the block will stay
accurate in our metadata.

Anonymous and local classes

Java allows the declaration of classes inside methods (as demonstrated in the unit test
sample of Listing 6.1). We can simply declare a named class anywhere inside a block.
These local classes [27] are scoped, meaning that they will effectively only be available
inside this block. Additionally, there are so-called anonymous classes [28]. They behave
similar to local classes, but have no name and are instantiated automatically.

Both of these constructs made it harder to build a consistent object model during source
code analysis. The definitions are actually subclasses of the parent class and should not be
considered part of the method we currently parse. Also, they can contain further methods
and arbitrarily nested (anonymous or local) class definitions. After exiting local class
declarations, we need to restore the previous method as the “current” one. For this, the
ParserState contains a Stack of methods, onto which we push the current one when
encountering class declarations inside methods.

Switch statements and switch expressions

Switch statements need a lot of special handling due to their abnormal syntax. The switch’s
curly-brace block itself is not executable and requires no counter statement. Case blocks
start right after the ":" and do not end with a "}". Multiple cases can be combined into
one common block, if the previous case contains no statements. A "break" can be omitted
to achieve a fall-through.

Since the release of Java 14 the language supports so-called switch expressions. They behave
like the common switch statement, but always return a value. The result can directly be
assigned to a variable or returned by a method. Additionally, with the JEP 261 [29], the
arrow-case labels were introduced. They can be used as a switch case short-hand without

34

4 Implementation

the need for a break keyword or a possible fall-through. Also, the new yield keyword
was introduced, to instantly yield a value from the expression, similarly to return in
methods. We can use switch statements, switch expressions and standard case labels or
arrow-case labels interchangeably. A switch expression can use "case L: yield val;"

and a switch statement can use "case L1, L2, L3 -> foo();".

An example of the new switch expressions using arrow-cases can be found in Listing 4.7.

1 StatusCode statusCode = ...;
2 int sc = switch (statusCode) {
3 case OK -> 200;
4 case UNAUTHORIZED -> 401;
5 case FORBIDDEN -> 403;
6 case NOTFOUND -> { yield 404; }
7 default -> throw new RuntimeException("invalid status code");
8 };

Listing 4.7: Exemplary usage of a switch expression with arrow-cases. Three cases yield a value
implicitly, one has a block using the yield keyword, and the default branch throws
an exception.

Similar to instrumenting single statements, this language construct requires adding braces
around the value expression. Additionally, we have to insert a yield between our counter
statement and the value. If the case already has braces, we do not have to add a yield,
as one must already be provided by the programmer. Another exception are brace-less
blocks that throw an exception. Although we have to add the braces and our counter
statement, we must not add a yield before the throw.

In Listing 4.8 we show what must be inserted in order to get correct counts and to be able
to compile the program successfully.

1 StatusCode statusCode = ...;
2 int sc = switch (statusCode) {
3 case OK ->{__Couter.inc(5); yield 200;}
4 case UNAUTHORIZED ->{__Couter.inc(6); yield 401;}
5 case FORBIDDEN ->{__Couter.inc(7); yield 403;}
6 case NOTFOUND -> {__Couter.inc(8); yield 404; }
7 default ->{__Couter.inc(9); throw new RuntimeException ();}
8 };

Listing 4.8: Instrumentation of switch expressions with arrow-case blocks and one throws-branch

35

4 Implementation

To handle all variations of instrumentation correctly, we introduced the block types
SWITCH_STMT, SWITCH_EXPR and the case block types COLON_CASE and ARROW_CASE. Every
block has a pointer to its parent. During instrumentation, we exclude switch blocks
themselves, and for case blocks we determine the surrounding switch block type. Only
for switch expressions we add a yield. To handle the special case of throw branches we
need to check whether the parent block type matches SWITCH_EXPR, the block satisfies
isSingleStatement and ends with a throw statement.

Lambda expressions

Since Java Version 8, lambda expressions [30] are supported. They are similar to anony-
mous classes, but can be more concise, expressing instances of single-method classes
(usually interfaces). They start with a parameter list followed by an arrow "->" and a
method block. They are trivial to instrument if the block has braces. If the right-hand side
is a brace-less expression, instrumentation can be tricky.

We first attempted to handle them like the singe-statement switch expression arrow-case
blocks. This would mean that we have to add the curly braces and insert a return before
the value expression (and a ";" after it). The problem with this approach is that not every
lambda expression returns a value. The compiler infers the type of a lambda by context
information and determines the return type. Having only access to the source code it is
practically impossible to know, whether or not we should add a return before the contents
of a brace-less lambda block.

A demonstration of correctly instrumented lambdas can be found in Listing 4.9.

1 Function <Integer , Double > divideBy3;
2 divideBy3 = num ->{__Counter.inc(0); return num / 3.0;};
3 int[] array = new int[]{1, 2, 3, 4, 5, 6};
4 Arrays.stream(array)
5 .map(x ->{__Counter.inc(1); return x*2;})
6 .peek(x ->{__Counter.inc(2); System.out.println(x);})
7 .filter(x ->{__Counter.inc(3); return (x > 5);})
8 .reduce ((acc , x) ->{__Counter.inc(4); return (acc) + (x);})
9 .ifPresent(x ->{__Counter.inc(5); ...;});

Listing 4.9: Correct source code instrumentation of brace-less lambdas (hard to implement)

36

4 Implementation

Notice that in line 6, where we simply print out x, we must not insert a return. It would
result in a compilation error. Because we cannot infer the return type of an arbitrary
lambda, we had to find another way.

Our final approach1 was to wrap every lambda inside another lambda, which is either
a Runnable or a generic Supplier with a single type parameter. We pass this wrapped
lambda as an argument to a special incLambda method of our __Counter class. There are
two implementation variants shown in Listing 4.10. By overload resolution, the compiler
will automatically assign the correct variant when compiling our instrumented copies.

1 public static void incLambda(int n, Runnable method) {
2 __Counter.inc(n);
3 method.run();
4 }
5 public static <T> T incLambda(int n, Supplier <T> function) {
6 __Counter.inc(n);
7 return function.get();
8 }

Listing 4.10: The __Counter methods to handle any wrapped lambda as an argument. The
compiler will choose the correct variant by overload resolution. First we increment
the block counter, then we execte run() for Runnables or return the value of get()
for Suppliers.

Using this approach, we neither have to add return keywords nor curly-braces. Based on
the example from above, we show the new way of instrumentation in Listing 4.11.

1 Function <Integer , Double > divideBy3;
2 divideBy3 = num ->__Couter.incLambda(0, () -> num / 3.0);
3 int[] array = new int[]{1, 2, 3, 4, 5, 6};
4 Arrays.stream(array)
5 .map(x ->__Couter.incLambda(1, () -> x*2))
6 .peek(x ->__Couter.incLambda(2, () -> System.out.println(x)))
7 .filter(x ->__Couter.incLambda(3, () -> (x>5)))
8 .reduce(...)
9 .ifPresent(...);

Listing 4.11: New variant of instrumenting brace-less lambdas using wrapping and incLambda

1Thanks for the hint by Julian Garn

37

4 Implementation

Text blocks

Since the release of Java 15 it is possible to define multi-line string literals (see JEP 378 [31]).
They are called text blocks and are enclosed inside triple quotes. While strings are not a
target of instrumentation, we struggled to define a valid scanner definition to correctly
parse both standard string literals and text blocks as the same string token type. Missing
a single escape character will lead to parsing errors and misinterpreted tokens.

In Listing 4.12 an example of a multi-line text blocks can be found. Using correct escaping,
these text blocks can contain nested text blocks inside them. Also, three sequential """ do
not necessary terminate the token if one of them is escaped. We also have to make sure
that "" is not recognized as an empty string token if a third semicolon follows.

1 String emptyString = "";
2 String usualString = "Hello\n\" World\"";
3 String nestedTextBlocks = """
4 multiline -text
5 can contain ""strings"", \" escaped strings \"
6 and nested ""\"
7 Text blocks!
8 within ""\\\\"
9 "nested (!) text blocks"

10 "\\\\""
11 does not end on \"""
12 """;

Listing 4.12: Demonstration of different possible string literals, including a multi-line text block
that contains nested text blocks

To correctly parse all possible types of string literals we tried many different scanner
definitions. The final definition for our scanner automaton can be found in the appendix
as Listing 1.

4.4 Control flow breaks

The last major difficulty we faced were statements that break the control flow of the
program. In addition to conditional statements (if-then-else and switch), there are
loop statements (for, while, do-while) and control flow breaks (break, continue, return).

38

4 Implementation

Other examples are the yield and the throw statement. Conditional statements and loop
statements have nested blocks and don’t need any special handling. What we had to
handle, though, were control flow breaks, yield and throw. They appear as the last
statement in blocks and lead to skipping the execution of subsequent parts of a program
(not necessarily contained in the same block).

Due to our instrumentation approach of inserting a single counter statement at the begin-
ning of every block, the data might not reflect the true counts of every statement, if control
flow breaks are used. To demonstrate the problem we refer to Listing 4.13.

1 275 | static int fib(int n) {
2 275 | if (n <= 1)
3 275 142 | return n;
4 275 | return fib(n - 1) + fib(n - 2); // 275-142 = 133
5 | }

Listing 4.13: Fibonacci example with counter values on the left side. We know the counter values
of the blocks, but the execution count of line 4 is not inherently clear.

We have two counters for this method. One for the method block and one for the if-
statement block. Line 4 shares the same counter as line 2. The only way to know how
often line 4 was executed, is to do the math: Since line 3 was executed 142 times, line 4
was actually reached only 275 − 142 = 133 times. This is trivial in this small example, but
once a statement depends on many different control flow break statements, deeper inside
a nested hierarchy, the calculation is hard to do manually. Moreover, break and continue

can optionally jump to a label adding even more complexity.

We came up with two main approaches for showing exact execution counts for each code
line.

Variant 1: Insert additional counters

We determine the continuation point in an outer block after a control flow break and insert
an additional counter there. By incrementing this counter only when execution actually
gets to this point, we know exactly how often the following statements were executed. We
sketch this approach in Listing 4.14.

39

4 Implementation

1 for (...) {__Counter.inc(23);
2 if (...) {__Counter.inc(24);
3 break;
4 } else if (...) {__Counter.inc(25);
5 continue;
6 }__Counter.inc(26);
7 x += 5;
8 if (...) {__Counter.inc(27);
9 return;

10 }__Counter.inc(28);
11 System.out.println (...);
12 }

Listing 4.14: First approach of handling control flow breaks by inserting additional counter
statements. The additional counters are highlighted in darker gray.

While this is a valid and reliable approach, it requires the insertion of many more counters.
This will further slow down the instrumented program during execution by causing more
counter increment overhead. We also lose the unique mapping between a block’s id and
the counter index. Currently we have exactly as many counters as there are blocks and
the counters array has the size of the number of blocks. Mapping back counter values
to block IDs would be ambiguous with this approach. We could start a new block at
these continuation points, but it would distort our metadata and create difficulties with
visualization in the report (because we highlight the whole block on hover).

Variant 2: Regions and calculated counts

As shown in the Fibonacci sample of Listing 4.13, we actually know how often statements
are executed by how often blocks with a control flow break were entered. An experienced
programmer can quickly infer the true count by looking at the counter values of other
blocks. We tried to map this knowledge into an algorithm.

Refer to the modified Listing 4.15 with no additional counters. The counters for continua-
tion points are calculated using only other block counters and the model structure itself.
This way, we insert less counters and thus avoid additional run-time overhead. Further-
more, the calculation of the effective counts is done only during report generation. This
approach induces no slowdowns additional for counter increments or counter outputs to
the file system. It is, however, harder to get right than the first variant.

40

4 Implementation

1 for (...) {__Counter.inc(23);
2 if (...) {__Counter.inc(24);
3 break;
4 } else if (...) {__Counter.inc(25);
5 continue;
6 }
7 x += 5; // c23 - c24 - c25
8 if (...) {__Counter.inc(26);
9 return;

10 }
11 System.out.println (...); // c23 - c24 - c25 - c26
12 }

Listing 4.15: Second approach of handling control flow breaks by calculating the effective region
counts from other block counts.

To implement this logic, we introduced the CodeRegions into the object model. A region
stores its parent block for the base hit-count and a list of pointers to the dependent control
flow break blocks. The final calculation can be done using the equation:

hregion = hb −
D

∑
i=0

hi
dep (4.1)

Where h denotes hit-counts, b is the region’s parent block, D is the number of dependent
block and hi

dep the hit-count of ith of these dependent control break blocks. If a region has
no dependent blocks, the count will match the parent block count exactly. If done right,
it can never happen that a region count is less than zero. An inner block, ending with a
control flow break, cannot be entered more often than the surrounding block.

The ParserState helper class and the ControlBreak model class contain special logic
to assign dependent blocks during parsing. We always have a curBlock pointer to the
innermost block and an optional curCodeRegion member in ParserState. When we
encounter a control flow break we save it to the controlBreak member of the current
block. Afterwards, we register the block in its parent blocks. Every type of ControlBreak
has its own stopping criterion for ending the propagation. These are listed in Table 4.2.

As soon as all parent blocks have a reference to the inner control break block, we continue
parsing. When we continue in an outer block that does not immediately end (another

41

4 Implementation

Control break type Propagate until block type
break innermost LOOP or switch case

continue innermost LOOP
return METHOD or LAMBDA
yield innermost switch expression
throw until METHOD or TRY block

break/continue with label until a block matching this label

Table 4.2: Until which type of block an inner control break block gets registered.

statement follows), we start a new CodeRegion. At this point the region inherits all
currently registered inner blocks as dependent control break blocks.

Another difficulty we were facing are labels. Blocks can be labeled with an identifier
followed by a colon. A block can have multiple labels. The statements break and continue

can have a label target, ignoring the innermost applicable loop or switch. Thus, we have
to store a possible (list of) labels for each block. When encountering a control flow break
with a label, we register this break in all parent blocks until reaching one with a matching
label, independent of the block type.

A demonstration of how inner control break blocks are registered and propagated to
regions, and how the final hit-counts will be calculated can be found in Figure 4.5.

42

4 Implementation

 void nFullRows() {
 1 char[][] board = {
 1 {'x', 'x', 'o', 'x'},
 1 {'x', 'x', 'x', 'x'},
 1 {' ', 'x', ' ', 'x'},
 1 {'o', 'o', 'x', 'o'}
 1 };
 1 int fullRows = 0, fullXRows = 0;
 1 loop1: outerLoop:
 1 for (int i = 0; i < board.length; i++) { //4x
 4 boolean anyO = false;
 4 rowLoop:
 4 for (int j = 0; j < board[i].length; j++) { //13x
13 if (board[i][j] == ' ') { //1x
 1 System.out.println("non-full row: " + i);
 1 continue outerLoop;
 }
12 if (board[i][j] == 'x') { //8x
 8 continue rowLoop;
 }
 4 anyO = true;
 }
 3 fullRows++;
 3 if (!anyO) { //1x
 1 fullXRows++;
 }
 }
 1 System.out.println("number of full rows: " + fullRows);
 1 System.out.println("number of full 'x' rows: " + fullXRows);
 }

(13 - 1) =

(13 - 1 - 8) =

(4 - 1) =

METHOD (b0)

loop1, outerLoop: LOOP (b1)

rowLoop: LOOP (b2)

BLOCK (b3)

BLOCK (b4)

BLOCK (b5)

r0_0

r1_0

r2_0

r2_2

r3_0

r4_0

r1_1

r5_0

r0_1

r2_1

continue

continue

1

2

3

4

5
6

Figure 4.5: A program with control flow breaks and calculated region hit-counts

The blocks are color-coded. Region counts on the left of the program share the block’s
background color if no calculation is necessary. Otherwise the calculation is provided. On
the left is a sketch of the internal object model for this method. The boxes are blocks and
the parallelograms are regions. Blocks ending with a control flow break are marked with
a circle. Dashed arrows show dependent blocks. Important moments during file parsing
are marked with a red line and a number:
1 At the moment of encountering "continue outerLoop;" block b3 is registered in

parent blocks b2 and b1 as an inner control break block.
2 When continuing with block b2 and starting a new code region r2_1, it inherits b3 as a

dependent control break block.
3 When encountering "continue rowLoop;" we register b4 only in parent b2 (in addition

to b3; additive). This has no more effect on region r2_1.
4 We continue with block b2 and start a third region. This region inherits b3 and b4 as

dependent blocks.
5 Block b2 goes out of scope as we return to block b1 (which still has b3 registered as an

inner control break block).
6 The second region r1_1 of block b1 inherits b3 as a dependent block.

43

5 Usage

This section contains information about how to download, build and use our Java profiler.
It further describes how the command-line tool can be executed and which optional
arguments are available. Finally, we introduce the graphical interface to run the tool and
explain navigation and usage of the generated report.

5.1 Installation

For both executing the tool and building the software from source, a Java Development
Kit (JDK) of Version 17 or higher is needed. A basic Java Runtime Environment (JRE) is
not sufficient due to the fact that we leverage the javac utility to compile instrumented
files into .class files. The Java compiler utility is absent in a JRE.

Download

Every release in the “Releases” section 1 of the profiler’s GitHub page [32] contains:

• the pre-built .jar file of the command-line profiler

• a ZIP-file containing the JavaFX runner for each of the three major desktop operating
systems (Windows, Linux, macOS)

Both the tool and the UI are “portable”, meaning that they can be placed anyway in the
local file system and can be executed from there. No prior setup step is required.

1https://github.com/matwoess/java-profiler/releases

44

https://github.com/matwoess/java-profiler/releases

5 Usage

Build from sources

Alternatively, the project can also be cloned or downloaded and compiled directly from
its source files. Cloning the public repository can be done using the git2 utility. After
retrieving the project source files, we first need to generate the missing Scanner.java

and Parser.java files using Coco/R. These two files are purposely excluded from the
repository because they are defined by the ATG and .frame files and are updated implicitly
with every change to the grammar. To automate this step, the project contains a bash and
a PowerShell script inside the scripts folder. These scripts will download the Coco/R
library (if it does not exist locally yet) and place it in the lib subfolder. It then uses the
Coco.jar executable to generate the missing scanner and parser files. Once this step
is completed, we can execute the Gradle3 wrapper script gradlew in the project root to
compile, package or run the project.

Using the commands from Listing 5.1, all those steps can be executed on a Linux or macOS
system. For Windows, the script paths should be altered to used backslashes and a .bat

extension for the gradlew command.

1 $ git clone https :// github.com/matwoess/java -profiler.git
2 $ cd java -profiler
3 $ scripts/generate -parser.sh
4 $ gradlew <task >

Listing 5.1: Commands to clone and build the profiler on Linux or macOS. On Windows, the
generate-parser.sh command should be replaced by generate-parser.ps1.

5.2 Command-line usage

When executing the tool.Main class of our profiler, we have a few optional and required
arguments. Depending on the so-called “Run mode”, different configurations are possible.
The most important argument is the path to the file containing the main entry point of the
project. When specified, it allows the profiler to execute all steps including running the
program and generating the report autonomously.

2https://git-scm.com/
3https://gradle.org/

45

5 Usage

Using the command from Listing 5.2, we can use the java binary to execute the tool. For
this command and the program itself to execute successfully, the java and javac binaries
should be included in the system PATH variable. Installing a JDK on any platform should
handle this automatically.

1 $ java -jar profiler.jar ARGS

Listing 5.2: Command line to run the profiler tool JAR

It is recommended to place the tool JAR in a central directory and to include a custom script
to execute java -jar path/to/profiler.jar "$@" automatically, passing any additional
arguments on to the executable. If this script is included in the system path, it can be
executed from any directory using the “profile ARGS” short-form.

The complete help text when issuing profile ––help is shown in Listing 5.3.

1 Usage : p r o f i l e r [opt ions] <main f i l e > [program args]
2 Or : p r o f i l e r [opt ions] <run mode>
3 Options :
4 −h , −−help display t h i s message and qui t
5 −s , −−synchronized instrument using synchronized counters increments
6 −v , −−verbose output verbose i n f o about instrumentat ion of f i l e s
7 −d , −−sources − d i r e c t o r y <dir > d i r e c t o r y with a d d i t i o n a l java f i l e s to instrument
8 Run mode (e x c l u s i v e) :
9 −i , −−instrument −only < f i l e |dir > only instrument a s i n g l e f i l e or d i r e c t o r y and e x i t

10 −r , −−generate −repor t only generate the repor t from metadata and counts
11 Main f i l e :
12 The path to the main Java f i l e . I t w i l l be compiled and executed a f t e r ins trumentat ion .
13 (Must not be s p e c i f i e d f o r the generate −repor t run mode)
14 Program args :
15 Will be passed to the main method i f given

Listing 5.3: The ––help output of the command-line tool

The three run modes are: default, instrument-only and generate-report. In the default
mode, all 5 workflow steps will be executed sequentially. In the instrument-only mode, all
given Java files will only be analyzed and instrumented. This can be used for cases when
the compilation requires special handling. The report-only mode requires the existence
of the metadata.dat and counts.dat files inside an existing output directory. It will use
these to (re-)generate the HTML report.

These modes can be used in the following three scenarios:

1. Instrument a Java file, compile it, execute it and generate the report.

46

5 Usage

1 $ profile Main.java arg1 arg2

2. Instrument all Java files in a directory, compile the main file, execute it and generate
the report.

1 $ profile -d src/ src/at/jku/ssw/Main.java

3. Only instrument the sources, custom-compile them (with additional arguments or a
build tool) followed by executing the compiled classes manually and then using the
-r run mode to only generate the report.

1 $ profile -i src
2 $ javac -cp .p/instr -customArg .p/instr/Main.java
3 $ java -cp .p/instr Main
4 $ profile -r

Passing the ––synchronized option will cause all counters to be incremented atomically.
This can be useful for ensuring exact counts for multi-threaded programs if a few methods
or blocks are accessed very frequently by each thread simultaneously.

The ––verbose option will result in detailed console output of which class/method/block-
/region is entered and exited during the parsing step of Java files. This option should
mainly be used for debugging purposes.

5.3 Graphical interface usage

For programming beginners, for users that are less familiar with the command line, and
for general convenience, a JavaFX [21] application was created. It can be used to easily
configure the parameters and options, execute the tool in a native terminal and quickly
open the report in the browser.

The bin folder of the JavaFX application ZIP file contains two executable script files.
The profiler-fxui script for Linux and macOS and the profiler-fxui.bat script for
Windows systems. These are automatically generated by the distZip Gradle task of the
Distribution Plugin4 and start the JavaFX UI. It configures all the necessary environment

4https://docs.gradle.org/current/userguide/distribution_plugin.html

47

https://docs.gradle.org/current/userguide/distribution_plugin.html

5 Usage

variables such as the class-path and module-path and launches the fxui/fxui.Launcher

module. Double clicking this script should open the project selection dialog.

Project selection dialog

Before displaying the main application window to configure the tool arguments, we first
need to open a Java project. Figure 5.1 shows an example state of this dialog.

Figure 5.1: The project selection dialog of the JavaFX application

Golden “ (?) ” labels throughout the application can be hovered over for detailed informa-
tion about what the associated elements are for.

Clicking Select will show the system’s native dialog to choose a folder. Alternatively
the path can be entered manually. If the entered path is an existing folder, the border of
the text field will be green. When an invalid path is specified, the border will turn red,
indicating a misconfiguration. In case the text field is empty, it has no border. Only with a
valid path selected or entered the Open button is enabled.

The native file picker window will start with the currently entered valid path in the text
field for convenience. If the path string is empty or invalid, the default starting point for
folder selection is the user’s home directory (fetched by System.getProperty("user.home")).

Upon clicking the Open button, we are forwarded to the main application window. The
current valid path is saved to a text file lastProjectRootDirectory.txt in the application
directory (not the project directory). The next time we execute the application, the string
of this path is pre-filled to quickly reopen the same project without relying on the folder
picker dialog again.

48

5 Usage

If this dialog is closed, the application terminates immediately without displaying the
main view.

The main application window

After selecting the project directory in the previous step, the main window is displayed.
Figure 5.2 shows how this main view might look like, on the example of our project
code itself. 1⃝ is the file tree view, 2⃝ are the selected parameters, 5⃝ is a toolbar to save
and restore parameters or rebuild the tree. Area 3⃝ shows the selected native terminal
application and the recognized Java version. The three buttons 4⃝ can be used to open the
report, to preview the run command and to execute the tool.

1
2

3

5

4

Figure 5.2: The main windows of the JavaFX application

49

5 Usage

1 The file system tree on the left part of the dialog lists all Java files and all directories
that contain at least one Java file. The tree model is built recursively starting from the
project root directory. The root itself is excluded, only showing its contents. Folders that
do not contain any files ending with the .java extension are filtered out of the tree view.
Directories have a blue icon, Java files a green one.

The main purpose of the tree view is to select the main Java source file and the sources
directory. This can be done by selecting an item and pressing the Return key. Alternatively,
a context menu can be opened on each item in the tree by right-clicking it. The only
available menu entry will dynamically be either Select as sources root or Select as main file ,
depending on the type of the selected path.

If a folder was selected, it will be highlighted with a blue background color. The selected
Java main file will be shown with a green background. The hidden .profiler output
directory is highlighted in brown to separate it from the rest of the project folders.

2 On the right side of the window, there is the main view. It contains the currently
configured arguments and options for the tool when executing. The first property is the
run mode. By default, it is configured to execute all steps. The other two run modes
“Instrument only” and “Generate report only” can be selected by the drop-down. The
next two fields are the sources directory and the main file. They are read-only, as they
should be selected using the tree view. The X buttons next to them clear their value.
The “Program arguments” field is a string of space-separated values that will be passed
on to the executed program. Finally, the “Synchronized counters” checkbox will pass
the ––synchronized option to the profiler. The ––verbose option is not available via
the user interface. Depending on the “Run mode”, unavailable options will be hidden
dynamically.

3 The lower section of the main view contains two more fields. The “Terminal” drop-
down can be used to specify the terminal application to be launched when pressing the
Run tool button. The available options depend on the current operating system. The
second field is “Recognized Java version”. It is read-only and simply shows the first
output line of the java -version command. It is there to inform the user about which
version of the java and javac binaries will be used by the tool, in case there are multiple
versions installed on the system.

50

5 Usage

4 At the bottom-right of the window there are three buttons. The right-most Run tool

button is used to execute the command-line tool with all currently configured parameters.
It is disabled until the current run mode’s required parameters are set. The middle
Preview command button will open a popup dialog as shown in Figure 5.3. There, the
text field shows the exact command that will be executed in the configured terminal
application. This preview can be used to get familiar the command-line usage of the
profiler. The Copy to clipboard button can be used to quickly paste the full command into a
terminal or append it to a script file. Finally, the left-most button Open report in Figure 5.2
in will open the .profiler/report/index.html file in the system’s default application
for .html files (usually a browser). The button will only be visible if this file exists.

Figure 5.3: The popup dialog previewing the profiler execution command. It is read-only and has
two buttons for copying the command to the system clipboard and closing the dialog.

5 At the top of the main view is a toolbar with up to three buttons. Clicking the
Rebuild tree button will recalculate the project’s directory structure and refresh the tree
view. This is currently the only way that newly created or deleted files can be added or
removed from the tree. When pressing the Save current parameters button, all configured
field values will be serialized into a parameters.dat file in the .profiler output directory.
Only if this file exists, the Restore saved parameters item will be available and can be used
to read, restore and overwrite all configured values.

51

5 Usage

5.4 Report

After the profiler generated the HTML report, all files are located in the .profiler/report/
directory. The index.html is the main page of a report and presents an overview of all
top-level Java classes in a project. Opening it in a browser will show a table as depicted in
Figure 5.4.

Figure 5.4: Partial classes overview table of a report generated by profiling Coco/R.

Every row in the table represents one top-level Java class of the profiled project. Each row
has three columns.

• “Method invocations” - the aggregated count of hits, summed over all methods and
constructors in this class. The hit count of sub-blocks inside each method block have
no influence on this.

• “Class” - this column contains the class name, which is a hyperlink to the method
index of this class. The class name is not fully qualified to avoid visual overhead.

• “Source file” - the file name that the class was located in. It is also displayed as a
link to the annotated report source file. If multiple classes are defined in one source
file, this column does not necessarily have unique values (like the Buffer, Scanner
and StartStates classes all being located in the Scanner.java source file).

52

5 Usage

When navigating into one of the classes, we arrive at this class’s method index. An
example of such an index can be seen in Figure 5.5.

Figure 5.5: The method index of the Coco.CharSet class from a report, generated by profiling
Coco/R.

It lists all methods and constructors of a top-level Java class and its inner classes, sorted
by how often they were called in descending order. The table has two columns.

• “Invocations” - is the total amount of executions of each method.

• “Method” - the name of the method. If the class is an inner or anonymous class it
will be shown with the class file naming prefix [33]. In the example form Figure 5.5
CharSet has an inner class Range with a constructor method Range, which is therefore
listed as CharSet$Range::Range. Anonymous (inner) classes are numbered starting
from 1. A method foo inside the first anonymous class in CharSet would be listed
as CharSet$1::foo.

Clicking the link of a method name will forward us to the report detail-view of the source
file. Additionally, the browser will jump to the line number of the method’s definition.

53

5 Usage

For every Java source file of the project, containing at least one top-level class, an annotated
HTML version will be created. It can be opened directly from the file system or by clicking
its respective link in the classes or methods index.

Figure 5.6: Partial screenshot of the annotated DFA.java source file from a Coco/R report

Figure 5.6 shows the line numbers 49 through 79 containing the definition of class State,
its five member variables and its three methods. Left of the line numbers are hit counts for
regions, to the right is the source code with regions and blocks color-highlighted. One code
region is hovered upon in line number 68, showing a popup with its hit-count. The line
number column separates the region hit-counts and the source code. Line 56 is marked,
because we jumped directly to this line using a method index link. The file metadata and
the counter values are used to color important parts in the code for immediate insight.

Blocks that were hit at least once during execution are highlighted with a light-green
background color. Covered CodeRegions are then colored with a darker green. Not
covered blocks and regions are shown with a light-red and darker red background.

54

5 Usage

Hovering over any block or region in the source code will show the surrounding block
(and all its contents) in orange. If a region is selected, it will be displayed in a dark-orange
background and bold font. Additionally, the hit-count on the left side of the line numbers is
highlighted together with the corresponding region. This behavior can be better observed
in Figure 5.7, where we hover over the if-statement in line 67. This leads to the whole
method block being highlighted to show where the main counter of this statements comes
from.

Figure 5.7: Partial screenshot of the annotated DFA.java source file from a Coco/R report with
different highlighting.

Figure 5.7 shows the same content as in Figure 5.6, but contains different highlighting. The
if (a != null) statement is hovered over, which is a region located directly inside the
DetachAction method block. Both the method block and the code region are highlighted.
A popup shows that it was executed 19 times. Hovering over a hit-count in the leftmost
column will also highlight the associated source code region. The block will not be
highlighted in this case and no unnecessary popup will be shown.

When leaving highlighted areas, all colors and effects are reset to the previous ones.

55

6 Evaluation

We attempted to create a simple, efficient and exact profiler, supporting the instrumenta-
tion of modern Java language features. We were striving for a robust and minimal fuzzy
grammar that supports large and complex projects. In this section, we describe how we
evaluated whether we achieved this goal.

6.1 Unit tests

We started out by supporting only basic "class" definitions (no interfaces, enums or
records) and tried to find method blocks, ignoring all tokens between them. Everything
else was skipped by Coco/R’s ANY token. Inside methods only a few basic statement types
such as if/for/while/try were recognized.

Starting from such a minimal program we systematically attempted to correctly parse
bigger and bigger sample files. After correcting an error or adding support for a new
language construct, unittests were added or updated. This way, we made sure that after
extending the ATG, all previously tested forms were still recognized correctly.

Our test suite now contains more than 100 jUnit 5 test cases for the parsing and metadata
collection step alone. Each such test consists of the following elements.

• A string definition of a sample Java class using mixed or specific language constructs

• The declaration of expected metadata, parsed from this string

• Parsing of a temporary file with the above content and comparison of equality

The test suite contains a builder class using a DSL-like syntax to define the expected
metadata. One exemplary unit test case for local classes is shown in Listing 6.1.

56

6 Evaluation

1 @Test
2 public void testInterfaceInIfBlockAndAnonymousInstantiation () {
3 String fileContent = """
4 public class Main {
5 public static void main(String [] args) {
6 if ((2 + 6) % 2 == 0) {
7 interface IGreeter {
8 default void greet() {
9 System.out.println (\" Hello there .\");

10 }
11 void greetPerson(Object person);
12 }
13 IGreeter greeter = new IGreeter () {
14 @Override
15 public void greetPerson(Object person) {
16 System.out.println (\" Hello \" + person.toString () + \".\");
17 }
18 };
19 greeter.greetPerson(IGreeter.class);
20 }
21 if (true) return;
22 }
23 }
24 """;
25 JavaFile expected = jFile(
26 jClass("Main",
27 jClass(LOCAL , "IGreeter",
28 jMethod("greet", 5, 7, 147, 204),
29 jMethod("greetPerson")
30),
31 jClass(ANONYMOUS , null ,
32 jMethod("greetPerson", 12, 14, 361, 438)
33),
34 jMethod("main", 2, 19, 61, 522,
35 jBlock(BLOCK , 3, 17, 89, 496),
36 jSsBlock(BLOCK , 18, 18, 510, 518).withJump(RETURN)
37)
38)
39);
40 TestUtils.assertResultEquals(expected , parseJavaFile(fileContent));
41 }

Listing 6.1: Demo unit test for a small Java class containing both a local and an anonymous class

57

6 Evaluation

In this unit test example we define a jFile containing a jClass called "Main" with two
inner classes and a "main" method. The first inner class is a local interface "IGreeter"

that is defined only inside an if block. The second is an anonymous, nameless class
implementing this interface and overriding its abstract method. The interface defines a
method greet with a default implementation from line number 5 to line number 7, starting
at character position 147 and ending at character position 204. It also contains an abstract
greetPerson method having no method block. The Main.main method’s block spans from
line 2 to line 19 and contains two inner if blocks. The second one is a single statement,
declared by "jSsBlock" and ending with a return statement. We have to define this in
the expected model by using the ".withControlBreak(RETURN)" builder method.

In addition to the unit tests for parsing our repository includes a sample directory1 with
demo classes using all kinds of Java language features. Each sample file has its own test
cases that serve as a kind of run configuration.

Finally, combinations of run mode, options and arguments for the profiler command-line
tool are tested by the MainTest test class.

6.2 Larger test cases

In addition to our samples and code snippet test cases, we also verified our profiler against
several larger Java projects. To ensure robustness and completeness of our fuzzy grammar,
five projects were added gradually to our unit test suite.

Table 6.1 contains some statistics about how large or complex their respective code reposi-
tories are, based on numbers reported by the IntelliJ Statistic2 plugin and summary output
of our profiling tool. Coco/R was the first simpler project we tackled. Then zip4j was
added as a larger test case. Finally, dacapobench, JaCoCo and jUnit 5 were added to fully
test the stability of our profiler’s parsing and instrumentation capabilities.

More projects will likely be added in the future, but successfully instrumenting the jUnit 5
codebase gave us confidence in the robustness of our tool.

1https://github.com/matwoess/java-profiler/tree/main/sample
2https://plugins.jetbrains.com/plugin/4509-statistic

58

https://github.com/matwoess/java-profiler/tree/main/sample
https://plugins.jetbrains.com/plugin/4509-statistic

6 Evaluation

Reported by Statistic plugin Found by profiler
Project Java files Total lines LoC Classes Methods Blocks
Coco/R 7 4 722 3 891 31 246 1 358
zip4j 98 12 015 8 157 119 917 1 779
dacapobench 109 15 716 10 134 134 779 2 210
JaCoCo 646 67 411 39 727 882 3 993 5 730
jUnit 5 1 394 165 997 97 152 2 741 11 142 15 600

Table 6.1: This table shows statistics about the initial five larger test case projects. The left-side
columns contain the number of .java files, their total lines and their lines of code
(reported by the IntelliJ Statistic plugin). The right-side columns list the number of
classes, method and blocks found by our profiler.

Coco/R 3 was the first milestone of our project. To successfully instrument, compile, run
and generate a report for it was the first step towards a working grammar. The source
code exhibits heavy usage of single-statement blocks, which was the first special case we
had to consider. It often has multiple code blocks in one source code line, which was a
challenge for report building and visualization. Additionally, the project was a fitting
choice for a first larger test case due to the non-existence of any lambda expressions or
other Java 8+ features.

zip4j 4 was the next larger repository we had chosen. It contains twice the amount of
lines of code compared to Coco/R while still targeting Java 1.7. It is a library without a
main entry point, so, we had to add a Main class. Its main method simply calls the zipping
function for a folder into a temporary ZIP file. This project also helped us to solidify the
pathing of our tool due to its deep maven directory structure.

dacapobench 5 is a popular benchmark suite. It uses the ant build tool to compile
and is thus non-trivial to support with our instrumentation and compilation process. For
validating the robustness of our parser and instrumenter, we included it as an instrument-
only project. The minimum version for building the suite is Java 11.

3https://github.com/SSW-CocoR/CocoR-Java
4https://github.com/srikanth-lingala/zip4j
5https://github.com/dacapobench/dacapobench

59

https://github.com/SSW-CocoR/CocoR-Java
https://github.com/srikanth-lingala/zip4j
https://github.com/dacapobench/dacapobench

6 Evaluation

JaCoCo 6 is a Java Code Coverage library and is another instrument-only test project.
Its repository contains significantly more Java files, classes, methods and blocks than
any previous test project. It features modern code, is actively maintained, is built with
Java 17 syntax and supports code coverage for all modern language features. Successful
instrumentation meant that our parser can handle features like switch expressions, records,
annotations and lambda expressions.

jUnit 5 7 is our biggest, most advanced instrumentation test case. At the time of writing
our profiler found and successfully instrumented a total of 15,600 blocks in 2,741 Java
classes inside this repository. This popular test suite is also actively maintained, built
only by the latest Java 21 LTS release and should report an error first, if new features are
unsupported.

6.3 Runtime impact

To get an idea of the run-time overhead caused by our counter logic in an instrumented
program, we applied our profiler on several benchmarks of the DaCapo benchmark
suite [34, 35] of Version 23.11-chopin (git revision fd292e92). We compared the execution
time of seven hand-picked benchmarks with the following configurations:

• “orig” - The original unmodified benchmark project without instrumentation

• “instr” - A version with counter increment statements added to every code block

• “synclock” - The benchmark with synchronized counters (using the first attempt
with synchronized methods and locking the __Counter class on each increment)

• “sync” - The same synchronized counters, but using the newer version of __Counter
leveraging the AtomicLongArray

By default, when attempting to compile a benchmark, DaCapo deletes all pre-existing
(instrumented) source files and build folders and newly extracts the source code from an
automatically downloaded archive or version control.

6https://github.com/jacoco/jacoco
7https://github.com/junit-team/junit5/

60

https://github.com/jacoco/jacoco
https://github.com/junit-team/junit5/

6 Evaluation

Warmup Benchmarking
Benchmark Variant 1 2 3 4...27 28 29 30 31 32 33 34 35

avrora

orig 5 084 4 750 4 931 ... 6 397 5 334 5 462 5 406 5 402 5 357 5 356 5 340
instr 7 940 8 346 9 102 ... 8 639 8 618 8 640 8 561 8 597 8 652 8 629 8 661
sync 12 915 13 687 14 847 ... 14 975 14 982 15 151 15 167 15 136 15 132 15 205 15 152
synclock 94 068 92 935 92 659 ... 96 226 95 538 95 226 96 034 95 523 96 024 97 763 95 624

fop

orig 3 411 1 414 1 304 ... 747 741 700 670 720 769 759 666
instr 3 841 1 754 1 678 ... 914 993 937 934 993 896 988 886
sync 5 450 3 029 2 878 ... 1 800 1 745 1 730 1 751 1 709 1 767 1 843 1 748
synclock 5 783 3 409 3 196 ... 2 526 3 609 2 735 2 170 2 291 2 166 2 195 2 116

graphchi

orig 8 446 7 886 8 026 ... 8 406 8 331 8 347 8 473 8 612 8 495 8 421 8 298
instr 12 777 11 421 11 501 ... 12 090 11 657 11 631 11 693 11 685 11 661 11 663 11 690
sync 44 879 45 191 45 339 ... 44 017 44 155 44 167 44 040 44 762 49 689 42 842 42 613
synclock 171 544 168 820 169 933 ... 164 234 165 190 165 397 164 489 166 175 166 632 165 512 165 423

h2

orig 16 895 11 631 10 277 ... 10 205 10 316 10 325 10 227 10 244 10 413 10 429 10 382
instr 13 736 11 686 10 167 ... 10 521 10 711 10 485 10 358 10 521 10 318 10 413 10 429
sync 13 574 11 212 11 274 ... 10 275 10 394 10 302 10 222 10 409 10 385 11 564 11 005
synclock 14 287 11 828 11 711 ... 10 422 10 319 10 391 10 494 10 426 10 574 10 451 10 678

pmd

orig 8 882 5 662 5 374 ... 3 485 3 491 3 494 3 928 3 518 3 496 3 502 3 501
instr 11 078 9 547 8 836 ... 7 388 7 439 7 479 7 418 7 414 7 527 7 474 7 394
sync 10 965 9 173 9 186 ... 7 593 7 609 7 583 7 608 7 577 7 666 8 170 7 912
synclock 11 307 10 684 9 533 ... 8 047 8 091 8 067 8 109 8 084 8 101 8 023 8 058

sunflow

orig 16 214 19 959 19 489 ... 19 455 18 862 18 972 18 614 19 781 20 209 18 200 19 472
instr 137 198 141 507 141 026 ... 139 389 142 614 133 795 137 091 139 763 140 613 141 095 141 018
sync 195 899 200 552 200 198 ... 204 136 203 941 200 405 206 141 203 225 202 720 208 567 208 113
synclock 1 986 732 2 264 628 2 268 873 ... 2 289 126 2 247 669 2 229 021 2 232 473 2 248 488 2 249 519 2 250 110 2 246 401

xalan

orig 5 408 3 374 3 114 ... 3 318 3 291 3 425 3 172 3 368 3 327 3 352 3 409
instr 9 107 7 742 8 502 ... 8 345 8 348 9 011 8 443 8 457 8 421 8 349 8 403
sync 13 514 12 483 12 584 ... 13 032 12 987 12 954 13 191 13 013 13 033 12 964 13 033
synclock 159 638 167 489 165 771 ... 171 297 172 138 170 682 170 935 171 086 169 206 167 826 166 837

Table 6.2: Run time in milliseconds for 35 runs of 7 programs from the DaCapo benchmark suite
in different configurations. Values for the warmup runs 4 through 27 are excluded.

To instrument the programs, we had to modify the build configurations of DaCapo and
the projects themselves (to include our __Counter class).

Each configuration was executed 35 times in a test environment. We used a Lenovo
ThinkPad X1 Yoga 3rd Gen laptop (as opposed to a dedicated server) running a 64-bit
Linux 6.7.4-arch1-1 operating system, on AC, using the “Performance” power mode and
OpenJDK (build 17.0.10+7). The laptop features an Intel® Core™ i7-8550U CPU with
4 cores and 8 hyper-threads. We used the default workloads for each benchmark. Any
multi-threaded benchmark was executed using 4 threads to drive the workload. The
reported run time of benchmark execution times (in milliseconds) for each configuration
can be found in Table 6.2. Additional information about the chosen set of benchmarks are
listed in Table 6.3.

We immediately observe that the “synclock” variant entails a significant run-time overhead,
especially for highly concurrent programs. This has led us to the implementation of the
alternative “sync” variant. In the case of sunflow (a CPU ray-tracing program) the run
time has increased from an average of 19.2 seconds to 37 minutes. This is a slowdown of
117 times. For the following visualization we excluded the “synclock” variant entirely.

61

6 Evaluation

According to Kalibera et al. [36] (Table 3), all the benchmarks we chose should reach a
stable state after about two to six warmup runs. For visualization of the run-time overhead,
we ignore the first thirty runs and averaged the run time of the final five.

avrora fop graphchi h2 pmd sunflow xalan
Benchmark

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

1100%

Re
la

tiv
e

ru
n

tim
e

(%
)

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%16

0%

13
1%

13
8%

10
1%

20
7%

72
7%

25
3%28

2%

24
6%

52
9%

10
4%

21
7%

10
69

%

39
2%

variant
orig
instr
sync

Figure 6.1: Relative run-time overhead of our profiler applied to DaCapo benchmarks, using
synchronized and unsychronized counter variants

In Figure 6.1 we visualize the run-time overhead of instrumented programs and those
using synchronized counters (with the AtomicLongArray). Most benchmarks show only
a relatively small slowdown to less than 200% run time. When using the synchronized
variant, we observe a more significant overhead for getting exact counts of every block.

62

6 Evaluation

Benchmark Multi-threaded Description
avrora internally simulates programs on a microcontroller grid
fop no generates PDFs out of XSL-FO files
graphchi yes a disk-based graph computation engine
h2 yes benchmarks an in-memory banking database
pmd internally analyzes Java classes for source code problems
sunflow yes renders a set of images using ray tracing
xalan yes transforms XML documents into HTML

Table 6.3: Description and multi-threading level of each benchmark in the chosen set. “Internally”
means, that the benchmark is driven by a single external thread, but is multi-threaded
internally [37].

We can explain the non-existent overhead for h2 by having instrumented only the program
itself and not its derby database driver library. The sunflow benchmark is the opposite
extreme. While basic instrumentation induces an overhead of more than 700% run time,
the synchronized counters result in 10-fold execution time. This is still way better than the
“synclock” variant, but must be considered when making use of our profiler for heavily
parallel programs.

We conclude, that our profiler can effectively be used on almost all real-world applications
to gather exact coverage data and find hot-spots in a program with a reasonably small
overhead. Especially for multi-threaded programs, however, we do not recommend to
use the profiling configuration for production environments.

6.4 Limitations

Our approach and architecture led to a few temporary and a few general limitations. They
should be considered when making use of this open-source profiler.

General limitations

• Only the project itself is instrumented (no library classes without source code).

63

6 Evaluation

While online bytecode profilers often instrument classes of the JDK or external
libraries on its first usage, our profiler focuses only on the source code and classes of
the project itself.

• Run-time exceptions inside and outside of try blocks cannot be considered for the
resulting coverage data.

If a statement fails without explicitly throwing an Exception inside the project’s code
itself, the hit-count of left-out statements is not subtracted and the whole current
block or region is shown as equally covered.

Temporary limitations

• The current “method invocations” metric does not reflect how many statements
were executed inside the method.

For example, when a method was only executed once but contains loops with high
repetitions, it will be sorted at the bottom of the report table and will contribute little
to the class’ aggregated count. Further metrics are needed.

• Custom build tools (like ant, maven and gradle) are not supported yet.

The profiler only creates instrumented copies of .java files and can automatically
compile the instrumented main class. To compile complex projects, copying and
usage of additional build tool files must be done manually.

• Imperfect grammar.

While we can successfully parse and instrument large projects, we do not claim to
find every possible code block. The fuzzy approach leads to some special structures
being currently skipped.

• No full Java 21 feature support yet. Switch case pattern matching can currently
cause parser errors.

64

7 Conclusion and Outlook

The profiler we created leverages a small and simple grammar and a compiler generator
to efficiently parse, instrument and profile Java projects of any size. It is easy to use, runs
on all desktop platforms and creates basic but intuitive summary reports.

The growing feature set of the Java language created many challenges for correct in-
strumentation. Our choice of designing the ATG in a fuzzy and minimal way resulted
in reduced complexity and better maintainability, while still being robust against large
projects. Many special cases had to be considered to achieve correct and full instrumenta-
tion of every block type.

Our tool is free, requires no installation step and can be used without a steep learning
curve. Due to its open-source nature and permissive license we hope for quick adoption
and collaboration efforts. Feedback on our GitHub page is encouraged and appreciated.

Future work and ideas

While our Java profiler now has all the features of our initial design, we plan to develop it
further and extend its capabilities. Some of the ideas we had are listed below.

• Creating even more test cases including parsing and instrumentation tests for large
projects. The Qualitas corpus [38] provides a curated collection of Java software
systems1, of which several more candidates could be included in our unit test suite
to ensure wide compatibility of our parser.

• Improving the report. We only have a simple metric of method invocations deter-
mining the sort order for report index tables. Additional statistics could be added to
diversify the exploration possibilities. The sort order should be customizable.

1http://qualitascorpus.com/docs/catalogue/20130901/index.html

65

http://qualitascorpus.com/docs/catalogue/20130901/index.html

7 Conclusion and Outlook

• Track time in counters. The only thing we profile is the hit-count of blocks. This gives
us no information of how long statements and methods actually were executing. By
inserting an additional statement at the end of blocks, we could calculate the time
difference between entering and exiting blocks. Averaging the results should give
insight into their mean execution time. Alternatively, we could only log the current
system time when incrementing a counter and do more complex calculations during
report generation.

• Java (keyword) syntax highlighting in report source files. Currently the displayed
code is just the monospace text. Adding highlighting might lead to better readability.

• Merge counter results of multiple runs into one report. Currently, every time we
run the instrumented and compiled program the counter data are overwriting the
previous results. If we collect multiple counts<suffix>.dat files in a subfolder, we
could sum up all counter values and generate a report from the merged results. This
could be especially beneficial for running a unit test suite on the profiled project. Of
course, this only work if the program wasn’t modified in between runs (should be
validated by a checksum).

• Support for Java 21 features. Specifically switch case pattern matching should be
reflected in the grammar.

• Diverse improvements for the JavaFX tool-runner UI. For instance, a better auto-
refreshing file tree and more theming options such as a light or dark theme depend-
ing on current system settings.

• Integrations of our profiler for IDEs and build tools to automate the profiling process
and improve user experience. For example, a special “Profile” button in an IDE or a
profiling-task from a plugin for build tools (like Gradle) could be implemented.

• Creating a public repository on Maven Central2 to allow for declarative integration
and automated fetching of our profiler as a dependency.

2https://mvnrepository.com/repos/central

66

https://mvnrepository.com/repos/central

Bibliography

[1] Qurrat Ul Ain et al. “Analysis of hotspot methods in JVM for best-effort run-time
parallelization”. In: Proceedings of the 9th International Conference on E-Education,
E-Business, E-Management and E-Learning. 2018, pp. 60–65 (cit. on p. 1).

[2] The JIT compiler - IBM Documentation. Mar. 29, 2023. URL: https://www.ibm.com/
docs/en/sdk-java-technology/8?topic=reference-jit-compiler (visited on
12/27/2023) (cit. on p. 1).

[3] Dávid Tengeri et al. “Negative effects of bytecode instrumentation on Java source
code coverage”. In: 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). Vol. 1. IEEE. 2016, pp. 225–235 (cit. on pp. 1, 2,
3).

[4] Todd Mytkowicz et al. “Evaluating the accuracy of Java profilers”. In: ACM Sigplan
Notices 45.6 (2010), pp. 187–197 (cit. on p. 2).

[5] John Whaley. “A portable sampling-based profiler for Java virtual machines”. In:
Proceedings of the ACM 2000 conference on Java Grande. 2000, pp. 78–87 (cit. on p. 2).

[6] Hanspeter Mössenböck, Albrecht Wöss, and Markus Löberbauer. Der Compilergener-
ator Coco/R. na, 2003 (cit. on pp. 2, 10, 22).

[7] Chapter 4. The class File Format. Dec. 27, 2023. URL: https://docs.oracle.com/en/
java/javase/17/docs/specs/man/java.html (visited on 12/27/2023) (cit. on p. 3).

[8] Walter Binder, Jarle Hulaas, and Philippe Moret. “Advanced Java bytecode instru-
mentation”. In: Proceedings of the 5th international symposium on Principles and practice
of programming in Java. 2007, pp. 135–144 (cit. on pp. 3, 4).

[9] Prof-It for C#. Sept. 9, 2010. URL: http://dotnet.jku.at/projects/Prof-It/
Default.aspx (visited on 01/17/2024) (cit. on p. 5).

[10] JEP 328: Flight Recorder. Sept. 9, 2018. URL: https://openjdk.org/jeps/328 (visited
on 01/18/2024) (cit. on p. 5).

67

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html
http://dotnet.jku.at/projects/Prof-It/Default.aspx
http://dotnet.jku.at/projects/Prof-It/Default.aspx
https://openjdk.org/jeps/328

Bibliography

[11] About Java Flight Recorder. Jan. 18, 2024. URL: https://docs.oracle.com/javacomponents/
jmc-5-4/jfr-runtime-guide/about.htm (visited on 01/18/2024) (cit. on p. 5).

[12] JDK Mission Control. Jan. 18, 2024. URL: https://www.oracle.com/java/technologies/
jdk-mission-control.html (visited on 01/18/2024) (cit. on p. 6).

[13] VisualVM: Home. Feb. 8, 2024. URL: https://visualvm.github.io/ (visited on
02/08/2024) (cit. on p. 7).

[14] Cobertura. Jan. 19, 2024. URL: https://cobertura.github.io/cobertura/ (visited
on 01/19/2024) (cit. on p. 7).

[15] EclEmma - JaCoCo Java Code Coverage Library. Oct. 16, 2023. URL: https://www.
eclemma.org/jacoco/ (visited on 01/19/2024) (cit. on p. 7).

[16] Thomas Mccabe. “Cyclomatic complexity and the year 2000”. In: IEEE Software 13.3
(1996), pp. 115–117 (cit. on p. 7).

[17] Profiling Tools and IntelliJ IDEA Ultimate | The IntelliJ IDEA Blog. Mar. 6, 2020. URL:
https://blog.jetbrains.com/idea/2020/03/profiling-tools-and-intellij-

idea-ultimate/ (visited on 01/19/2024) (cit. on p. 8).

[18] The Java® Language Specification - Java SE 17 Edition. Aug. 9, 2021. URL: https:
//docs.oracle.com/javase/specs/jls/se17/html/index.html (visited on
12/27/2023) (cit. on pp. 9, 22).

[19] Java Class File Naming Conventions | Baeldung. Jan. 5, 2024. URL: https://www.
baeldung.com/java-class-file-naming (visited on 01/08/2024) (cit. on p. 10).

[20] Niklaus Wirth. “What can we do about the unnecessary diversity of notation for
syntactic definitions?” In: Communications of the ACM 20.11 (1977), pp. 822–823 (cit.
on p. 10).

[21] JavaFX. Jan. 6, 2024. URL: https://openjfx.io/index.html (visited on 01/06/2024)
(cit. on pp. 12, 47).

[22] The javac Command - Directory Hierarchies. Dec. 23, 2023. URL: https://docs.oracle.
com/en/java/javase/17/docs/specs/man/javac.html#directory-hierarchies

(visited on 12/23/2023) (cit. on p. 17).

[23] The java Command. Dec. 23, 2023. URL: https://docs.oracle.com/en/java/javase/
17/docs/specs/man/java.html (visited on 12/23/2023) (cit. on p. 17).

68

https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm
https://www.oracle.com/java/technologies/jdk-mission-control.html
https://www.oracle.com/java/technologies/jdk-mission-control.html
https://visualvm.github.io/
https://cobertura.github.io/cobertura/
https://www.eclemma.org/jacoco/
https://www.eclemma.org/jacoco/
https://blog.jetbrains.com/idea/2020/03/profiling-tools-and-intellij-idea-ultimate/
https://blog.jetbrains.com/idea/2020/03/profiling-tools-and-intellij-idea-ultimate/
https://docs.oracle.com/javase/specs/jls/se17/html/index.html
https://docs.oracle.com/javase/specs/jls/se17/html/index.html
https://www.baeldung.com/java-class-file-naming
https://www.baeldung.com/java-class-file-naming
https://openjfx.io/index.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/javac.html#directory-hierarchies
https://docs.oracle.com/en/java/javase/17/docs/specs/man/javac.html#directory-hierarchies
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html

Bibliography

[24] Runtime (Java SE 17 & JDK 17) - addShutdownHook(java.lang.Thread). Dec. 27, 2023.
URL: https://docs.oracle.com/en/java/javase/17/docs/api/java.base/
java / lang / Runtime . html # addShutdownHook(java . lang . Thread) (visited on
12/27/2023) (cit. on p. 20).

[25] HTML Global title Attribute. Jan. 25, 2024. URL: https://www.w3schools.com/tags/
att_global_title.asp (visited on 01/25/2024) (cit. on p. 29).

[26] Constructor Specification in Java | Baeldung - Rules of Constructor Invocation. Jan. 8, 2024.
URL: https://www.baeldung.com/java-constructor-specification#rules-of-
constructor-invocation (visited on 01/26/2024) (cit. on p. 33).

[27] Local Classes (The Java™ Tutorials > Learning the Java Language > Classes and Objects).
Jan. 26, 2024. URL: https://docs.oracle.com/javase/tutorial/java/javaOO/
localclasses.html (visited on 01/26/2024) (cit. on p. 34).

[28] Anonymous Classes (The Java™ Tutorials > Learning the Java Language > Classes and
Objects). Jan. 26, 2024. URL: https://docs.oracle.com/javase/tutorial/java/
javaOO/anonymousclasses.html (visited on 01/26/2024) (cit. on p. 34).

[29] JEP 361: Switch Expressions. Mar. 11, 2022. URL: https://openjdk.org/jeps/361
(visited on 01/26/2024) (cit. on p. 34).

[30] Lambda Expressions (The Java™ Tutorials > Learning the Java Language > Classes and
Objects). Jan. 27, 2024. URL: https://docs.oracle.com/javase/tutorial/java/
javaOO/lambdaexpressions.html (visited on 01/27/2024) (cit. on p. 36).

[31] JEP 378: Text Blocks. July 30, 2020. URL: https://openjdk.org/jeps/378 (visited on
01/28/2024) (cit. on p. 38).

[32] matwoess/java-profiler: A command-line profiler for Java programs that generates HTML
reports. Features an optional JavaFX tool-runner GUI. Jan. 5, 2024. URL: https://github.
com/matwoess/java-profiler (visited on 01/05/2024) (cit. on p. 44).

[33] Java Documentation - Get Started. Jan. 19, 2024. URL: https://docs.oracle.com/en/
java/ (visited on 01/19/2024) (cit. on p. 53).

[34] S. M. Blackburn et al. “The DaCapo Benchmarks: Java Benchmarking Development
and Analysis”. In: OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN confer-
ence on Object-Oriented Programing, Systems, Languages, and Applications. Portland,
OR, USA: ACM Press, Oct. 2006, pp. 169–190. DOI: http://doi.acm.org/10.1145/
1167473.1167488 (cit. on p. 60).

69

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Runtime.html#addShutdownHook(java.lang.Thread)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Runtime.html#addShutdownHook(java.lang.Thread)
https://www.w3schools.com/tags/att_global_title.asp
https://www.w3schools.com/tags/att_global_title.asp
https://www.baeldung.com/java-constructor-specification#rules-of-constructor-invocation
https://www.baeldung.com/java-constructor-specification#rules-of-constructor-invocation
https://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html
https://openjdk.org/jeps/361
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://openjdk.org/jeps/378
https://github.com/matwoess/java-profiler
https://github.com/matwoess/java-profiler
https://docs.oracle.com/en/java/
https://docs.oracle.com/en/java/
https://doi.org/http://doi.acm.org/10.1145/1167473.1167488
https://doi.org/http://doi.acm.org/10.1145/1167473.1167488

Bibliography

[35] S. M. Blackburn et al. The DaCapo Benchmarks: Java Benchmarking Development and
Analysis (Extended Version). Tech. rep. TR-CS-06-01. http://www.dacapobench.org.
2006 (cit. on p. 60).

[36] Tomas Kalibera and Richard Jones. “Rigorous benchmarking in reasonable time”. In:
Proceedings of the 2013 international symposium on memory management. 2013, pp. 63–74
(cit. on p. 62).

[37] DaCapo Benchmarks Home Page. Jan. 11, 2024. URL: https://dacapobench.sourceforge.
net/ (visited on 01/11/2024) (cit. on p. 63).

[38] Ewan Tempero et al. “Qualitas Corpus: A Curated Collection of Java Code for
Empirical Studies”. In: 2010 Asia Pacific Software Engineering Conference (APSEC2010).
Dec. 2010, pp. 336–345. DOI: http://dx.doi.org/10.1109/APSEC.2010.46 (cit. on
p. 65).

70

https://dacapobench.sourceforge.net/
https://dacapobench.sourceforge.net/
https://doi.org/http://dx.doi.org/10.1109/APSEC.2010.46

Appendix

1 string =
2 quote (
3 quote quote lf // """\n -> multi -line "text block" string
4 { noQuote
5 | quote noQuote
6 | quote quote noQuote
7 | [quote] [quote] bslash quote
8 }
9 quote quote quote

10 | { // common string literal
11 (noQuoteNoBSlash
12 | bslash (
13 escapableChar
14 | ’u’ {’u’} hexDigit hexDigit hexDigit hexDigit
15 | (octalDigit [octalDigit] | zeroToThree octalDigit

octalDigit)
16)
17)
18 }
19 quote
20).

Listing 1: Coco/R EBNF scanner specification to correctly parse all types of strings, including
multi-line text blocks.

71

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe.

Linz, Februar 2024
Ort, Datum

Mathias Wöß, BSc

72

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Outline

	2 Background
	2.1 Sources
	2.2 Attributed grammars and Coco/R
	2.3 Other used software

	3 Architecture
	3.1 General idea
	3.2 Blocks and regions
	3.3 Counter class
	3.4 Java fuzzy parsing
	3.5 Directory structure

	4 Implementation
	4.1 Steps
	4.2 Classes
	4.3 Special handling of language features
	4.4 Control flow breaks

	5 Usage
	5.1 Installation
	5.2 Command-line usage
	5.3 Graphical interface usage
	5.4 Report

	6 Evaluation
	6.1 Unit tests
	6.2 Larger test cases
	6.3 Runtime impact
	6.4 Limitations

	7 Conclusion and Outlook

