
 

 

 
 
 

Debugging of High-Level Concurrent Applications 
on top of Truffle 

 
Master thesis for … 

Matr.Nr.: … 
Email: …@... 

 

With the omnipresence of multicore processors, applications have started to use concurrency 
abstractions in widely different, but also more and more complex ways [4]. Often applications 
combine multiple abstractions to solve problems and reach the required performance goals. 
Unfortunately, todays debugging tools rarely know more about concurrency than the basic 
notion of threads and locks. More high-level abstractions such as Actors [1,2], Futures [2], 
Software Transactional Memory (STM) [3], and others are typically not understood, which 
means that developers debug on the lowest system level instead being presented with the 
abstractions they use to build their applications. 

In this thesis, we want to explore better debugging support for these high-level abstractions. 
One of the main problems that needs to be overcome is overhead of instrumentation to avoid 
that it interferes and distorts the concurrent execution of an application. Often debugging 
concurrent systems is hard, because as soon as the debugger is attached, race conditions 
disappear. In the context of this thesis, the goal is to find the minimal necessary 
instrumentation to reliably debug for instance an application that uses actor-like message 
passing, asynchronous futures, or STM. 

To be able to focus on the research question, the thesis will use a language implemented in 
Truffle [5,6], a framework for implementing languages efficiently based on simple 
interpreters. 
 

The scope of this thesis is as follows: 

• Build a simple debugger, e.g., for an actor system using the Truffle instrumentation 
framework 

• Minimize the instrumentation overhead to avoid interference with program execution 

 

Optional goals are: 

• Find strategy for minimal instrumentation overhead that still provides sufficient 
information to identify the cause of bugs 

The work's progress should be discussed with the supervisor at least every 2 weeks. Please 
note the guidelines of the Institute for System Software when preparing the written thesis. 

Supervisor: Dr. Stefan Marr 

Institut für Systemsoftware 
O.Univ.Prof. Dr. Hanspeter Mössenböck 



[1] Agha, G. ACTORS: A Model of Concurrent Computation in Distributed Systems. 
Cambridge, MA, USA: MIT Press, 1986. 

[2] Van Cutsem, T., Gonzalez Boix, E., Scholliers, C., Lombide Carreton, A., Harnie, D., 
Pinte, K. and De Meuter, W. "AmbientTalk: programming responsive mobile peer-to-peer 
applications with actors." Computer Languages, Systems & Structures 40, no. 3–4 (2014): 
112-136. 

[3] Shavit, N. and Touitou, D. "Software Transactional Memory." In Proc. of PODC '95: the 
fourteenth annual ACM symposium on Principles of distributed computing, USA, 1995. 

[4] Tasharofi, S., Dinges, P. and Johnson, R. "Why Do Scala Developers Mix the Actor Model 
with other Concurrency Models?." In Proc. of ECOOP 2013, 302-326. Springer, 2013. 

[5] http://ssw.uni-linz.ac.at/Research/Projects/JVM/Truffle.html 

[6] Würthinger, T., Wöß, A., Stadler, L., Duboscq, G., Simon D. and Wimmer, C. "Self-
Optimizing AST Interpreters." In Proc. of the 8th Dynamic Languages Symposium, 2012. 


