

JOHANNES KEPLER
UNIVERSITÄT LINZ
Altenberger Straße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Master's Thesis

Throughput Barrier Exploration for the Garbage-First Collector

Student: Jevgēnijs Protopopovs

Supervisors: DI Thomas Schatzl (Oracle Labs)
 Prof. Hanspeter Mössenböck

Begin: 1. Oktober 2022

The Hotspot virtual machine (VM) is a core component of the Open-
JDK project. It provides automatic dynamic memory management for
its hosted applications using different garbage collection algorithms
[1].

The current default collector, G1 [2], is a generational, incremental,
mostly concurrent, stop-the-world evacuating garbage collector which
tries to keep user-defined pause-time goals within its stop-the-world
pauses.

The current implementation implements fairly complicated zone post-
write-barriers [3] in order to move maintenance work for remembered
sets for incremental collection out of the pause. This mechanism is
called refinement in G1. This reduces pause times, but comes at a
significant cost of up to 10% in throughput compared to other through-
put oriented collectors like Hotspot's Parallel GC [4].

In many cases, the user-defined pause time goal is set very lenient or
not at all (i.e. using the default of 200ms) that can be easily met by
G1 already. This means that a significant amount of potential through-
put while keeping the user goal is lost.

The goal of this thesis is to explore behavior and optimization oppor-
tunities of a more throughput-oriented alternate mode of G1 by re-
moving the concurrent refinement, keeping all other attributes (con-
current marking, incremental collection) to (re-)gain throughput while
staying within pause time goals.

The scope of this thesis is as follows:

• Implement a prototype that changes the current post-write barrier
to a variant of the Parallel GC card-table based post-write barrier
within the G1 framework.
The young collection garbage collection algorithm needs to be
adapted to this change as the current code exploits the availability
of concurrent refinement.

o.Univ.-Prof. Dr.
Hanspeter Mössenböck
Institute for System Software

T +43 732 2468 4340
F +43 732 2468 4345
hanspeter.moessenboeck@jku.at

Secretary:
Karin Gusenbauer
Ext 4342
karin.gusenbauer@jku.at

• Evaluate throughput and latencies compared to existing G1 and
Parallel GC of variants of this hybrid with at least two different
throughput-oriented post write barriers on several workloads
(DaCapo [5], SPECjbb [6], Renaissance [7]).

• Implement and evaluate a prototype that can switch between
these barriers at stop-the-world pauses (by simply throwing away
existing code) to demonstrate that both options can coexist. Ex-
periment with potential switch-over strategies.

Since this work is done in close cooperation with Oracle and the
OpenJDK project, with potential contributions to the OpenJDK project
resulting from this work, this requires the student to understand and
sign an Oracle Contributors Agreement [8] at the start of the thesis
work.

The progress of the project should be discussed at least every two
weeks with the supervisor. A time schedule and a milestone plan must
be set up within the first 3 weeks. It should be continuously refined
and monitored to make sure that the thesis will be completed in time.

The final version of the thesis should be submitted not later than
30.09.2023.

References:
[1] https://docs.oracle.com/en/java/javase/18/gctuning/available-collectors.html#GUID-

F215A508-9E58-40B4-90A5-74E29BF3BD3C
[2] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004. Garbage-first

garbage collection. In Proceedings of the 4th international symposium on Memory
management (ISMM '04). ACM, New York, NY, USA, 37-48.
DOI=http://dx.doi.org/10.1145/1029873.1029879

[3] Xi Yang, Stephen M. Blackburn, Daniel Frampton, and Antony L. Hosking. 2012. Barriers
reconsidered, friendlier still! SIGPLAN Not. 47, 11 (November 2012), 37–48.
https://doi.org/10.1145/2426642.2259004

[4] https://docs.oracle.com/en/java/javase/18/gctuning/parallel-collector1.html#GUID-
DCDD6E46-0406-41D1-AB49-FB96A50EB9CE

[5] Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., McKinley, K. S., Bentzur, R., Di-
wan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M., Lee,
H., Moss, J. E. B., Phansalkar, A., Stefanovic, D., VanDrunen, T., von Dincklage, D., and
Wiedermann, B. The DaCapo Benchmarks: Java Benchmarking Development and Analy-
sis, OOPSLA ‘06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
Oriented Programing, Systems, Languages, and Applications, (Portland, OR, USA, Octo-
ber 22-26, 2006)

[6] https://www.spec.org/jbb2015/
[7] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma,

Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas
Würthinger, and Walter Binder. 2019. Renaissance: benchmarking suite for parallel appli-
cations on the JVM. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2019). Association for Computing Ma-
chinery, New York, NY, USA, 31–47. https://doi.org/10.1145/3314221.3314637

[8] https://oca.opensource.oracle.com/

https://docs.oracle.com/en/java/javase/18/gctuning/available-collectors.html#GUID-F215A508-9E58-40B4-90A5-74E29BF3BD3C
https://docs.oracle.com/en/java/javase/18/gctuning/available-collectors.html#GUID-F215A508-9E58-40B4-90A5-74E29BF3BD3C
https://docs.oracle.com/en/java/javase/18/gctuning/parallel-collector1.html#GUID-DCDD6E46-0406-41D1-AB49-FB96A50EB9CE
https://docs.oracle.com/en/java/javase/18/gctuning/parallel-collector1.html#GUID-DCDD6E46-0406-41D1-AB49-FB96A50EB9CE
https://www.spec.org/jbb2015/

