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Abstract
The divergence between Ahead-of-Time (AOT) and Just-in-
Time (JIT) compilation techniques presents a unique predica-
ment when trying to achieve optimal performance in soft-
ware applications. AOT compilation offers efficiency by pre-
compiling and optimizing code, while JIT compilation en-
hances peak performance through dynamic optimization
and speculation. However, the improved peak performance
achieved by JIT compilation is offset by the poor warm-up
performance due to the overhead caused by analyses and
optimizations at run time. Previously, we proposed blending
these two compilation techniques, aiming to maintain high
peak performance while enhancing warm-up performance.
Since the programmer had to manually select functions for
AOT compilation, it required familiarity with the code base
and with compilers in general.

This paper presents a strategy for blending these two com-
pilation techniques automatically.We provide an overview of
language implementation features which have to be consid-
ered when implementing such an automated approach. We
also propose a call-graph based analysis when determining
whether certain code should be replaced by its AOT-compiled
equivalent.
We implemented our approach within GraalVM, a multi-

language virtual machine based on the Java HotSpot VM. The
results from different benchmarks show our approach leads
to a speedup of 1.48× on average for data setup and up to
2.6× for warm-up and 3.5× for peak performance. Moreover,
our automated approach is able to find optimizations which
have easily been missed by manual annotations.
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1 Introduction
There are two common approaches for compiling and execut-
ing programs. The first approach is to compile source code
into machine code prior to execution, known as Ahead-of-
Time (AOT) compilation. The native code is then run directly
on the machine. Historically, AOT compilation has been the
prevalent method across numerous programming languages.
Extensive research and development efforts have been di-
rected towards AOT compilation, leading to compilers that
generate highly efficient code. This has significantly con-
tributed to the popularity of languages such as C and C++,
which are among the most widely used programming lan-
guages today [6, 22]. As a popular example for an efficient
C/C++ compiler, clang can be mentioned, which uses the
LLVM bitcode format as a low-level, intermediate represen-
tation [1].
The second approach is Just-in-Time (JIT) compilation,

where execution starts with a lesser optimized, slower ver-
sion of the code. At run time, the JIT compiler translates the
most frequently executed functions into efficient machine
code. This process enhances peak performance once the opti-
mized machine code becomes available. A notable benefit of
JIT compilation is that it can switch back to the interpreter or
recompile code as needed, making it particularly favored for
dynamic languages where static analysis is challenging [8].

This work is licensed under a Creative Commons Attribution-
NoDerivatives 4.0 International License.
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However, JIT compilation relies on run-time information
and thus has the drawback of inferior warm-up performance
compared to statically compiled code. Several dynamic lan-
guages, such as Ruby or Python, make use of native libraries
or native extensions written in C [5, 10]. In such a sce-
nario, executing those C functions via AOT-compiled code
enhances warm-up performance compared to relying on in-
terpretation and JIT compilation. However, combining these
two distinct worlds introduces certain frictions in their lan-
guage and run-time models. As an example, certain data
accesses can prevent code to get pre-compiled.
In our previous work, we provided a proof of concept

for combining AOT and JIT compilation, which can achieve
both fast warm-up and high peak performance [16]. That
approach, however, required the programmer to manually
select functions for AOT compilation. Our goal in this paper
is to automate the process of selecting functions for AOT
compilation, which eliminates the need for programmers to
annotate their programs. This has not only the advantage
that programmers need less knowledge about their code base,
but also allows for more sophisticated selection heuristics.
We implemented our approach of an automated hybrid exe-
cution model in GraalVM, a polyglot ecosystem that comes
with a highly optimizing JIT compiler. Based on a heuris-
tic, code can either be compiled to machine code ahead of
time and executed directly, or it can be interpreted and JIT-
compiled by the GraalVM compiler.

Our main contributions are:

• We investigate what needs to be taken into account
when building an ecosystem that blends different exe-
cution modes (Section 3).

• We propose a heuristic for making decisions on hybrid
execution (Section 4) and evaluate it (Section 5).

• We discuss current limitations of our approach (Sec-
tion 6).

We finally conclude our work in Section 7.

2 Background
In this section, we discuss ahead-of-time and just-in-time
compilation within the GraalVM ecosystem, as well as their
respective properties.

2.1 LLVM
LLVM is a cross-platform compilation framework. Its low-
level intermediate representation, LLVM IR, is used by vari-
ous compiler front-ends and back-ends and uses static typing
and single static assignment (SSA) form [12]. Usually, LLVM
IR is compiled ahead of time (AOT). One popular example
is the clang front-end, which outputs LLVM IR from which
efficient machine code can be generated [1]. LLVM IR also
comes with a compact bitcode format, LLVM bitcode.

2.2 Just-in-Time (JIT) Compilation
Just-in-Time (JIT) compilation usually comes in a two-tier
architecture, where lesser optimized code is executed when
the application is started. Meanwhile, JIT compilation op-
timizes and compiles frequently executed code, known as
hot code, into efficient machine code. Execution can switch
to the higher-optimized code once it is has been produced
by the JIT compiler. This process involves the JIT compiler
focusing its optimization efforts on the most frequently ex-
ecuted sections of code, while, for example, an interpreter
collects performance data throughout execution to enhance
code efficiency. Leveraging runtime profiling information
allows the JIT compiler to do more advanced optimizations
than those possible in AOT compilation. However, this ap-
proach initially slows down execution speed due to the need
for JIT compilation and its various analyses [8].
Dynamically-typed languages such as Python and Java-

Script often make use of a managed runtime with a JIT com-
piler. This presents some unique challenges to their per-
formance [19]. Since these languages lack static type infor-
mation, variables can hold values of different types, com-
plicating the JIT compiler’s ability to perform static type
analysis and apply traditional compiler optimizations. This
makes type checks and method dispatches necessary at run
time, affecting optimization opportunities and introducing
additional run-time overhead. As a consequence, dynamic
languages such as Python or Ruby often make use of native
extensions [10].

In general, various approaches aim to balance fast warm-
up with high peak performance. Many JIT compilers, such as
Google’s V8 engine [18] and the GraalVM JIT compiler [2],
implement varying levels of optimization, applying fewer
optimizations initially and increasing them as functions be-
come more frequently executed. Another strategy involves
reusing profiling data from prior executions to enhance per-
formance [14].

2.3 GraalVM
GraalVM is a high-performance and polyglot virtual machine
designed for applications written in Java, JavaScript, Ruby,
Python, C, and many other languages [2, 24]. Its ecosystem
is shown in Figure 1. The Java HotSpot VM serves as a ba-
sis, which can also use the aggressively and dynamically
optimizing GraalVM JIT compiler.

2.3.1 Truffle Language Implementation Framework.
To be able to implement runtimes for different languages,
there is the Truffle language implementation framework on
top of the Java Hotspot VM and the JIT compiler [23], which
also enables direct interoperability between Java and other
supported languages. With Truffle, self-optimizing language
interpreters can be built, which are based on abstract syn-
tax trees (ASTs) or bytecode. The framework is built in a
way such that the GraalVM JIT compiler can produce highly
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Figure 1. GraalVM and its polyglot execution engine

optimized machine code from Truffle’s intermediate repre-
sentations.

An example of a Truffle-based runtime is GraalPython [3],
which serves as a runtime for Python source code. Due to
the GraalVM JIT compiler, GraalPython outperforms the
reference implementation CPython [3].
Since different language interpreters are based on Truf-

fle, it is possible to perform cross-language calls within this
framework. As all interpreters are based on the same frame-
work, cross-language execution does not inflict any language
barrier overhead in GraalVM after the JIT compiler has emit-
ted machine code. Also, optimizations of the JIT compiler
can easily be performed across different languages [23, 24].

2.3.2 Sulong. Sulong [15, 17] is another example of a run-
time based on Truffle. It is the runtime for executing LLVM
bitcode, as shown in Figure 1. As C/C++ code can be com-
piled to LLVM bitcode using the clang compiler [1], Sulong
can be seen as the managed runtime for C/C++ source code
on GraalVM.

To convenientlyworkwith Sulong, it has its own toolchain,
which is based on clang. It first compiles C/C++ code to
LLVM bitcode, which is then further compiled to machine
code. The Sulong toolchain, however, also adds the LLVM
bitcode as a special section to the generated machine code
file. This section can later be used by GraalVM to execute
this code in managed mode.

2.3.3 Truffle Native Function Interface. The Native
Function Interface (NFI) within Truffle facilitates the direct
invocation of AOT-compiled functions within a Truffle run-
time, as shown in Figure 2. This interface acts as a conduit
between the managed execution environment provided by

Java HotSpot VM +GraalVM JIT

Truffle

Binary 

Machine

Code

Sulong…
Truffle Native

Function Interface

one file

LLVM 

bitcode compiled tocompiled to

loads loads

…

Figure 2. Two ways to execute C code on GraalVM

GraalVM and native execution capabilities. Its primary us-
age is to execute code from native libraries, system APIs, or
performance-critical segments written in languages outside
the Truffle framework [7]. The NFI thus allows the invoca-
tion of native C/C++ functions.

2.4 C Code on GraalVM
The two common ways to execute C code on GraalVM are
shown in Figure 2 and will be explained now.

• Managed Execution via Sulong: This is the default
execution mode for C/C++ source code on GraalVM.
As described above, the Sulong toolchain is used to
compile C/C++ code to a file containing both LLVM
bitcode and machine code. If Sulong receives such a
file with an LLVM bitcode section, it creates a Truffle
AST from the LLVM bitcode, which is then forwarded
to the GraalVM JIT compiler, as shown in Figure 2.

• Native Execution via the Truffle NFI: If Sulong receives
a file without an LLVM bitcode section, it uses the Truf-
fle NFI to execute the compiled machine code directly,
as shown in Figure 2. In contrast to managed execution,
cross-language calls are not possible in native mode, as
no Truffle data structure is built to represent the pro-
gram. Also, there is no optimization by the GraalVM
JIT compiler involved [7].

2.4.1 Native and Managed Global Data. When combin-
ing managed and native execution, it is important to consider
how and where global data objects are stored and accessed.
We described different options how such accesses can happen
in GraalVM [16]:

Functions in managed mode can access data stored in both,
managed and native heap. Also, functions in native mode
can directly access data in native heap.
The interesting situation happens when a native func-

tion wants to access managed data: Granting direct access
to the managed data would violate language semantics, as
described in detail in [16], and is therefore not possible. The
way how such an access continues depends on the managed
data itself:
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• If the managed data can be easily transformed to a na-
tive representation, for example, when it is a C struct,
then the managed data is transformed to native mem-
ory. By that, functions both in managed and native
mode can access the transformed data without any
problems. To avoid unnecessary work, this conversion
to native memory is done lazily at the first access of a
native function [16].

• If the managed data cannot be transformed to native
memory, for example, when it originates from a foreign
language such as JavaScript, then access cannot be
granted, and execution cannot continue [16]. Thus, if
managed data cannot be converted to native memory,
we have tomake sure to execute all accessing functions
in managed mode as well. Note that since the attempt
to convert managed data to native memory happens
only when this data is accessed, pointers to managed
data can also be passed to native functions, as long as
the data itself is not accessed.

To summarize, if certain managed data is accessed by a
function, then this function must be executed in managed
mode. Therefore, it is not possible to execute every C function
in native mode.

2.4.2 Manual Hybrid Execution. C code can be run on
GraalVM in managed mode via Sulong or in native mode via
the Truffle NFI. The managed execution under Sulong comes
with a rich toolset and many opportunities for optimization
at run time, but has the drawback of long warm-up times. In
contrast, native execution does not offer access to interoper-
ability or dynamic optimization, but enables a fast start-up
by not requiring JIT compilation.

Sulong

Truffle
Virtual Machine +

JIT compiler

LLVM IR

binary

NFI
Native

Function

Interface

CPU

AST

compile time

run time

Managed Execution

decision
perfunction

Native Execution

Figure 3. Hybrid execution mode as proposed in [16]

Therefore, we proposed to combine those two execution
modes: Instead of letting the JIT compiler analyze the whole
program, which is shown on the left-hand side in Figure 3,
existing native code is used to speed up the warm-up process
of GraalVM [16]. This is done by Truffle’s Native Function
Interface (NFI), which calls native code that has already been

compiled ahead of time (shown on the right-hand side in
Figure 3).
To mix native and managed execution, we suggested to

modify the (managed) runtime: By default, a function call
in managed execution results in the callee being executed
in managed mode, while in native execution, the callee is
executed in native mode. The approach of our previous work
is to modify the managed runtime such that a caller in man-
aged mode can also call the callee’s native code, as indicated
by the red line in Figure 4 [16].

Truffle AST Native Code

caller

callee function callee:

…

… call callee

…

function caller:

…

call callee

Figure 4. By default, execution mode of caller and callee
are identical. However, managed call instructions can be
redirected to native execution of the callee [16].

However, it is not possible in our previous approach to
call a managed function from native code [16]. Therefore,
all calls from a function in native mode result in the callee
being executed in native mode as well. This introduces a
major limitation, since functions which access managed data
must be executed in managed mode. Even worse, all direct
and indirect callers of functions that access managed data
cannot be executed in native mode as well.
The decision of which code to execute in which mode,

is taken per function and has to be specified manually in
our previous approach [16]. This manual decision is another
major limitation, as the programmer is required to know the
code base and its internal dependencies.
Thus, the goal of our work is to extend the possibilities

of hybrid execution and improve this decision process per
function, which will be covered in the next sections.

3 Hybrid Execution
In this section, we explore the principles of our hybrid ex-
ecution mode and resulting circumstances with regard to
implementation.
In general, our hybrid execution mode offers for each

function both managed execution via Sulong, and native
execution via the Truffle NFI. A simple example with three
functions is shown in Figure 5a and 5b.
Each function exists in two modes and can thus be exe-

cuted in managed mode (e.g. 𝑎𝑀 ) or in native mode (e.g. 𝑎𝑁 ).
When b is set to run in native mode, managed callers of b (in
our case: 𝑎𝑀 ) call the native version of b (𝑏𝑁 ) instead of the
managed version 𝑏𝑀 . Native callers of b (𝑎𝑁 ) do not need a
modification, as they call the native version of b by default.
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void a ( ) { b ( ) ; }

void b ( ) { c ( ) ; }

void c ( ) { . . . }

𝑎

𝑏

𝑐

𝑎𝑀

𝑏𝑀

𝑐𝑀

𝑎𝑁

𝑏𝑁

𝑐𝑁

(a) C code (b) Chain call (c) Hybrid execution
where b is run in native
and c in managed mode.

Figure 5. Hybrid Execution and its basic concept

Similarly, managed execution of c needs a change in the
native callers of c. The native caller 𝑏𝑁 has to forward the
call to the managed runtime, such that 𝑐𝑀 is called instead
of 𝑐𝑁 . The final result can be seen in Figure 5c, where solid
lines show actual calls, and dotted lines show possible, but
replaced calls.

3.1 Execution Mode Dependencies
As explained in Section 2.4.1, not every function can be exe-
cuted in native mode. The major reason why a C function
must be executed in managed mode is that it accesses man-
aged data which cannot be converted to native memory. For
example, assume that function c of Figure 5 accesses man-
aged data, as shown in Figure 6. This access requires c to be
executed in managed mode, i.e., native execution of c is not
possible.

In our previous approach, it is not possible to call managed
functions from native callers [16]. In other words, native
callers can only call native callees. In the scenario of Fig-
ure 6a, this leads to a major restriction: Managed execution
of c requires all of its direct and indirect callers (a and b here)
to be also executed in managed mode. Thus, our previous
hybrid execution model is rather limited.

In contrast to our previous approach, we now allow man-
aged functions to be also called from native callers, which
opens more opportunities for hybrid execution. In the ex-
ample of Figure 6b, a and b can also be executed in native
mode, even if c is restricted to managed execution.

3.2 Calling Managed Functions from Native Code
When native code is linked and loaded dynamically, as it
happens with the Truffle NFI, function calls cannot be re-
solved at compilation time. Instead, the compiler replaces
every function call by a look-up into a so-called procedure
linkage table (PLT) [11]. This table is created and filled with
placeholder values when native code is loaded. The first time
a function is called, its address is resolved and stored into
the PLT. For example, caller in Figure 7 calls callee, and a
jump instruction to the resolved address of callee (shown
by the dotted gray line) is written into the table. Subsequent

𝑎𝑀

𝑏𝑀

𝑐𝑀

𝑎𝑁

𝑏𝑁

𝑐𝑁

data𝑀

(a) Execution model in [16]: Man-
aged execution of c implies man-
aged execution of a and b. Thus,
no hybrid execution in this case.

𝑎𝑀

𝑏𝑀

𝑐𝑀

𝑎𝑁

𝑏𝑁

𝑐𝑁

data𝑀

(b) Our execution model: Al-
though function c is managed,
a and b can be executed in ei-
ther mode (native / managed).

Figure 6. Hybrid execution models for function a calling b,
b calling c, and c accessing managed data. Dotted lines and
gray nodes indicate that the call/method cannot be used.

Truffle AST Native Code

caller

callee function callee :
…

call callee

…

function caller:

…

call callee@plt

PLT 

Procedure Linkage Table

Function Address

… …

caller …

callee

… …

Figure 7. A change in the procedure linkage table (PLT) can
make native callers call managed callees.

calls to callee then only need a jump instruction to the
table entry, which then invokes the corresponding callee.

This indirection can be used to trigger managed execution
from native execution: Instead of resolving the address of
the callee in native mode, we modified the Sulong runtime
such that execution automatically resolves the address of
the same function in managed mode. Sulong then stores a
jump to this address into the PLT, such that subsequent calls
also invoke the callee in managed mode. This injection of
the address of the function in managed mode is indicated by
the red arrow in Figure 7.

In contrast to changes within GraalVM, this modification
of native code is platform-dependent. Therefore, we imple-
mented this patching of the PLT only for code on x86-64
machines as a proof of concept. Other architectures require
a similar procedure.

By being able to call managed functions from native code,
we eliminate one of the major limitations of our previous
hybrid execution approach [16], as shown in Figure 6a.

3.3 Symbol Resolution
Another aspect to consider is how symbol resolution happens
in native code: The order in which native libraries are loaded
and initialized might differ from the managed loading order,
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especially if some libraries are not used for native execution
at all. In our previous approach, the programmer manually
decided in which mode functions are executed and whether
global variables are stored in native ormanagedmemory [16].
Thus, the programmer can also implicitly control the loading
order of libraries and can detect or prevent errors resulting
from library dependencies.
For an automated decision, this is not possible any more.

Thus, symbol resolution has to be aware of the fact that
symbols might be about to be resolved when their target
library has not been loaded yet.
To overcome this problem, we modified the loading of

libraries such that native symbols are resolved lazily. In other
words, native symbols are only resolved at their first use,
instead of when their library is loaded.

3.4 Foreign Caller calls Native Callee
In our context, managed functions are C functions executed
on Sulong. However, theremight be othermanaged functions
(e.g., Python functions) that are not executed on Sulong.
We call such functions foreign functions. As mentioned in
Section 2.3.1, it can happen that a C function c is called
by such a foreign function bforeign and that our automated
heuristics recommend to run c in native mode, as shown in
Figure 8a.

𝑎

𝑐𝑁

𝑏Foreign𝑀

(a) Foreign caller is about
to call a callee in native
mode.

𝑎

𝑐𝑁

𝑏Foreign𝑀

𝑐𝑀

(b) Function c is duplicated when
set to be executed natively and
called from a foreign function.

Figure 8. Functions may get duplicated — Call structure (Fig.
8a) and a possible execution scenario (Fig. 8b)

However, it is not possible to simply call a native C func-
tion directly from a foreign language, as the Sulong runtime
performs extra work such as adding context parameters. In
such a situation, we create a duplicate version of c on de-
mand: If invoked by a managed caller a via Sulong, c runs in
native mode as recommended. If invoked by a foreign caller
𝑏Foreign (not via Sulong), the managed version of c is called,
as depicted in Figure 8b.

Unlike the situation where managed data is accessed from
native execution, detecting when a native function is called
from a foreign function can be done at run time. This means
that there is no need to detect such calls ahead of time. In-
stead, the callee’s code can be dynamically replaced at run
time if an error occurs during the method call.

4 Setting up Heuristics for Hybrid
Execution

The previous section described the principles and circum-
stances of interaction between managed and native execu-
tion. In this section, we describe an automated approach for
determining whether certain functions or variables should
be run, or stored, in managed or native mode.

4.1 Tracking Function Calls
When a C function is called, there is the choice whether it
should be executed in native or in managed mode. To obtain
data for this decision, we added a simple instrumentation
to the Sulong runtime and perform a run of the program
under Sulong in pure managed mode. By that, every call to
a function and every access to a variable is tracked.
With that data, we can build a call graph of parts of the

executed application. Every node represents a function or a
variable, while a directed edge represents a function call or
an access to a variable. A simple example has already been
shown in Figure 5, where the code in Figure 5a has been
transformed to the call graph in Figure 5b.
In constrast to a call tree, where one function is repre-

sented as multiple nodes if it is called from more than one
call site, we decided to build a call graph. Thus, every func-
tion only has one corresponding node in the graph.

The following subsections show how such a call graph can
be used to design heuristics for hybrid execution in order to
improve the performance of a program.

4.2 Execution Time Estimation for Single Functions
Since our heuristics determines the execution mode for each
function, one important aspect is the execution time of a
function in managed mode and in native mode. The most
accurate way to get the execution time is to measure it. How-
ever, we do not really measure the execution time of each
function in managed and native mode, but rather estimate it
based on static code size and control flow information.

4.2.1 Execution Time Estimation Without Control
Flow. In general, the execution time of a function depends
on the number and time of executed instructions. Ignoring
control flow (loops and branches) initially, there is linear
dependency between the code size of a function and its exe-
cution time. To validate this, we performed measurements
with functions of different sizes that do not contain loops or
branches.
The measurements consist of micro-benchmarks, where

functionswith different sizes of LLVMbitcode are called from
Sulong. This also means that the measurements for native
execution of the called function include the call overhead
for the call from Sulong to native execution. Although this
overhead will be considered in more detail in Section 4.3, we
decided to include it in these measurements as well: Setting
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Figure 9. Execution time of a function called from Sulong
without branches and loops, based on its code size of LLVM
bitcode

a function to native mode will still have the effect of causing
boundary costs.

The results are shown in Figure 9, which suggests a break-
even point at a code size of ≈ 30 kB. Therefore, we suggest
native execution for functions with an LLVM bitcode size
larger than 30 kB.

4.2.2 Control FlowConsiderations. Asmentioned above,
control flow can heavily influence the execution time of a
function: While branches (e.g. if instructions) skip parts
of the code during execution, loops lead to multiple execu-
tion of the same code. Therefore, the proposed heuristics of
taking 30 kB of code size as a threshold is too inaccurate.

Branches affect the ratio of executed code by less than 50 %
on average, which is an amount we ignore for our heuristics.
However, loops that are executed multiple times can change
the amount of executed instructions by more than one order
of magnitude. Therefore, we have to include information
about loops into our heuristics.
As our code base is LLVM bitcode, which is structured

as a linearized control flow graph with basic blocks, it is
not trivial to detect loops and the maximum loop nesting
level out of the box. Therefore, we look at back edges in
the control flow graph of the LLVM bitcode, and assume
every back edge to indicate a loop. Back edges can be found
easily, as every basic block in LLVM is annotated with an
ascending block index. For example, Figure 10a shows source
code containing loops. The corresponding control flow graph
is shown in Figure 10b, where back edges are shown in bold.
When parsing the bitcode, we traverse the control flow

graph and check every jump between basic blocks. If the
block index of the target block is smaller than the index of
the current block, we have found a back edge. Each block
with an incoming or outgoing back edge is stored in a sorted
list (cf. left column of Figure 10c), which is then traversed

while ( . . . ) { / / 1
while ( . . . ) {

. . . / / 2
}
while ( . . . ) {

. . . / / 3
i f ( . . . ) {

. . .
}
. . . / / 7

}
} / / 8

1

2

3

...

7

8

basic back (nested)
block edge loops

0
1 in +1 → 1
2 in +1 → 2
2 out −1 → 1
3 in +1 → 2
7 out −1 → 1
8 out −1 → 0

max: 2

(a) Sample code
containing loops

(b) Control
flow graph

(c) Sorted list of back edge
blocks and loop nesting levels

Figure 10. Calculating the maximum level of nested loops

from top to bottom. Every incoming back edge means that
a loop is entered, so we increment the loop nesting level.
Conversely, every outgoing back edge decrements the loop
nesting level, as shown in the right column of Figure 10c.
The maximum number during traversing this list is therefore
the maximum loop nesting level of the corresponding code.

For a precise calculation of the execution time, one would
need the code size inside the loop as well as the number
of loop iterations during execution, which is not decidable
by static code analysis. Since we only deal with heuristics,
we simplify our approach and assume that each loop level
causes the function to run 10 times as long as without loops.
Although we are aware that this factor 10 varies for different
programs and even varies for different loop levels within
one program, assuming 10 as a multiplication factor for each
level turned out to be a reasonable choice.

Therefore, our heuristics which sets large methods to na-
tive execution changes from from 𝑠 (𝑓 ) > 30 kB to 𝑠 (𝑓 ) ·
10loopDim > 30 kB, where loopDim denotes the maximum
loop nesting level. For example, if the function in Figure 10
had an LLVM bitcode size of 400 B, the size would be esti-
mated to be 400 B · 102 = 40 kB. While the size of 𝑓 itself
(400 B) would be too small to trigger native execution, the
loops in 𝑓 make it large enough to suggest native execution.

4.2.3 Effect on Warm-Up Performance. Although look-
ing on code size rather than investigating how single func-
tions affect warm-up performance, we assume larger func-
tions to cause a higher compilation effort. By setting large
functions to native execution, we reduce the effort for JIT
compilation and thus expect a better warm-up performance.

4.3 Function Call Overhead of a Single Function
Although the execution time of a function, as described in
Section 4.2, is important, the costs of the function call over-
head also have to be taken into account. Especially when a

7
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Call Overhead of Function Calls in Different Execution Modes

Figure 11. Function call overhead in different execution
mode scenarios

managed function calls a native function and vice versa, con-
text information of the managed runtime has to be added or
removed, respectively. Thus, we also ran micro benchmarks
which measure the function call overhead within and across
execution modes. The results, depending on the execution
mode of the caller and the callee, are shown in Figure 11.
When both the caller and the callee are executed in the

same execution mode, a function call typically involves not
more than a couple of machine instructions. Thus, the time
for calling and returning from a method can be neglected in
this case.
However, a downcall, which is calling a native function

from a managed caller, significantly increases the call and
return overhead by two orders of magnitude compared to
purely managed execution. An even higher overhead is im-
posed by an upcall, which is when a native function calls
a managed callee. Therefore, it is necessary to take a look
at function call overheads when assigning execution modes
to functions. Otherwise, the worst case could be a scenario
where execution switches between native andmanagedmode
back and forth, causing high overhead costs.

As a first step, we take a look at the call overhead for every
function f that has no hard constraints of being executed
in native or managed mode. Call overheads happen due to
callers and callees of f, where both (callers and callees) can
be executed in native or in managed mode. Combining these
possibilities leads to four different cases: We can distinguish
between managed and native functions on the one hand,
and callers and callees of f on the other hand, as shown in
Figure 12. The edge weights (𝑖𝑛𝑚 , 𝑜𝑢𝑡𝑚 , 𝑖𝑛𝑛 , 𝑜𝑢𝑡𝑛) denote the
absolute frequencies of the calls.

If f is executed in native mode, we get the following costs,
where 𝑑 and 𝑢 denote the costs of a downcall and upcall,
respectively: Managed callers of f perform a downcall, thus
the costs are 𝑖𝑛𝑚 · 𝑑 . Managed callees of f cause an upcall,
thus the costs are 𝑜𝑢𝑡𝑚 · 𝑢. Native callers and native callees

callers𝑀

f

callees𝑀

callers𝑁 callees𝑁

managed
native

𝑖𝑛𝑚 𝑜𝑢𝑡𝑚

𝑖𝑛𝑛
𝑜𝑢𝑡𝑛

Figure 12. Function f can be executed in managed mode as
well as in native mode. Since overhead costs for upcalls and
downcalls of f also influence execution time, they are taken
into account.

hardly cause call overheads (cf. Figure 11) and are neglected.
For callers and callees that have no execution mode assigned
yet, we assume that half of the calls will be native and half
will be managed. Therefore, the amounts of managed calls
are increased by half of the amount of the undetermined
calls (named as 𝑖𝑛𝑢 and 𝑜𝑢𝑡𝑢 ). Thus, the call overhead costs
when f is native can be computed as in Equation 1.

𝑡call (𝑓 , 𝑛) =
(
𝑖𝑛𝑚 + 𝑖𝑛𝑢

2

)
· 𝑑 +

(
𝑜𝑢𝑡𝑚 + 𝑜𝑢𝑡𝑢

2

)
· 𝑢 (1)

If f is executed in managed mode, we get the following
costs: Native callers of f perform an upcall (𝑖𝑛𝑛 ·𝑢), whereas
native callees of f cause a downcall (𝑜𝑢𝑡𝑛 ·𝑑). Managed callers
and callees can be neglected for our heuristics. Half of the
undetermined calls are added to the native calls this time.
Thus, the call overhead costs when f is managed can be
computed as in Equation 2.

𝑡call (𝑓 ,𝑚) =
(
𝑖𝑛𝑛 + 𝑖𝑛𝑢

2

)
· 𝑢 +

(
𝑜𝑢𝑡𝑛 + 𝑜𝑢𝑡𝑢

2

)
· 𝑑 (2)

4.4 Heuristic
From the above observations, we infer the following heuris-
tics for a hybrid execution mode: First, we mark all functions
that access managed data for managed execution. Then, we
mark all functions that are large enough for native execu-
tion. Finally, we set the execution mode of the remaining
functions such that the call overhead is as low as possible.

In detail, the heuristics look as follows: Given 𝐹 as the set
of all C functions and 𝐹𝑀 and 𝐹𝑁 as the set of all C func-
tions in managed and native mode respectively, heuristics
for an automated hybrid mode can be seen as a partitioning
function 𝐹 → {𝐹𝑀 , 𝐹𝑁 }. The heuristics work as follows:

1. Mark all C functions with managed parameter types
or managed return types for managed execution.

2. For each remaining C function 𝑓 , check if 𝑓 is large
enough for native execution (cf. Section 4.2). I.e., if
𝑠 (𝑓 ) ·10loopDim(𝑓 ) > 30 kB, mark 𝑓 for native execution.

3. Add all neighbors (callers and callees) of functions
marked as managed (step 1) or native (step 2) to a
queue 𝑄 . While 𝑄 is not empty:

8
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a. Remove a function from 𝑄 and calculate 𝑡call (𝑓 , 𝑛)
and 𝑡call (𝑓 ,𝑚) as in Equations 1 and 2.

b. If 𝑡call (𝑓 ,𝑚) > 𝑡call (𝑓 , 𝑛), i.e., if the call overhead is
higher for managed execution, then set 𝑓 to native
execution. Else, mark 𝑓 for managed execution.

c. Add all neighbors (i.e., callers and callees) of 𝑓 with-
out an assigned mode to 𝑄 .

5 Evaluation and Results
In our hybrid execution mode, all accesses to managed vari-
ables that cannot be converted to nativememory are required
to happen in managed mode. Therefore, we aim for a sce-
nario where the primary application is written in a high-level
language such as Python but uses native extensions written
in C, such as an XML or JSON parser. While managed objects
are indeed accessed by C/C++ functions, which thus have to
be executed in managed mode, there are also C/C++ library
functions which can run in native mode.
Although Python comes with a standard performance

benchmark suite [4], we did not select these benchmarks, as
our hybrid execution mode operates on C source code and
requires native extensions.
Both of the following benchmark suites were executed

on an x86-64 machine with a 6-core 12th Gen Intel Core
i7-1255U, using Ubuntu 22.04 and GraalVM 24. Concern-
ing language versions, we used Java 23, Python 3.10 and
LLVM 16.

5.1 LXML: Results Depend on Code
As a benchmark suite, which was also used in our previous
work [16], we decided to use the LXML Python package
for parsing XML data to objects [13]. This python package
also comes with a benchmark harness. It first parses and
allocates XML data structures in memory during its setup
process. Then over several iterations, the parsed XML tree
is modified in roughly 20 different tasks. While the main
program of the benchmark is written in Python, the tasks
themselves are written as native extensions, which is what
we are interested in.

To evaluate our automated hybrid execution mode, we are
interested in the following questions: How does our hybrid
execution perform with respect to:

1. The particular allocation of objects and variables, i.e.,
whether they are allocated in native or in managed
memory? For this question, we measured the total data
setup time.

2. The warm-up performance of the different benchmark
tasks?

3. The peak performance of the different benchmark
tasks?

For all three questions, we used fully managed execution
on Sulong as the baseline and compared it to the execution
times of our automated hybrid execution mode, as well as
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Figure 13. Results of LXML Objectify Benchmark

a mode where all functions are native that do not access
managed data. We grouped the tasks into annotating tasks
(which perform modifications on the XML tree) and tasks
that try to find certain paths within the tree.
Before we take a look at the results, let us take a look at

the outcome of the heuristic: Concerning global variables, all
C variables are stored in native memory, while 22 % (804 out
of 3637) of all C functions are selected for native execution.
The results of the three measurement questions from

above are shown in Figure 13, where the speedup of our
hybrid execution mode is shown in blue. The results where
all possible candidates for native execution are executed in
native mode are shown in red. Given that the end of the
warm-up phase of VMs is not always easy to determine [9],
we see that similar benchmarks using the GraalPython run-
time need about five to ten iterations to warm up, which
corresponds to our measurements.
One can see that storing C variables in native memory

leads to a speedup of 48% for the setup time of the given
benchmark on average. Thus, for question 1, we see an ad-
vantage of hybrid execution mode compared to managed
execution. Concerning warm-up and peak performance of
the LXML benchmark, the answers to questions 2 and 3
highly depend on the kind of task: On the one hand, tasks
that perform annotations on the XML tree achieve an aver-
age speedup of 2.6× for warm-up and even 3.5× for peak
performance in hybrid mode. Compared to the baseline (all
functions executed in managed mode on Sulong), executing
some functions in native mode clearly pays off. Running
as many functions in native mode as possible implies even
less optimization work for the JIT compiler, which leads to a
slightly higher speedup for warm-up, but then results in a
slower peak performance.

For the tasks that aim to find certain paths within the XML
tree, the situation is different: While the warm-up perfor-
mance in hybrid mode does not show a significant difference
to managed execution, there is a small drop in peak perfor-
mance with a slowdown of 0.85×, and an even worse drop
for running as many functions natively as possible. In this
case, native execution of certain functions did not speed up

9
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Figure 14. Results of the UJSON Benchmark

the execution process. A possible reason is that the GraalVM
JIT compiler is able to optimize the managed functions better
than if they were executed in native mode, e.g. since man-
aged execution enables the GraalVM JIT compiler to inline
managed data accesses.
The results indicate that the performance of hybrid exe-

cution highly depends on the executed code, as well as on
the data dependencies. This goes with the findings in our
previous work, where the execution mode for functions and
variables was manually chosen by the programmer [16]. The
results of the same benchmark in our previous work also
strongly differ based on the exact subtask of the benchmark.
However, the speedup there was only 1.7× for warm-up per-
formance, and close to none for peak performance [16]. On
the one hand, this comes from the fact that in our previous
work native functions cannot call managed functions, as we
do now (see Section 3.1 and Figure 6). On the other hand,
it also shows that an automated heuristic can find improve-
ments for hybrid execution, while manual selection as in our
previous work comes with a high manual effort and might
miss certain optimizations.

5.2 UJSON: How Hybrid Mode Can Achieve Speedups
The basic principle how our hybrid execution mode can
achieve speedups can be seen with the benchmark available
in the GitHub repository of the python UltraJSON pack-
age [20, 21]. The package itself offers efficient loading, pars-
ing and dumping JSON data. The benchmark loads and parses
JSON data as a first task, which is then dumped again in a
second task. The time of both tasks is measured within 10
fork runs, where each performs 500 iterations of loading and
dumping. Our heuristics as described in Section 4 proposed
76 % (725 out of 949) of the functions to run in native mode.
We ran this benchmark in three modes: Fully managed (1),
our hybrid execution mode (2), and a mode where as many
functions as possible are executed in native mode (3).
The results are shown in Figure 14. While managed ex-

ecution on Sulong is faster for dumping, (mostly) native
execution is faster for loading and parsing. Concerning exe-
cution times, our hybrid mode, which combines native and

managed execution, is between managed and native execu-
tion. However, for the total time of both tasks, our suggested
hybrid execution mode strikes a balance and is faster than
fully managed or close-to-native execution.

6 Current Limitations and Future Work
Our current hybrid execution mode can lead to a high overall
speedup. However, the speedup for a single function highly
depends on its code. While some functions lead to a speedup
when executed natively, for others, the optimizations due
to JIT compilation overtake any speedup caused by native
execution. Therefore, further research is necessary to more
closely investigate the relationship between functions and
the impact on performance when automated hybrid execu-
tion is enabled, which can also include linear programming
or machine learning techniques. Being able to predict the im-
pact of hybrid execution on warm-up and peak performance
more precisely enables better overall results.
Also, the approach presented in this paper tries to min-

imize execution time during warm-up. Other interesting
metrics to look at are the time spent on JIT compilation, or
code and memory footprints.
Another possible future research is to reduce the risk of

errors at run time when functions in native mode access
managed data that cannot be converted to native memory.
To address this, we must devise strategies for detecting these
failures preemptively and for reverting such functions to
managed execution. As an alternative, especially if such
failures cannot be detected preemptively, we could rewind
native execution upon encountering a memory error, forcing
the problematic code to resume under managed execution.
Related to this, being able to change the execution mode

of a function at run time can also enhance the peak per-
formance in hybrid mode: If native mode is detected to be
slower than managed mode for a function (see the path find-
ing tasks in the LXML benchmarks in Figure 13 or dumping
JSON data in Figure 14), the execution mode can be switched
to managed mode at run time such that the GraalVM JIT
compiler can optimize aggressively. Also, important insights
may also be applied to more general settings where func-
tions are executed in different contexts, such as heterogenous
computing.

7 Conclusion
In this paper, we presented a hybrid execution environment
that determines which functions of a program should run
in managed mode, and which should run in native mode.
Our system executes AOT-compiled native code via NFI and
managed code in a VM using a JIT compiler. Our evaluation
shows that integrating an automated hybrid execution mode
into GraalVM can improve the performance of mixed-mode
programs.
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