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Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study
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Memory analysis tools are essential for finding and fixing anomalies in the memory usage of software systems
(e.g., memory leaks). Although numerous tools are available, hardly any empirical studies exist on their
usefulness for developers in typical usage scenarios. Instead, most evaluations are limited to reporting the
performance overhead. We thus conducted a study to empirically assess the usefulness of the interactive
memory analysis tool AntTracks Analyzer. Specifically, we first report findings from assessing the tool using
a cognitive walkthrough, guided by the Cognitive Dimensions of Notations Framework. We then present the
results of a qualitative user study involving 14 subjects who used AntTracks to detect and resolve memory
anomalies. We report lessons learned from the study and implications for developers of interactive memory
analysis tools. We hope that our results will help researchers and developers of memory analysis tools in
defining, selecting, and improving tool capabilities.
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1 INTRODUCTION
Interactive memory analysis tools collect, process, transform, and visualize information about the
memory footprint of software systems. Snapshot-based tools analyze a single point in time while
trace-based tools allow users to explore a period of time [105]. For example, existing tools typically
present the heap state of an application as a type histogram displaying the number of objects and
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bytes allocated for each type. Analyzing such information allows users to detect potential memory
anomalies and to reveal their root cause.

Existing interactive memory analysis tools provide a variety of capabilities to analyze di�erent
aspects of memory usage. For example, the Eclipse Memory Analyzer (MAT) [106] and Visu-
alVM [108] are the most commonly used open source memory analysis tools for Java. While MAT
purely focuses on memory analysis, VisualVM is a more general performance analysis tool including
advanced memory analysis features. Kieker [58, 110, 111] is a well-known general performance
framework for monitoring and analyzing the run-time behavior (including memory) of concurrent
or distributed software systems. Well-known examples of commercial tools providing memory
analysis features are the Dynatrace application performance monitoring (APM) platform [29] and
the JPro�ler [30], which o�ers memory pro�ling and a heap walker for Java applications.

So far, most memory analysis tools have been evaluated with a focus on their performance
overhead and feasibility while only little empirical research exists on theirusefulnessin practical
environments and for realistic usage scenarios. The term usefulness captures a tool's utility, i.e., to
what degree it allows users to achieve their goals, and its usability, i.e., how well users can make use
of the o�ered features. The study by Zaman et al. [128] is an exception in the �eld of performance
engineering, as the authors show for two enterprise systems that test-based performance analyses
need to be complemented with user-centric assessments to better understand user-perceived quality.
The authors strongly argue that performance engineering should use the knowledge on how to
conduct user-centric analysis from other �elds.

This paper thus reports �ndings of a cognitive walkthrough to assess the usability of an interactive
memory analysis tool. We also conducted a qualitative study to analyze the behavior of users
analyzing memory anomalies in a realistic context. We performed our research usingAntTracks, a
memory monitoring system which comprises the AntTracks VM [64� 66], a custom virtual machine
based on the Java Hotspot VM [107], and the AntTracks Analyzer [7, 114� 117, 119, 120, 122], a trace-
based memory analysis tool. The AntTracks VM records memory events such as object allocations
and object movements during garbage collection (GC) by writing them into trace �les [64� 66].
The AntTracks Analyzer then parses trace �les by incrementally processing these events, thereby
allowing to reconstruct the heap state for every GC point [7]. Various memory analyses can be
performed with AntTracks, including heap state analysis [114, 119, 122], data structure growth
analysis [115, 117], and heap evolution visualization [120].

Speci�cally, the contributions of our work encompass (1) a discussion of common memory
analysis activities and tool capabilities based on existing research and tools (Section 3), (2) a
realization of these capabilities in the AntTracks Analyzer memory analysis tool (Section 4),
including an assessment based on a cognitive walkthrough following the Cognitive Dimensions
(CD) of Notations Framework (Section 5), (3) the design (Section 6) and results (Section 7) of a
usefulness study involving 14 participants who used AntTracks in two realistic analysis scenarios,
and (4) general recommendations for researchers and developers of interactive memory analysis
tools we derived from lessons learned during the study (Section 8) as well as a discussion on how
we used these recommendations to further improve AntTracks (Section 9). Section 10 discusses
threats to validity and Section 11 concludes the paper.

2 RESEARCH METHOD

The �eld of human-computer interaction (HCI) distinguishes inspection-based and test-based
approaches [47] to evaluate the usability of software systems. Inspection-based techniques aim
at assessing and improving interactive systems by checking them against some standard, such as
Nielsen's usability attributes [80] or the Cognitive Dimensions (CD) of Notations Framework [8, 9,
11, 39�41]. Test-based techniques, on the other hand, involve end users in the evaluation.
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Memory analysis is a highly complex and interactive process. Our research method thus relies
on both inspections and testing. Speci�cally, we investigated two research questions on the use-
fulness of interactive memory analysis tools using the example of AntTracks: (RQ1) Regarding
usability we assessed AntTracks' memory analysis capabilities from the perspective of software
engineers, guided by the CD framework and Nielsen's usability attributes. (RQ2) Regardingutility
we conducted a user study analyzing a real-world Java web application with seeded memory defects.
Based on these results, we synthesized recommendations and lessons learned intended to support
developers of interactive memory analysis tools. To tackle these questions, we conducted our
research in four steps:

Identi�cation of Memory Analysis Activities.We studied related research and features of state-of-
the-art memory analysis tools to identify important memory analysis activities bene�ting from tool
support. In addition to that, we present how these memory analysis activities manifest themselves
in the memory monitoring tool AntTracks, the main subject of this study.

Cognitive Walkthrough and Tool Improvement.To assess AntTracks' usability, we �rst performed a
cognitive walkthrough of the identi�ed activities using the CD framework, which o�ers a vocabulary
for discussing usability issues and their trade-o�s. The CD framework has been used successfully to
assess software tools [5,60,70,90,91], visual diagrams [10], temporal speci�cation notations [62,63],
or visual modeling languages [22, 123]. Table 1 shows a summary of these dimensions. A detailed
description of the framework and the cognitive dimensions can be found online [40]. The primary
aim of this cognitive walkthrough was to reveal and �x possible usability �aws before conducting
the user study and to de�ne the scope for the user study.

User Study.We designed our study based on the �ndings from the CD assessment and the
guidelines for conducting empirical studies by Runeson and Höst [97]. Software engineering
students from our university used AntTracks to investigate the memory evolution of an application
to detect anomalies such as memory leaks or high memory churn (cf. Section 6). For each anomaly,
the participants aimed at revealing its root cause using the memory analysis. During this process,
we asked each study participant to `think aloud' [47], i.e., to describe what they were doing and to

Table 1. Cognitive dimensions used for the walkthrough (taken from [40]).

Dimension Description

Abstraction types and availability of abstraction mechanisms
Closeness of Mapping closeness of representation to domain
Consistency similar semantics are expressed in similar syntactic forms
Di�useness verbosity of language
Error-proneness notation invites mistakes
Hard Mental Operations high demand on cognitive resources
Hidden Dependencies important links between entities are not visible
Premature Commitment constraints on the order of doing things
Progressive Evaluation work-to-date can be checked at any time
Provisionality degree of commitment to actions or marks
Role-expressiveness the purpose of a component is readily inferred
Secondary Notation extra information in means other than formal syntax
Viscosity resistance to change
Visibility ability to view components easily
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comment on any concerns. The participants were interviewed on the utility of the tool [23] and
also completed a usability questionnaire [80].

Derivation of Implications.Finally, we synthesized recommendations and lessons learned based
on the detailed results and feedback obtained from the study. In addition, we discuss how these
recommendations were used to further improve AntTracks.

3 MEMORY ANALYSIS ACTIVITIES

We present key activities supported by interactive memory analysis tools based on our experiences
and related work. We focus on memory analysis for managed languages such as Java or C#. We
will show that the tools vary regarding their support, e.g., some tools only visualize raw data and
leave the analysis to the users, while other tools automate certain analyses activities.

3.1 Collecting Memory Data

Basic tools for snapshot-based inspections of memory usage mostly rely on heap dumps, which
can be created by tools such as HPROF [85, 88] or jmap [84]. The following techniques are used for
analyzing more speci�c details of snapshots or memory usage over time [6]: (1) Amodi�ed execution
environmentsuch as a custom Java VM that can access internal information; (2) asampling-based
approach, e.g., an agent using the Java VM Tool Interface [87] to receive periodical callbacks about
memory-relevant events in the application; or (3) aninstrumentation-based approachthat relies on
adding code to an existing application, either before compilation (e.g., AspectJ [57]) or at run time
(e.g., ASM [14, 15, 61] or Javassist [17, 18]).

3.2 Detection of Memory Anomalies

Before inspecting an application in detail, memory analysis tools support users in detecting memory
anomalies such as memory leaks, high memory churn, memory bloat, or unusual GC behavior.

3.2.1 Memory Leaks.
Memory leaks [35] in managed languages occur if objects no longer needed remain reachable from
garbage collection roots (e.g., static �elds or local variables) due to programming errors. For example,
objects may accumulate over time when a developer forgets to remove them from long-living data
structures [115]. Such leaks lead to a growing memory footprint, which at some point will cause
an application to crash. There are two main approaches to detect memory leaks: (1) Techniques
detectingstaleness[12, 44, 92, 126] assume that objects not used for a long time are likely involved
in a memory leak. However, the proposed techniques are hardly used outside academia due to their
high costs of tracking objects. (2) Techniques detectinggrowth[16, 54, 76, 104] are thus still the
de-facto standard in state-of-the-art memory analysis tools and mostly rely on users interpreting
visualizations. For example, VisualVM [108] periodically plots the memory footprint in a time-series
chart. The user then has to check for suspicious sections of continuous growth that might hint at a
memory leak. Similarly, JConsole [83] can read a running application's Java Management Beans to
plot the currently occupied heap memory separated by eden space, survivor space, and old space.

3.2.2 Memory Churn.
Memory churn occurs when large numbers of short-living objects are created by an application,
thereby causing many garbage collections. Such excessive dynamic allocation behavior [102]
typically has a negative impact on performance. However, obtaining the information on how long
objects survive before dying is expensive [45, 95, 96]. Most tools are thus limited to analyzing the
number of allocations, but not the exact lifetime of objects. Objects frequently allocated in burst
typically do not survive for a long time and thus the high allocation rate already indicates memory
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churn. Memory churns can be detected either by visually spotting spike patterns in memory charts
(i.e., high consumption of memory followed by many object deaths) or by plotting the number of
allocations over time (i.e., detecting allocation-intensive time windows), as for example done in
Dynatrace [29] or Kieker [58, 110, 111].

3.2.3 Memory Bloat.
Memory bloat [52, 75, 125] describes the ine�cient use of memory for achieving seemingly simple
tasks. It is often caused by heavily using (object-oriented) abstractions, such as in over-generalized
data structures. Most techniques for detecting memory bloat thus focus on analyzing data structures
requiring many auxiliary objects [77] or ine�cient usage of data structures operations for adding,
getting, or removing elements [124, 127].

3.2.4 Unusual GC Behavior.
The behavior of the GC can also indicate memory problems. Instead of looking at the memory
behavior of an application, this anomaly is detected by inspecting the garbage collector, e.g., by
measuring GC overhead via the garbage collection count and the garbage collection duration.

3.3 Inspection of Memory Anomalies

Once a suspicious memory behavior is detected, the user can inspect a single point in time or a
time interval to reveal the root cause of the problem.

3.3.1 Single Point in Time.
The most common technique is aheap state analysis, which relies on reconstructing the objects that
were alive at a certain point in time. For every object on the heap, a number of properties can be
reconstructed depending on the tool: these may include the object's address, its type, its allocation
site, the heap objects it references, the heap objects it is referenced by, the thread allocating the
object, and a list of root pointers referencing it. Users can then examine (groups of) objects on the
heap or study metrics about the heap state.Object-based techniquesallow to inspect heap objects in
a bottom-up or top-down fashion [114]. In the bottom-up approach the user searches for big object
groups (e.g., objects of the same type) and then tries to free them. The most common visualization
to �nd these object groups is a type histogram grouping all heap objects by their types, and also
showing the memory occupied by each type. The object type(s) consuming most memory can
then be inspected in detail. Some tools support users by displaying the path to the GC roots, while
other approaches assist users by displaying the code that has allocated the objects. Visualization
approaches [2, 46, 71, 74, 93, 98, 129] aggregating the object graph (e.g., based on its dominator
tree [67, 73, 114]) are useful to analyze the heap's composition. A user following the top-down
approach �rst selects a GC root or a heap object that keeps alive many other objects. The user then
inspects the objects reachable from this root or object and searches for possible cut points in the
path [114, 115]. Metric-based techniquesderive metrics from the heap state that allow to analyze
the heap state by revealing �elds, objects, classes or packages that are likely involved in memory
anomalies [19, 20, 77].

3.3.2 Evolution over Time.
A number of tools also allow to analyze the memory usage evolution of an application over
time [24, 25, 76, 116], in its basic form by comparing heap states. In MAT [106], for example, users
can compare two heap states by computing a delta type histogram diagram to identify objects with
high growth rates. In Dynatrace [29] users can show the number of objects allocated in the selected
time interval. Extensively allocated objects can then be considered for reuse, caching, or removal.
Other approaches allow to automatically detect growing data structures [115, 117], or to visualize
the evolution of the memory composition over time [120, 121].
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4 OVERVIEW OF ANTTRACKS

The �rst result of the AntTracks project [113] was a custom Java VM for e�ciently collecting detailed
memory traces [65]. The AntTracks Analyzer then started as a research prototype for reconstructing
heap states from these memory trace �les [7]. The tool is now an interactive memory analysis
tool for the detection and inspection of various memory anomalies. We selected the AntTracks
tool as subject for this study as it is a publicly available1 and covers more memory analysis tasks
than alternative tools. For example, AntTracks can perform detailed analyses over time due to
its trace-based nature, while other publicly available tools such as MAT [106] or VisualVM [108]
are restricted to snapshot-based (dump-based) analyses. Another reason for selecting AntTracks
was the high familiarity of some authors with its code base. The goal of the cognitive walktrough
was to reveal and �x major �aws before the user study, so detailed knowledge of the tool and its
implementation was essential.

In the following, we give an overview of a subset of AntTracks Analyzer's features, organized by
the memory analysis activities presented in Section 3.

4.1 Memory Growth Detection � Overview

Users working with the AntTracks Analyzer �rst open a trace �le recorded with the AntTracks
custom VM. The �le contains information on the memory behavior of the monitored application.
Theapplication overview(see Figure 1a) opens upon loading and shows the memory footprint and
GC overhead as time-series charts. A continuous growth of the memory footprint, for instance,
may indicate a memory leak. This overview is intentionally kept simple. For example, to avoid
terminology unknown to the user, the memory footprint chart only contains a single time series
showing the occupied memory. Moreover, it only shows data points marking the end of garbage
collections, thereby resulting in a smoother trend line2.

4.2 Memory Growth Inspection: Evolution over Time � TrendViz View

If a user detects a time window with suspicious memory growth, AntTracks'TrendViz view[120]
allows to inspect the memory evolution during this time window in more detail. The �rst step is to
de�ne properties based on which the heap objects are grouped during analysis (see Figure 1b). For
this purpose, AntTracks provides a variety of di�erent object classi�ers [119, 122], each of which
groups heap objects based on a di�erent criterion. For example, the type classi�er groups all objects
by their type name, e.g.,java.util.HashMap . A user can select multiple classi�ers for grouping
the heap, which results in a classi�cation tree. For example, using the type classi�er followed by
the allocation site classi�er �rst groups all objects based on their types, and then further groups all
objects of a given type based on the source code location they were allocated at. The AntTracks
TrendViz visualizes the evolution of the heap based on the selected classi�ers (see Figure 1c). When
opening the view, a single chart shows only the evolution of the �rst level of the classi�cation tree,
e.g., the evolution of the objects grouped by type. The user can then display further charts for the
next levels of the classi�cation tree, e.g., the evolution of the allocation sites of a selected type. For
example, in Figure 1c the most-allocated typeProduct has been selected by the user in the top
chart (highlighted in yellow), and a second chart below displays this type's allocation sites. This
way users can interactively collect information about suspicious objects accumulating over time.

1AntTracks download link: http://ssw.jku.at/General/Sta�/Weninger/AntTracks/Publish/
2The occupied memory is generally higher when a garbage collection starts, however, the spikes between garbage collection
starts and ends are not relevant for the purpose of detecting memory leaks.
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(a) TheOverviewplots the application's memory footprint and GC overhead and allows to select a suspicious
memory leak time window.

(b) Users can choose from a list of classifier combina-
tions to group heap objects.

(c) TheTrendVizdisplays the heap evolution grouped
by the selected classifier combination.

(d) Theheap state viewdisplays the classified heap at
a certain point in time as a tree table.

(e) Thegraph viewhighlights the path from a selected
group of objects (shown at the bo�om) to its most
important GC roots (colored nodes).

Fig. 1. Memory leak analysis in AntTracks.
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4.3 Memory Growth Inspection: Single Point in Time � Heap State View + Graph View

Users analyzing memory growth over time often reveal suspicious objects that accumulate memory.
These objects can then be further inspected at a speci�c point in time. For example, after a memory
growth analysis, AntTracks may suggest to inspect the heap state at the end of the previously
selected time window. At this point, all objects that have accumulated during this time window are
present in the heap and can thus be easily inspected. AntTracks can visualize the heap state using
a table-basedor graph-based analysis.

4.3.1 Table-based Analysis � Heap State View.
When inspecting a speci�c heap state, the user �rst selects a classi�er combination (cf. Figure 1b)
for grouping the heap objects. The resulting classi�cation tree is displayed in a tree table on the
heap state view, as shown in Figure 1d. In this table, the user can further inspect suspicious objects
previously identi�ed in the trend view. For example, this view allows to inspect theGC closuresof
an object group [114], i.e., the objects kept alive by a certain object group, or a tabular visualization
of the path to the closest GC root [114], similar to VisualVM [108].

4.3.2 Graph-based Analysis � Graph View.
Further analyses are needed if a user detects a suspiciously large group of objects being kept alive.
This can happen in garbage-collected languages if objects are still directly or indirectly reachable
from GC roots such as local variables or static �elds. In this case, the user needs to inspect the
paths to these GC root to �nd ways for reducing the number of paths.

The most convenient way to inspect the paths to GC roots is thegraph viewshown in Figure 1e.
Initially, this view only shows a single node representing the set of suspicious objects. By selecting
the node the user can apply thePath to GC rootsoperation, which traverses the references pointing
to the given objects recursively until GC roots are found. To keep the number of displayed nodes
low, objects of the same type are grouped into a single node. Nodes are labeled with their objects'
type name and the number of objects belonging to them. Edge labels show how many objects of
the top node reference how many objects of the bottom node. GC roots are displayed as special
nodes that are highlighted by a colored background. After performing the path to GC roots action,
the user can explore the resulting paths and detect the GC roots referencing most objects. To make
objects eligible for garbage collections, a developer can then `cut' the paths to these GC roots by
setting references tonull or by removing objects from their containing data structures.

4.4 Memory Churn Detection � Details View

In case ofmemory churnthe performance degradation is caused by the creation and garbage
collection of many short-living objects [102]. In AntTracks suspicious time windows with high
memory churn can be detected in thedetails view, which plots the memory footprint at the beginning
and at the end of every garbage collection (cf. Figure 2a). The memory occupied at the start of a
garbage collection is usually much higher than at its end, i.e., the garbage collections appear as
spikes. A user aiming to detect high memory churn needs to look for high and frequent spikes in
this memory footprint chart.

4.5 Memory Churn Inspection: Evolution over Time � Short-living Objects View

Once a suspicious memory churn time window is detected, the goal of the developer is to reduce
the number of allocations by determining the objects responsible for most of the memory churn
within this window. Knowing the types and allocation sites of these objects, then allows to track
down their allocations in the source code to �x the problem.
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