
Run-Time Support for Optimizations Based on Escape Analysis∗

Thomas Kotzmann Hanspeter Mössenböck
Institute for System Software

Christian Doppler Laboratory for Automated Software Engineering
Johannes Kepler University Linz

Linz, Austria
{kotzmann,moessenboeck}@ssw.jku.at

Abstract

The JavaTM programming language does not allow the
programmer to influence memory management. An object
is usually allocated on the heap and deallocated by the
garbage collector when it is not referenced any longer. Un-
der certain conditions, the virtual machine can allocate ob-
jects on the stack or eliminate their allocation via scalar
replacement. However, even if the dynamic compiler guar-
antees that the conditions are fulfilled, the optimizations re-
quire support by the run-time environment.

We implemented a new escape analysis algorithm for
Sun Microsystems’ Java HotSpotTM VM. The results are
used to replace objects with scalar variables, to allocate ob-
jects on the stack, and to remove synchronization. This pa-
per deals with the representation of optimized objects in the
debugging information and with reallocation and garbage
collection support for a safe execution of optimized meth-
ods. Assignments to fields of parameters that can refer to
both stack and heap objects are associated with an extended
write barrier which skips card marking for stack objects.
The traversal of objects during garbage collection uses a
wrapper that abstracts from stack objects and presents their
pointer fields as root pointers to the garbage collector.

When a previously compiled and currently executing
method must be continued in the interpreter because dy-
namic class loading invalidates the machine code, execu-
tion is suspended and compiler optimizations are undone.
Scalar-replaced objects are reallocated on the heap lazily
when control returns to the invalidated method, whereas
stack-allocated objects must be reallocated immediately be-
fore program execution resumes. After reallocation, objects
for which synchronization was removed are relocked.

∗This work was supported by Sun Microsystems, Inc.

1. Introduction

The growing popularity of Java is in large part based on
its portability, which is achieved by translating source code
into platform-independent bytecodes. In order for a Java
program to run on a platform, a Java virtual machine must
exist that executes the bytecodes for this platform. Early
implementations relied only on interpretation. They had to
fetch, decode and execute bytecode by bytecode and thus
suffered from poor performance. In the meantime, a lot
of work and research effort has been spent on more effi-
cient implementations. Modern virtual machines dynami-
cally compile bytecodes to machine code and therefore run
at high speed.

It does not make much sense to compile all methods
when an application is started. First of all, typical applica-
tions spend the majority of their time executing only a small
part of their code. Secondly, Java allows dynamic loading of
classes on demand that may not yet be available at startup.
Thirdly, time spent on compiling a method is time that could
have been spent on interpreting the bytecodes. Therefore,
mixed-mode run-time environments combine interpretation
with dynamic compilation [1]. They first interpret all meth-
ods, which results in fast startup times, and then compile
only the “hot” parts of a program, e.g. the most frequently
called methods or methods that contain long-running loops.

Mixed-mode run-time environments complicate the im-
plementation of compiler optimizations. Since compilation
time adds to run time, the dynamic compiler must achieve a
trade-off between the duration of optimizations and execu-
tion speed of the resulting machine code. Besides, compiled
methods may call or may be called by interpreted methods,
which are not aware of compiler optimizations. More ag-
gressive optimizations usually require run-time support, i.e.
modifications of the run-time environment. If the optimiza-
tions affect the allocation of objects, the garbage collector
must be adapted as well.

The Java HotSpotTM VM uses a generational garbage
collector. New objects are allocated in the young gen-
eration, which is collected by a stop-and-copy algorithm.
When objects have survived a certain number of collec-
tion cycles, they are promoted to the old generation. In the
default configuration, the old generation is collected by a
mark-and-compact algorithm. Starting from the set of root
pointers, the garbage collector marks all reachable objects,
assigns consecutive memory slots to them, adjusts pointers,
and finally moves the objects to their new locations.

We developed a new escape analysis algorithm and var-
ious optimizations to reduce the costs of object allocation,
deallocation and synchronization [15]. We integrated our
implementation into a current snapshot [21] of the Java
HotSpotTM VM, which facilitates aggressive compiler opti-
mizations because it is able to revert to interpretation when
conditions that hold at compile time are broken later. This
mechanism is referred to as deoptimization [10].

To the best of our knowledge, our approach is the first
that reallocates and relocks objects when dynamic class
loading invalidates optimized machine code. Most exist-
ing implementations are either based on a closed-world as-
sumption, make pessimistic decisions, or require checks
everytime optimized code is executed. This paper deals
with our run-time support that allows a safe execution of
optimized methods. It contributes the following:

• It examines which parts of the virtual machine are af-
fected by our compiler optimizations.

• It suggests a representation for optimized objects in the
debugging information.

• It explains how stack objects are treated by the garbage
collector.

• It describes how objects are reallocated and relocked
in the context of deoptimization.

• It evaluates the modifications in terms of memory con-
sumption and the number of optimized objects.

The rest of the paper is organized as follows: Section 2
gives a short overview of the escape analysis algorithm in
order to put the run-time support into context. Section 3
describes the representation of optimized objects in the de-
bugging information. The modifications of the garbage col-
lector are presented in Section 4, and the adaptation of the
deoptimization framework in Section 5. Section 6 evaluates
the modifications, and Section 7 deals with related work.

2. The Escape Analysis Algorithm

If an object created in a method is assigned to a global
variable or to the field of a heap object, if it is passed as a pa-
rameter to a method or returned from a method, its lifetime

exceeds the scope in which it was created. Such an object
is said to escape its scope. Knowing which objects do not
escape a method or thread allows the compiler to perform
aggressive optimizations:

• If an object does not escape the creating method, its
fields can be replaced by scalar variables. The com-
piler can eliminate both the allocation of memory on
the heap and its initialization.

• Objects that are accessible only by the creating method
and its callees can be allocated on the method stack.
This is cheaper than an allocation on the heap and re-
duces the burden of the garbage collector.

• Java provides bytecodes that lock and unlock objects
for the synchronization of threads. If an object does
not escape a thread, synchronization on it can be re-
moved because it will not be locked by another thread.

Our escape analysis algorithm is especially tailored to
the needs of a dynamic compiler. In contrast to other ap-
proaches, it does not create an object dependency graph but
computes the escape states of objects in parallel to the con-
struction of the intermediate representation, which is faster
and requires less memory. Objects whose escape states de-
pend on each other are inserted into a so-called equi-escape
set. If one of them escapes, only the escape state of the
set and not of all objects must be adjusted. The tracking
of field values for scalar replacement is integrated into the
computation of the static single assignment form.

When objects are passed to another method, the compiler
uses interprocedural escape information to determine if the
objects escape in the callee. This information is computed
during the compilation of a method and stored together with
the machine code to avoid reanalyzing the method at each
call site. The interprocedural analysis not only allows allo-
cating actual parameters in the stack frame of the caller, but
also supports the compiler in inlining decisions: even if a
callee is too large to be inlined by default, the compiler may
decide to inline it because it thus expects to replace more
objects by scalar variables.

In a mixed-mode run-time environment, a method is in-
terpreted several times before its compilation. For this pe-
riod of time, no interprocedural escape information is avail-
able for this method. When the compiler reaches a call of
a method that has not been compiled yet, it examines the
method’s bytecodes to determine if a parameter escapes.
The bytecode analysis considers each basic block separately
and checks if it lets one of the parameters escape. This is
more conservative than a full escape analysis, but faster to
compute because control flow is ignored. The analysis stops
as soon as all parameters are seen to escape. When the
method is compiled later, the provisional escape informa-
tion is replaced with a more precise one.

float

new

new

return

foo(Point p1) {
Point p2 = Point(3, 4);
Line l = Line(p1, p2);

l.length();
}

(a) original method

float

new

new

return

foo(Point p1) {
Point p2 = Point();
p2.x = 3; p2.y = 4;
Line l = Line();
l.x1 = p1.x; l.y1 = p1.y;
l.x2 = p2.x; l.y2 = p2.y;

l.length();
}

(b) after inlining

float

float

new

return

foo(Point p1) {
x2 = 3, y2 = 4;

Line l = Line(); // on stack
l.x1 = p1.x; l.y1 = p1.y;
l.x2 = x2; l.y2 = y2;

l.length();
}

(c) after escape analysis

Figure 1. Example for scalar-replaced and stack-allocated objects.

Figure 1 gives an example for the escape analysis and
the optimizations described above. A point is specified by
two floating point coordinates, and a line stores the four co-
ordinates of the start and the end point. After inlining the
constructors, the object p2 does not escape the method, so
its allocation can be eliminated. Its field values are stored
in scalar variables and can probably be held in registers
later. The length method is too large to be inlined but
does not let the object l escape globally. Therefore, the
line object can be allocated on the stack. The interproce-
dural escape information for the method foo states that the
parameter p1 does not escape in the method and can be al-
located in the stack frame of a caller.

3. Debugging Information

In order to perform aggressive optimizations, the Java
HotSpotTM client compiler makes optimistic assumptions
about the structure of the running program. For example, it
inlines a virtual method if class hierarchy analysis [7] yields
that currently only one implementation for that method is
loaded. If dynamic class loading later invalidates such as-
sumptions, previously compiled methods must be deopti-
mized, i.e. compiler optimizations must be undone. This
requires the compiler to describe the performed optimiza-
tions in the debugging information. Besides, the compiler
creates so-called oop maps (see below), which are used by
the garbage collector to determine the locations of the root
pointers.

Debugging information and oop maps are not generated
for every single machine instruction, but only for some safe-
points, at which method execution may be suspended for
garbage collection or deoptimization. After compilation,
the generated information is serialized and stored with the
machine code in a compressed form.

3.1. Oop Map

Run-time methods of the Java HotSpotTM VM refer to
objects in the Java heap via handles. A handle is a data
structure that encapsulates a pointer to a Java object and

resides in a special memory area where the garbage collec-
tor visits the object and updates the pointer if the object is
moved. Machine code generated for a Java method, how-
ever, refers to objects via direct pointers for efficiency rea-
sons. To distinguish direct pointers from handles, they are
called ordinary object pointers (oop).

In order to trace through the live objects, the garbage col-
lector needs to know where the machine code stores point-
ers to heap objects. Therefore, the compiled method in-
cludes an oop map for each safepoint. The oop map lists
all registers and stack slots that contain root pointers. In
the context of escape analysis, pointers stored in an object
whose allocation was eliminated via scalar replacement be-
come root pointers and need to be registered in the oop map
accordingly.

Stack objects must be considered in the oop map as well.
Assume that both objects created by the code in Figure 2
are allocated on the stack, but at different positions within
the frame. Since the variable p always refers to object 1, the
positions of its fields are known at compile time. The fields
can be accessed relative to the frame pointer without load-
ing the object’s address. At safepoint 1, no pointer to the
object exists, so pointers stored in fields are root pointers.

p = T(); // object 1
// safepoint 1

(...) {
q = p;

} {
q = T(); // object 2

}
// safepoint 2

new

if

else

new

Figure 2. Stack objects at safepoints.

While p always refers to object 1 at safepoint 2, q may
refer to different objects and must therefore be kept as a
pointer. If we would register both q and the fields of ob-
ject 1 as roots, the garbage collector would visit the pointer
fields of object 1 twice when q points to object 1. This
is not allowed: the mark-and-compact algorithm updates all
pointers before the objects are moved to their new locations,
so after the first visit, a pointer field does not point to an ob-
ject any more.

void int

new

foo(n) {
T p = T();
p.f = 5;
p.g = n + 3;

bar();

...
}

(a) Java source code

// parameter n at ebp+8
// allocation eliminated

esi, [ebp+8]
esi, 3

// safepoint for method call

...

mov

add

(b) machine code

[ebp+8]

5

.f

n

local variables: T object

esi

.g

p

(c) scope and object entries

Figure 3. Example for an object entry.

Therefore, we create a special entry in the oop map to
describe the stack object 1 as a whole instead of its individ-
ual fields. When the garbage collector reads the oop map
and encounters such an entry, it marks the stack object as
scanned before visiting its fields. Even if q provides a root
pointer to the same object, the fields will not be processed a
second time.

3.2. Object Entries

Dynamic class loading may invalidate machine code
generated under optimistic assumptions, even while the af-
fected method is running. In this case, the execution of the
method is continued in the interpreter. While the machine
code keeps temporary values in registers and spill slots, the
interpreter expects all values to be stored in the stack frame.
In the case of deoptimization, a new frame for the inter-
preter must be set up and filled with the appropriate values
from registers and spill slots.

For this purpose, the deoptimization uses scope entries
that are created by the compiler and specify where the ma-
chine code stores which values. The debugging informa-
tion contains two separate lists of scope entries: one for the
operand stack and one for the local variables. Each scope
entry describes one value, and its position within the list
denotes which stack slot or local variable it refers to.

If a variable refers to an object whose allocation was
eliminated, the list of scope entries contains an object entry
that describes the contents of the object (see Figure 3). The
object entry allows the deoptimization framework to later
reallocate the object on the heap. It holds a list of scope en-
tries that describe where the machine code stores the field
values of the object. The position of a scope entry within
this list corresponds to the position of the described field
within the object.

A stack-allocated object is also represented by an ob-
ject entry. In contrast to an eliminated object, however, the
object entry only specifies the position of the stack object
within the frame. A list of scope entries for fields is not
needed because the contents of the object can be copied

from the stack into the heap object during reallocation (see
Section 5.3).

When the VM deoptimizes a method that inlines other
methods, it has to split the frame of the compiled method
into several frames of interpreted methods, each with its
own operand stack and local variables. Objects, however,
are shared among all inlined methods and must be reallo-
cated exactly once during deoptimization. Therefore, the
debugging information specifies separate scope entries for
each inlined method, but only one set of object entries.

3.3. Monitor Entries

When a compiled method locks an object, it stores infor-
mation about the object in its stack frame. To convert the
information for the interpreter, the deoptimization frame-
work must know which objects are locked. For this reason,
the debugging information provides a list of monitor en-
tries. Each monitor entry encapsulates a scope entry that
describes the location of a pointer to the locked object.

If synchronization on a thread-local object was elimi-
nated, it must be relocked during deoptimization because
the interpreter will later try to unlock it again. Therefore,
the compiler has to ensure that there is a pointer to every
thread-local object, otherwise the object could not be de-
scribed in the debugging information.

The corresponding monitor entry specifies the location
of the pointer to the thread-local object. In addition, the
monitor entry indicates that synchronization was removed
and that the object must be relocked during deoptimization.
In case of a method-local object whose allocation has been
eliminated, the monitor entry encapsulates an object entry
instead of a normal scope entry.

3.4. Structure of Debugging Information

After compilation, the machine code and the information
for garbage collection and deoptimization must be regis-
tered in the virtual machine. For this purpose, the compiler
creates a data structure consisting of the machine code, oop

maps, debugging information, method dependencies (see
Section 5.1), and exception handler tables. The debugging
information provides scope entries and monitor entries for
each safepoint. Its structure is shown in Figure 4, and the
internal layout in Figure 5.

DebuggingInfo = {SafepointDesc}.
SafepointDesc = offset ObjectPool {Scope}.

ObjectPool = {ObjectEntry}.
ObjectEntry = id type (Fields | stackpos).

Scope = methodref bci LocalVariables OperandStack Monitors.
LocalVariables = {ScopeEntry}.
OperandStack = {ScopeEntry}.
Monitors = {MonitorEntry}.

ScopeEntry = ConstantEntry | LocationEntry | ObjectEntryRef.
ConstantEntry = number | oop.
LocationEntry = register | spillslot.
ObjectEntryRef = id.

Fields = {ScopeEntry}.

MonitorEntry = ScopeEntry stackpos eliminated.

Figure 4. Structure of debugging information.

safepoint offset

object pool

safepoint descriptor

innermost scope

scope 0

scope n

object pool

local variables

operand stack

monitors

caller scope

caller scope

index

index

method, bci

method, bci

Figure 5. Layout of debugging information.

A safepoint descriptor specifies the offset of the safe-
point in the machine code, the object pool, and a set of
scope descriptors. Upon deoptimization, the VM looks up
the safepoint descriptor whose offset matches the current
program counter.

The object pool contains object entries for all scalar-
replaced and stack-allocated objects. Even if there are mul-
tiple scopes due to inlining, the object pool exists only once

per safepoint. In addition to a unique identification number
and the object’s type, an object entry either specifies a list
of scope entries for the fields of a scalar-replaced object or
the position of a stack-allocated object in the stack frame.

Each inlined method is represented by a separate scope
description. It stores a reference to the method and the byte-
code index (BCI) of the current instruction in this method.
Lists of scope entries are used to describe the values in local
variables and on the operand stack. A scope entry either de-
scribes which register or spill slot contains the value, or di-
rectly stores the value if it is known at compile time. When
a value refers to a scalar-replaced or stack-allocated object,
the identification number of the appropriate object entry in
the object pool is emitted.

For each object that is locked in the current scope, a mon-
itor entry is created. It encapsulates a scope entry for the
locked object and specifies the stack slot that is used by the
compiled method to store information about the lock. A flag
indicates if synchronization on the object was removed.

4. Garbage Collection

Scalar-replaced objects do not affect garbage collection.
Their pointer fields are registered in the oop map and there-
fore treated as root pointers. Stack objects, however, can
contain pointers to heap objects that must be processed. We
implemented an extended write barrier and a wrapper for
pointer traversal, which hide stack objects from card mark-
ing and the garbage collector. This facilitated an easy in-
tegration of our new optimizations without corrupting the
carefully tuned and tested algorithms in place.

4.1. Write Barriers

A card marking mechanism is used to keep track of
pointers from the old into the young generation. Each
assignment to a field that references an object is associ-
ated with a write barrier that marks the modified card as
dirty [11].

If a formal parameter does not escape a method or
its callees, the method may be called both with a stack-
allocated and a heap-allocated actual parameter. Since card
marking for a stack object would modify a byte outside the
card marking array, non-escaping parameters are associated
with a modified write barrier that performs a bounds check
before the array is accessed (see Figure 6).

The card index is calculated via a right-shift of the ob-
ject address in the EAX register. Then the index of the first
card (firstIndex) is subtracted. The unsigned check of the
result against the array size (arraySize) detects both a nega-
tive index, which looks like a large unsigned positive num-
ber, and an index greater than the size. If the EAX register
refers to a heap object, the corresponding card is marked

eax, 9
eax, firstIndex
eax, arraySize
label
byte ptr [eax+arrayBase], 0

label: ...

shr

sub

cmp

jae

mov

Figure 6. Write barrier with bounds check.

as dirty. If the register refers to a stack object, the bounds
check fails and card marking is omitted.

Although the heap may grow on demand, the size of the
card marking array can directly be emitted into the machine
code. At startup, the Java HotSpotTM VM reserves virtual
address space for the maximum size of the heap, although
not all pages of it need to be allocated. The same is done
with the card marking array, so the write barrier can use the
maximum array size in its bounds check.

On Intel platforms [12], the extended write barriers take
five instead of the usual two machine instructions, but they
are only required for non-escaping formal parameters. As
long as fields of a stack object are accessed within the al-
locating method, no write barriers are emitted at all. The
object is registered in the oop map, so its fields are automat-
ically processed at every collection cycle. For escaping ob-
jects, traditional write barriers are emitted. The interpreter
must execute the bounds check for all objects, because a
stack object may also be passed to an interpreted method.

4.2. Wrapper Closure

The garbage collector implements an operation to be per-
formed for all objects as a so-called oop closure following
the Visitor design pattern. Starting with the root pointers,
an oop closure is recursively applied to all reachable oops.
Oop closures are used for the stop-and-copy collection, as
well as for the marking and pointer adjustment phase of the
mark-and-compact algorithm.

When stack-allocated objects are live, the garbage col-
lector must process their fields and visit referenced heap ob-
jects. Since existing algorithms do not expect to see pointers
into the stack, the iteration of root pointers was modified to
use a wrapper closure. It abstracts from stack objects and
presents their pointer fields as root pointers to the underly-
ing closure (see Figure 7).

Since the heap is a contiguous area in memory, the
is in heap test can be implemented as a comparison of
the object address against the start and the end of the heap.
If the test succeeds, the wrapped closure is invoked on the
heap pointer. Heap objects never reference stack objects,
so the wrapped closure will not see a stack object from this
point on. If the test fails, the wrapper closure is applied to
the oop fields of the stack object, which may again point to
stack objects.

void

if

else if

this

do_oop(oop obj) {
(is_in_heap(obj)) {

wrapped_closure.do_oop(obj);
} (!obj.has_been_scanned()) {

obj.set_has_been_scanned();
obj.iterate_oop_fields();

}
}

Figure 7. Wrapper for oop closures.

A stack object can directly or indirectly reference itself,
so the garbage collector must remember which stack ob-
jects have already been scanned. We could set the mark
bits to identify scanned objects, but this would require an
extra pass to reset them. Instead, we use two bits in the
header word of stack objects to encode three values. The
bits are initialized with 0, which means that the object has
not been scanned at all. At the beginning of every itera-
tion over the root pointers, we toggle a global value be-
tween 1 and 2. The has been scanned test compares
the header field with the global value for equality, and
set has been scanned copies the global value into the
header of the stack object.

5. Deoptimization

Both inlining and the use of interprocedural escape infor-
mation require that the compiler identifies the called method
statically despite polymorphism and dynamic method bind-
ing. Apart from static and final callees, this is possible if
class hierarchy analysis determines that currently only one
suitable method exists. When a class is loaded later that
provides another suitable method, the previously compiled
method must be deoptimized. This means that all opti-
mizations of the compiler are undone and execution of the
method is continued in the interpreter. Upon its next invo-
cation, the method will be recompiled without inlining the
callee.

5.1. Method Dependencies

Assume that class B was not loaded yet when machine
code for the method calc in Figure 8 is generated. The
compiler optimistically assumes that there is only one im-
plementation of the method foo and inlines A.foo into
calc. When class B is loaded later which overrides foo,
the VM must deoptimize the method calc. In other words,
a dependency is introduced between calc and A.foo.
This dependency is recorded during the compilation of
calc and stored both in the compiled method calc and
the class A.

Even if A.foo is not inlined, for example because of
its size, it can be statically bound to save the dispatching

class

void

class extends

void

static float float float

new

return

A {
foo(Point p) { ... }

}

B A {
foo(Point p) { ... }

}

calc(x, y) {
Point p = Point(x, y);
A q = create();
q.foo(p);

p.x * p.y;
}

Figure 8. Example for method dependencies.

overhead. Then the compiler uses interprocedural escape
information to find out that the parameter p does not escape
and can be allocated in the stack frame of calc. When
class B is loaded, calc must be deoptimized not only be-
cause A.foo was statically bound, but also because the
Point object may escape in B.foo.

However, it is not sufficient to record a dependency be-
tween calc and foo. Assume that the parameter p does
not escape A.foo just because the compiler inlines the vir-
tual method bar in foo. When another class is loaded
that overrides bar, the method foo is deoptimized due to
its dependency on bar. The machine code for calc must
be invalidated as well, because p may escape in the newly
loaded bar method.

If calc depended only on foo, it would not be deopti-
mized because method dependencies are not processed tran-
sitively. In other words, the compiler must record a depen-
dency between two methods m and m′ if

• m inlines m′ or calls it with static binding, or if

• a direct or indirect callee of m inlines m′ or calls it
with static binding, and m passes at least one stack-
allocated object to this callee.

Every compiled method stores a list of its dependencies.
When the compiler parses the method call of foo in calc
and uses interprocedural escape information of foo to al-
locate some parameters on the stack, it not only records a
dependency between calc and foo, but also inherits all
dependencies between foo and its callees.

5.2. Reallocation of Eliminated Objects

Deoptimization may be necessary when a new class is
added to the class hierarchy. The VM examines the super-
classes of the new class and marks dependent methods for
deoptimization. It also iterates over the interfaces imple-
mented by the new class and looks for methods that relied
on the fact that an interface had only one implementor.

Then the VM traverses the stacks of all threads. A frame
that belongs to a marked method is not immediately deop-
timized. Instead, the machine instruction at the program
counter for this frame is patched to invoke a run-time stub.
The actual deoptimization takes place when the frame is re-
activated after all callees have returned. This is called lazy
deoptimization [10]. The machine code is marked as non-
entrant, so that the VM interprets new invocations instead
of executing the patched machine code.

Before execution of the method can continue in the in-
terpreter, which does not know about scalar replacement,
objects whose allocations were eliminated by the compiler
must be reallocated on the heap. The reallocation code it-
erates over all object entries in the debugging information
and creates appropriate heap objects. Pointers to the heap
objects are encapsulated in handles and stored in the object
entries. If garbage collection is needed in the middle of re-
allocation, the newly allocated objects are visited because
pointers in handles are treated as root pointers.

The fields of a reallocated object are initialized using the
list of scope entries in the corresponding object entry. If a
field refers to another eliminated object, the list contains an
object entry that encapsulates the pointer to be stored in the
field. When the interpreter frame is set up, the pointers in
the object entries are copied into the appropriate stack slots
for local variables and the operand stack. Deserialization of
debugging information takes care that variables referring to
the same eliminated object are mapped to identical object
entries.

5.3. Reallocation of Stack Objects

If deoptimization occurs, it is guaranteed that no other
code in the system tries to access a scalar-replaced ob-
ject before control returns to the corresponding frame, be-
cause escape analysis proved its locality. Therefore, it is
acceptable to reallocate method-local objects lazily. Stack-
allocated objects, however, may be passed to the newly
loaded code which might allow them to escape the thread.
They must be reallocated immediately before the execution
of the program resumes, because otherwise a reference to
a stack object may be stored in a global variable or a heap
object.

The stack objects are either referenced by root pointers
and other stack objects or represented in the debugging in-
formation if no pointer to them exists. Figure 9 shows how
stack objects are reallocated on the heap. Note that arrows
to a stack object point to the bottom of the rectangle be-
cause addresses increase towards the top of the stack. The
reallocation is split into three phases:

1. At first, empty objects are allocated on the heap. Start-
ing with root pointers and object entries in the debug-
ging information, deoptimization recursively visits all

heap object

heap object

stack object

stack object

(1) allocate empty heap objects

heap object

heap object

stack object

stack object

(2) install forwarding pointers

heap object

heap object

stack object

stack object

(3) copy fields and adjust oops

Figure 9. Reallocation of stack objects.

stack objects. This ensures that the complete object
graph is reallocated. A data structure maps each stack
object to a handle that refers to the counterpart on the
heap and keeps the heap object alive if garbage collec-
tion is required.

2. Next, all handles are traversed to install forwarding
pointers from stack objects to heap objects. The for-
warding pointers are used later for the setup of the in-
terpreter frames. The garbage collector must not run
during the second and the third phase, because a for-
warding pointer would be visited repeatedly if an ob-
ject is referenced by more than one root pointer or
other stack object. This is not allowed for the same
reasons as for fields.

3. Finally, the handles are traversed again to copy the
contents of stack objects into the heap objects and to
replace pointers to stack objects with the forwarding
pointers. This phase also adjusts the pointers in stack
frames of compiled and interpreted methods.

The first phase is a recursive traversal of all stack objects,
but the second and third are linear phases. The forwarding
pointers remain in the stack objects until control returns to
the frame that hosts them. During lazy deoptimization, the
heap pointers are copied into the appropriate slots of the
interpreter frame.

5.4. Relocking of Thread-Local Objects

After reallocation, the newly allocated heap objects must
be relocked if synchronization on them was removed via es-
cape analysis. Figure 10 shows how objects are internally
represented by the Java HotSpotTM VM. The header word,
which stores the identity hash code as well as age and mark
bits for generational garbage collection, is also used to im-
plement a thin lock scheme [2, 3].

01header

class pointer

(a) unlocked object

stack frame

00

class pointer

displaced header

(b) locked object

Figure 10. Relocking of objects.

In an unlocked object, the last two bits of the header
word have the value 01. When a method synchronizes on
an object, the header word and a pointer to the object are
stored in a lock record within the current stack frame. Then
a pointer to the lock record is installed in the object header.
Since stack slots are always aligned at word boundaries, the
last two bits of the header word are now 00 and identify the
object as being locked. As long as an object is locked by
a single thread, the VM gets away with thin locks. Only
when another thread synchronizes on an already locked ob-
ject, the thin lock must be inflated to a heavyweight monitor
for the management of waiting threads.

In the relocking phase of deoptimization, the VM iterates
over all monitor entries in the debugging information and
determines if synchronization was removed. In this case,
we lock the reallocated object as though the compiled code
performed the locking and rely on the existing deoptimiza-
tion code to convert the lock into the interpreter’s represen-
tation. Since escape analysis proved the thread-locality of
the object, we can always use a thin lock. The compiler
reserves space for a lock record in the stack frame even if
synchronization was eliminated.

5.5. Setup of Interpreter Frames

When control returns to a method marked for deopti-
mization, the patched machine code invokes a run-time stub
that creates an array of virtual stack frames: one for the
method to be deoptimized and one for each inlined callee.
A virtual frame does not exist on the stack, but stores the
local variables, operand stack and monitors of a particular
method. Debugging information is used to fill the virtual
frame with the correct values from the register map and the
memory.

The method stack is adjusted as shown in Figure 11. The
frames of the run-time stub and the method to be deopti-
mized are removed and the virtual frames are unpacked onto
the stack. Pointers to reallocated objects are copied from the
object entries into the interpreter frames. Then a frame for
the continuation of the run-time stub is pushed back onto
the stack.

caller frame

frame of method
to be deoptimized

frame of run-time stub

caller frame

interpreter frame for
deoptimized method

interpreter frame for
inlined method

frame of run-time stub

Figure 11. Adjustment of the method stack.

The bytecode index from the corresponding scope de-
scriptor in the debugging information identifies the byte-
code in the method that has to be executed next. The ad-
dress of the interpreter code that handles the bytecode is
pushed onto the stack as the return address. When the run-
time stub returns, execution automatically continues in the
interpreter.

6. Evaluation

The performance gains achieved by scalar replacement,
stack allocation and synchronization removal largely de-
pend on the characteristics of the executed application. Pro-
grams that allocate a lot of short-lived objects benefit more
than programs that primarily perform mathematical com-
putations. The fastest run of the 227 mtrt benchmark, for
example, is accelerated by more than 30%, and the speedup
for the complete SPECjvm98 [19] is about 5% when it is
compiled with escape analysis. The measurements and the
impact of escape analysis on compilation time are described
in [14] and [15] and will not be elaborated here.

Since deoptimization represents an exceptional situation
and thus is not performance-critical, measurements of its
time consumption are not really meaningful. Therefore, in-
stead of giving time measurements we chose a variety of
counters to evaluate how our modifications in the run-time
environment affect the machine code, debugging informa-
tion, the stack frames and garbage collection.

This section presents the results for four allocation-
intensive SPECjvm98 benchmarks and SPECjbb2005 (see
Tables 1 and 2). The SPECjvm98 benchmarks were started
only once and not repeated until stability in run time
was reached. All benchmarks were executed on an Intel
Pentium 4 processor 540 with 3.2 GHz and 1 GB of main
memory, running Microsoft Windows XP Professional.

227 mtrt allocates many short-lived objects and thus
provides a lot of opportunities for scalar replacement of
fields. 74.1% of all object allocations are eliminated. The
size of heap-allocated memory decreases by 73%, so that
only 52 instead of 165 garbage collection cycles are nec-
essary. 39 methods whose size exceeds the usual inlining
threshold are inlined in order to replace more objects by
scalar variables. Therefore, the machine code grows by
2.4% at nearly the same number of compiled methods. De-
bugging information grows by 7.9%, because slightly more
method dependencies are recorded and 1,015 object entries
must be created, even though a usual run of the SPECjvm98
suite does not require deoptimization.

209 db yields similar results. 91.5% of object alloca-
tions are eliminated, which reduces the size of allocated
heap space by 61.9% and the number of garbage collections
from 76 to 35. The compiler emits 3 allocation sites for
stack objects. Although they are never executed, the com-
piler needs to reserve frame size and create oop map entries
for them. The size of the debugging information slightly
increases due to the 97 object entries.

228 jack allocates a large number of string buffers that
do not escape from the creating method and its callees.
16.8% of all objects are allocated on the stack, which re-
duces the size of allocated heap space by 8.6%. 49.2% of
the executed write barriers perform a bounds check. Dur-
ing the 212 garbage collection cycles, only 120 stack ob-
jects are live and must be processed by the wrapper closure.
789 object entries are emitted for the reallocation of scalar-
replaced and stack-allocated objects.

213 javac allocates 9.7% of objects on the stack. 48.2%
of all executed write barriers perform a bounds check.
An independent micro benchmark yielded that extended
write barriers are approximately 20% slower than standard
write barriers, but the additional optimizations still achieve
a speedup of about 3.2% for this benchmark. Although
a write barrier with bounds check requires 30 instead of
12 bytes on Intel, the machine code is in total smaller
with escape analysis than without, due to eliminated allo-

object allocations eliminated
objects allocated on stack
objects allocated on heap

methods compiled
machine code size (bytes)
average frame size (words)

123
111,024

14.21

65
53,616
15.20

–
–

3,175,480

–
29,972,806

–

170
2,431

–

73,601
76
–

23,621
41
–

64
54,048
16.06

2,892,496
0

267,129

0

136,593
26,927,554

167
2,517

23

28,069
35
0

24,693
45
97

232
389,152

14.66

–
–

6,165,896

–
10,555,098

–

775
15,567

–

194,828
231

–

133,450
235

–

232
357,920

17.03

3,043
1,034,112
5,126,541

404,363
4,949,064
5,186,503

777
14,951

504

178,031
212
120

144,281
261
789

–
–

6,423,128

4,760,042
147,211

1,519,648

64,200
2,254,893

558,439

74.1%
2.3%

23.6%

91.5%
0.0%
8.5%

0.0%
16.8%
83.2%

2.2%
78.4%
19.4%

0.0%
99.5%
0.5%

3.8%
47.0%
49.2%

+2.9%
+6.4%

–

−1.8%
+3.5%

+0.3%
−4.0%

–

−
−68.5%

–

73.0% −61.9%
−53.9%

–

−8.6%
−8.2%

–

+7.9%
+7.3%

–

+4.5%
+9.8%

–

+8.1%
+11.1%

–

–
+2.4%
+4.9%

–
+0.8%
+5.7%

–
−8.0%

+16.2%

–
2,839,211

–

272
10,530

–

158,078
165

–

42,653
52

192

280
11,208

215

125
113,664

14.91

62,254
289

–

67,197
310

1,015

_227_mtrt _209_db _228_jack

w/o EA w/o EA w/o EAwith EA with EA with EA

stores without barrier
stores with standard barrier
stores with extended barrier

heap memory allocated (kB)
garbage collection cycles
stack objects wrapped

debugging info (bytes)
method dependencies
object entries

safepoints in machine code
standard oop map entries
stack entries in oop map

535
545,984

16.38

–
–

3,690,136

–
19,181,052

–

1,510
32,220

–

186,519
222

–

285,920
524

–

536
525,472

17.87

49,283
356,248

3,259,700

231,913
9,694,282
9,241,550

1,512
31,705

464

178,771
210
43

301,032
539
937

_213_javac

w/o EA with EA

1.4%
9.7%

88.9%

1.2%
50.6%
48.2%

+0.1%
−1.6%

–

−4.2%
−5.4%

–

+5.3%
+2.9%

–

–

+9.1%
−3.8%

Table 1. Statistical data for SPECjvm98 benchmarks with and without escape analysis.

cation sites, pointer loads and field accesses. Debugging
information contains 937 object entries and 539 instead of
524 method dependencies.

Table 2 shows the same data for the SPECjbb2005
benchmark [18]. For a better comparison, we used a slightly
modified variant which executes 50,000 transactions instead
of running for a fixed time. 5% of the object allocations are
eliminated and 1.4% of objects are allocated on the stack,
which marginally reduces the allocated heap space and the
number of garbage collection cycles. With escape analy-
sis, an additional 203 methods are inlined, which affects
the size of the machine code and the number of dependen-
cies. Debugging information grows by 11.9% and contains
1,067 entries for the reallocation of optimized objects.

In all of these benchmarks, escape analysis helps to re-
duce the amount of data allocated on the heap. The resulting
machine code executes faster, mainly because the overhead
for allocation and initialization is eliminated, but also be-
cause the garbage collector runs less frequently. Although
deoptimization usually does not occur, support for it is in-
dispensable for the general use of escape analysis in the Java
HotSpotTM VM. The impact on the performance and mem-
ory consumption is rather small and more than outweighed
by the gains of the additional optimizations.

7. Related Work

Our escape analysis algorithm was influenced by the
work of J.-D. Choi et al. [6], B. Blanchet [4], E. Ruf [16],
J. Bogda and U. Hölzle [5], J. Whaley and M. Rinard [23],
and D. Gay and B. Steensgaard [9]. The implementation is

object allocations eliminated
objects allocated on stack
objects allocated on heap

methods compiled
machine code size (bytes)
average frame size (words)

485
451,088

14.87

–
–

14,055,982

–
41,418,672

–

962
23,773

–

599,069
220

–

208,855
768

–

485
477,632

17.03

701,731
193,788

13,141,789

113,505
16,581,547
22,400,091

980
24,020

386

577,251
212

6

233,808
795

1,067

SPECjbb2005

w/o EA with EA

stores without barrier
stores with standard barrier
stores with extended barrier

heap memory allocated (kB)
garbage collection cycles
stack objects wrapped

debugging info (bytes)
method dependencies
object entries

safepoints in machine code
standard oop map entries
stack entries in oop map

5.0%
1.4%

93.6%

0.3%
42.4%
57.3%

+1.9%
+1.0%

–

−3.6%
−3.6%

–

+11.9%
+3.5%

–

–
+5.9%

+14.5%

Table 2. Statistical data for SPECjbb2005.

efficient enough for a dynamic compiler, conservative if a
small additional gain would imply a time-consuming analy-
sis, and able to deal with incomplete and partly compiled
programs. The adaptation of the run-time environment was
influenced by the algorithms and data structures used in the
Java HotSpotTM VM.

U. Hölzle et al. present dynamic deoptimization as a con-
version of optimized code into unoptimized code [10]. They
use dynamic deoptimization to enable the system to debug
individual methods at the source code level while executing

others at full speed, as well as to change a running program
and immediately observe the effects of the change. The au-
thors also introduce the term lazy deoptimization for defer-
ring deoptimization until control returns to the method to be
deoptimized.

K. Ishizaki et al. propose code patching instead of com-
pletely deoptimizing or recompiling a method [13]. The
compiler analyzes the current class hierarchy to inline or
directly jump to a virtual method, but also generates backup
code which performs the original dynamic call. When the
assumption about the class hierarchy becomes invalid, the
machine code is patched to henceforth execute the backup
code. This approach involves less run-time overhead than
deoptimization, but it is also less flexible and e.g. not suit-
able for undoing optimizations like scalar replacement or
stack allocation.

D. Detlefs and O. Agesen provide an approach for in-
lining virtual methods without the need to deoptimize [8].
If a method m1 calls p.m2, they suggest to inline m2 only
if p already exists before m1 is called and for example is
passed to m1 as a parameter. When a class is loaded later
that overrides m2, then either m1 has not been invoked yet
or p has already been allocated. New invocations of m1
may be called with an instance of the new class and thus
must not execute the optimized machine code, but currently
active invocations are not affected by the class loading and
can safely run to the end. This concept could also be used
for the interprocedural escape analysis and would eliminate
the need to reallocate objects. However, general interproce-
dural escape analysis and inlining as it is used in the current
Java HotSpotTM VM requires a deoptimization mechanism.

To reduce the costs of synchronization that cannot be
eliminated, the Java HotSpotTM VM performs biased lock-
ing [17]. Normally, an object must be locked atomically be-
cause two threads may synchronize on it at the same time.
In the context of biased locking, a pointer to the current
thread is stored in the header of an object when it is locked
for the first time. The object is said to be biased towards the
thread. As long as the object is locked and unlocked by the
same thread, synchronization need not be atomic. During
deoptimization, the biasing must be revoked for all objects
that are currently locked by deoptimized methods. As with
reallocation of stack objects, this is not done lazily but im-
mediately before program execution resumes.

R. Veldema et al. use reallocation of objects to support
aggressive object combining [22]. The optimization com-
bines two objects o1 and o2, where o1.f points to o2, by
appending the fields of o2 to the object o1. This reduces
the overhead of memory allocation and deallocation, as well
as the number of pointer indirections because no pointer for
the object o2 is required to access its fields. A new object
that is assigned to o1.f later is again inlined into o1. How-
ever, if o2 is still reachable by another variable, its fields

must not be overwritten. This situation is detected at run
time. The object o2 is then reallocated outside of o1 and
all pointers to it are adjusted.

T. Suganuma et al. implemented a region-based compi-
lation technique, which does not compile complete methods
but only frequently executed code regions [20]. The selec-
tion of regions to be compiled is based on static heuristics
and dynamic profiling information. To allow a safe exe-
cution of partly compiled methods, the exit from a com-
piled region must be triggered. Since region-based com-
pilation is performed only at high optimization levels of
the compiler, the method in which a region exit occurs
is known to be performance-critical. Therefore, it is re-
compiled instead of being continued in the interpreter. To
avoid recursive recompilation, the method is compiled as
a whole and prepares entry points for all future possible
transitions. Similar to the deoptimization mechanism of the
Java HotSpotTM VM, the current stack frame must be re-
placed with a frame for the recompiled method. Only if
the old and the new frame are of the same shape, execution
continues without a frame replacement.

8. Conclusions

This paper summarizes the results of our research project
on run-time support for optimizations based on an escape
analysis in the Java HotSpotTM VM. We introduced a rep-
resentation for optimized objects used by the compiler
to communicate information about scalar replacement of
fields, stack allocation and synchronization removal to the
garbage collector and the deoptimization framework. We
presented an extended write barrier that is emitted when the
compiler does not know if an object is located on the stack
or on the heap. A wrapper for oop closures abstracts from
stack objects and presents their pointer fields as root point-
ers to an unmodified garbage collector.

The interprocedural analysis neither relies on a closed-
world assumption nor on preexistence of method receivers.
Class hierarchy analysis is used to identify monomorphic
call sites and to perform aggressive optimizations. A light-
weight bytecode analysis produces escape information for
methods that have not been compiled yet. The deoptimiza-
tion framework enables dynamic class loading to invalidate
machine code even while the invalidated method is run-
ning, because the compiler provides sufficient information
to undo the compiler optimizations on demand and to con-
tinue execution of the method in the interpreter. Method-
local objects whose allocations were eliminated are reallo-
cated and initialized lazily, whereas stack-allocated objects
are immediately moved to the heap. Objects for which syn-
chronization was removed are relocked before the newly
loaded code has the chance to make them accessible for
other threads.

The deoptimization of objects is implemented in such a
way that the garbage collector can safely run in the mid-
dle of reallocation. Handles and forwarding pointers ensure
that reallocated objects are not deallocated until pointers to
them are stored in the interpreter frame. If the VM runs
out of memory during reallocation, it currently terminates
because the program does not expect an exception at this
point. The situation could be avoided by guaranteeing at
method entries that enough heap memory is free to cover
potential reallocation during deoptimization. We will ad-
dress this issue as future work.

Acknowledgments

We want to thank Kenneth Russell, Thomas Rodriguez
and David Cox from the Java HotSpotTM compiler group at
Sun Microsystems for the close collaboration and the con-
tinuous support of our project.

References

[1] O. Agesen and D. Detlefs. Mixed-mode bytecode execution.
Technical Report TR-2000-87, Sun Microsystems Laborato-
ries, June 2000.

[2] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. S. Ra-
makrishna, and D. White. An efficient meta-lock for imple-
menting ubiquitous synchronization. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 207–
222, Denver, Nov. 1999.

[3] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin
locks: Featherweight synchronization for Java. In Pro-
ceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 258–
268, Montreal, June 1998.

[4] B. Blanchet. Escape analysis for JavaTM: Theory and prac-
tice. ACM Transactions on Programming Languages and
Systems, 25(6):713–775, Nov. 2003.

[5] J. Bogda and U. Hölzle. Removing unnecessary synchro-
nization in Java. In Proceedings of the ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 35–46, Denver, Nov. 1999.

[6] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and
S. P. Midkiff. Stack allocation and synchronization opti-
mizations for Java using escape analysis. ACM Transactions
on Programming Languages and Systems, 25(6):876–910,
Nov. 2003.

[7] J. Dean, D. Grove, and C. Chambers. Optimization of
object-oriented programs using static class hierarchy analy-
sis. In Proceedings of the European Conference on Object-
Oriented Programming, pages 77–101, Århus, Aug. 1995.

[8] D. Detlefs and O. Agesen. Inlining of virtual methods.
In Proceedings of the European Conference on Object-
Oriented Programming, pages 258–278, Lisbon, June 1999.

[9] D. Gay and B. Steensgaard. Fast escape analysis and stack
allocation for object-based programs. In Proceedings of the
International Conference on Compiler Construction, pages
82–93, Berlin, Mar. 2000.

[10] U. Hölzle, C. Chambers, and D. Ungar. Debugging opti-
mized code with dynamic deoptimization. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 32–43, San Francisco,
June 1992.

[11] A. L. Hosking and R. L. Hudson. Remembered sets can also
play cards. In Proceedings of the ACM OOPSLA Workshop
on Memory Management and Garbage Collection, Wash-
ington, D.C., Oct. 1993.

[12] Intel Corporation. IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 2A & 2B: Instruction Set Reference,
2006. Order numbers 253666-018 and 253667-018.

[13] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and
T. Nakatani. A study of devirtualization techniques for
a JavaTM just-in-time compiler. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 294–
310, Minneapolis, Oct. 2000.

[14] T. Kotzmann. Escape Analysis in the Context of Dynamic
Compilation and Deoptimization. PhD thesis, Institute for
System Software, Johannes Kepler University Linz, Oct.
2005.

[15] T. Kotzmann and H. Mössenböck. Escape analysis in the
context of dynamic compilation and deoptimization. In Pro-
ceedings of the International Conference on Virtual Execu-
tion Environments, pages 111–120, Chicago, June 2005.

[16] E. Ruf. Effective synchronization removal for Java. In Pro-
ceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 208–
218, Vancouver, June 2000.

[17] K. Russell and D. Detlefs. Eliminating synchronization-
related atomic operations with biased locking and bulk re-
biasing. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, pages 263–272, Portland, Oct. 2006.

[18] Standard Performance Evaluation Corporation. The SPEC
JBB2005 Benchmark. http://www.spec.org/jbb2005/.

[19] Standard Performance Evaluation Corporation. The SPEC
JVM98 Benchmarks. http://www.spec.org/jvm98/.

[20] T. Suganuma, T. Yasue, and T. Nakatani. A region-based
compilation technique for a Java just-in-time compiler. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 312–
323, San Diego, June 2003.

[21] Sun Microsystems, Inc. Java Platform, Standard Edition 6
Source Snapshot Releases. http://download.java.net/jdk6/.

[22] R. Veldema, C. J. H. Jacobs, R. F. H. Hofman, and H. E.
Bal. Object combining: A new aggressive optimization
for object intensive programs. In Proceedings of the Joint
ACM-ISCOPE Conference on Java Grande, pages 165–174,
Seattle, Nov. 2002.

[23] J. Whaley and M. Rinard. Compositional pointer and escape
analysis for Java programs. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 187–206, Denver,
Nov. 1999.

