JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Author

Marks Osipovs
01428789
Submission

Institute of Systems
Software

Thesis Supervisor
DI Dr. Markus Weninger

New Exam Question
Types for the Online
Examination System

Xaminer

Bachelor’s Thesis

to attain the academic degree of

Bachelor of Science
in the Bachelor's Program

Informatik

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Str. 69

4040 Linz, Austria
www.jku.at

DVR 0093696

Abstract

Despite ongoing development, the area of online examination is still somewhat underutilized
in the eld of academic teaching. In this thesis, we help increase the usability of the online
examination platform Xaminer by adding two new question types. Gap text questions should
consist of a text with llable blanks. Similarly, gap image questions should contain an image
with blanks. Students have to Il the blanks during the exam to answer the questions.

First, we determine the system requirements and usability requirements for each question
type. Then, we provide an in-depth insight into our implementation. Finally, we evaluate the
user experience of the new question types by analyzing typical work ows and provide several
ideas on how they can be improved in the future.

Kurzfassung

Trotz stetiger Verbesserungen ist das Gebiet der Online-Prifungen im Bereich der akademis-
chen Lehre unterreprasentiert. In dieser Arbeit helfen wir die Benutzerfreundlichkeit der Online-
Prufungsplatform Xaminer zu verbessern, indem wir zwei neue Fragetypen hinzufiigen. Lickentext-
Fragen sollen aus einem Text mit ausfullbaren Blankofeldern bestehen. Ebenso sollen Liickenbild-
Fragen ein Bild mit Blankofeldern beinhalten. Studenten miussen die Blankofelder wahrend der
Prufung ausfillen, um die Fragen zu beantworten.

Zuerst bestimmen wir die System- und die Benutzerfreundlichkeitsanforderungen fir je-
den Fragetypen. Danach geben wir einen ausfuhrlichen Einblick in unsere Implementierung.
Schlussendlich werten wir die Benutzerfreundlichkeit der neuen Fragetypen aus, indem wir die
typischen Arbeitslaufe analysieren, und bieten einige Verbesserungsvorschlage fur die Zukunft
an.

Table of Content

Contents
Abstract [
Kurzfassung [
1 Introduction 2
2 Background 4
2.1 SYStem OVEIVIEW o e e e e e e 4
2.2 Technology stack e 6
3 Gap Text Questions 8
3.1 Approach e e e 8
3.2 Implementation 9
3.21 Block Editor 9
3.22 Gaptagso e 11
3.2.3 Block Visualizer 13
4 Gap Image Questions 16
4.1 Approach e 16
4.2 Implementation L e 17
421 Block Editor 17
4.2.2 Block Visualizer 20
5 Evaluation of the user experience 24
5.1 Gap Text QUESHIONS o 24
5.2 Gaplmage QUeStions 27
6 Future Work 30
6.1 Gap Text QUESLIONS e e 30
6.2 Gaplmage Questions 31
7 Conclusion 32
Literature 34

1 Introduction

Academia has always been a driving force behind the development of the internet it is no
coincidence that the World Wide Web was created in 1989 speci cally at CERN. It started as
a document management system that would allow users from anywhere in the world to access
and modify data. The rise of personal computers and smartphones combined with the increasing
internet speeds have made the internet irreplaceable in many aspects of everyday life. And
yet, to this day there are areas where this technology is still not widely adopted. Following
the outbreak of the COVID-19 pandemic, one of such areas was revealed to be the eld of
examination in academic institutions. Handwritten exams are one excellent example for the lack
of digitalization.

Several online platforms that allow students to take their exams over the internet already
exist. The most prominent one in Austria is Moodle [9]. However, these platforms do not
target speci c topics, courses, or faculties and thus o er only general question types. Therefore,
they are ill-suited for specialized elds of science, such as the eld of computer science. For
example, standard open-ended freewriting questions must be used for coding assignments on
Moodle. They lack important quality-of-life programming features such as syntax highlighting
or automatic code indentation, negatively impacting the students' ability to perform during the
examination.

To address this, the Institute of Software Systems at the Johannes Kepler University Linz
developed theXaminer platform in early 2020. Using this Web application, lecturers can create
exams online by writing their own questions digitally with the help of several question types.
Students can take these exams online while being supervised via video over a conference call.
Since its inception, several new features and improvements have been added to the platform as
a part of an ongoing development process. Yet, Xaminer's functionality still remains limited
in some areas. At the time of writing, it supports only a small set of standard question types,
such as open-ended freewriting questions, as well as single-choice and multiple-choice questions.
Additionally, due to the platform being developed and tested at a Computer Science institute,
it supports code questions speci cally designed for programming tasks that provide the much
needed quality-of-life features.

In this thesis, we extend Xaminer's functionality by adding support for two new exam question
types. A Gap Text Question (GTQ) allows exam authors to provide a text and mark parts of
it as llable blanks (called gap9. Students have to Il the gaps during an exam with correct
answers. In a similar fashion, aGap Image Question (GIQ) contains an image with llable gaps,
with additional answer options that are provided by the exam authors during exam creation.
Students have to Il a gap by choosing the correct option.

Their inclusion enables Xaminer to be operated in a variety of new ways, allowing its usage
to spread to new faculties and lectures.

2 Background

In this section, we discuss the status quo of the Xaminer system and its underlying technology
stack!.

2.1 System overview

Figure 1: An exam with a text block and a single choice question block, as seen during exam
creation.

First, we take a look at how an exam is created and processed by the current system. The
Xaminer platform already provides a user interface to simplify exam creation. Authorized users
have access to an administrative part of the Web application where they can create and edit
their exams, as well as manage students and supervisors. Each exam consists of one or multiple
blocks that can be deliberately added or removed by the exam author. Each block represents
one question of a certainquestion type Their contents and user interface vary from each other,
as showcased in Figure 1. For example, we can use a Text block to display information to

1Set of technologies used to build and execute an application.

the students, but it cannot be interacted with. A Multiple-Choice Question block contains a
description of the question and additionally includes a checkbox for each possible answer. Many
blocks for the various tasks that can frequently be found in typical university exams are already
available as a part of the system, i.e., blocks for open-ended freewriting tasks, for coding problems,
for single-choice questions, for the multiple-choice questions, and for image questions.

When exam authors add a new block to the exam, it is split into two parts by Xaminer.
On the left side of the Web page, one can nd theBlock Editor, where lecturers can modify a
guestion by interacting with the user interface. The right side of the screen contains theBlock
Visualizer, which renders the question as it would be visible to the students during the exam.
Additionally, a preview of the entire exam from the students' perspective can be viewed using
the "Full exam preview" button (see bottom of Figure 1).

Figure 2: An exam with a single choice question block and a multiple choice question block.
"Vienna" has been marked as the correct answer to the single choice question. "Paris" and
"Rome" are marked as the correct answers to the multiple choice question.

Now, let us take a look at the implementation of the blocks. A base Block Editor consists
of a single text eld that is implemented by a textarea HTML element. Exam authors can use
the text eld to provide the question description. The Text block 1 in Figure 1 showcases this
base Block Editor design. All other Block Editors are built upon it, thus, they also all include a

textarea HTML element. Additional standard user interface elements can be provided when re-
quired by the other question types, such as radioboxes for single-choice questions and checkboxes
for multiple-choice questions. Furthermore, form inputs or sliders to modify various settings of

a block can be included. Figure 2 shows an example usage of radioboxes and checkboxes in two
di erent blocks.

The students are not authorized to access the Block Editors and only interact with the Block
Visualizers during an exam. When they access an exam, the user interface of the visualizer is
slightly altered. During exam creation, the question title and description are located above the
area that the students can interact with. During the exam process, the area is now located to
the left of it, as can be seen in Figure 3.

Figure 3: (D A single choice question rendered during the exam creation (exam author view).
(2 A single choice question rendered during the exam (student view).

2.2 Technology stack

The underlying technologies that power the application can be separated into two groups
the ones for the frontend and the ones for the backerd For the frontend, Xaminer uses the
TypeScript [7] programming language. Additionally, using Vue [13] as its model-view-viewmodel
frontend framework allows us to keep the code base clean by splitting it intoVue components
A Vue component is a logical module that encapsulates custom Ul elements and programming
logic. It can be reused throughout the application. Ul elements such as buttons, dropdowns, form
inputs, sliders, or menus are provided by HTML and styled using the BootstrapVue [1] framework.
The backend is powered by a Spring Boot [10] application written in the Kotlin [4] programming
language and uses a MongoDB [8] database to store the exams, i.e., student submissions.

The Block Visualizer then accesses the con guration to render the exam. However, it would
be very ine cient to communicate every change from a Block Editor to a Block Visualizer via
the database. To solve this problem, the Block Visualizer fetches the con guration from the
database exactly once, when the Vue component is loaded. From there on, the Block Visualizer
listens for changes in the Block Editor, and updates itself accordingly, as illustrated in Figure 4.

2Frontend refers to parts of the app commonly exposed to and accessible by the user, as opposed to the
backend, which is hidden and works in the background.

Figure 4: Block Editor - Block Visualizer - Database model.

To add Gap Text Questions and Gap Image Questions to the existing Xaminer platform, we
need to create a new block for each question. The new Block Editors must provide additional user
interface elements on top of the ones already present in Xaminer, to allow for quick and intuitive
creation of exam questions. The new Block Visualizers must be reusable, i.e., we should be able
to use them for both exam creation and the examination process itself. This will ensure that
the exam questions appear and behave the same way for both lecturers and students, asserting
a consistent experience. Therefore, the Block Visualizers must comply with our Block Editor -
Block Visualizer - Database model (see Figure 4). Additionally, the visualizers should have the
option to record students' answers and expose them to the rest of the app, to store the answers
in the database as part of a submission.

3 Gap Text Questions

In this section, we discuss the design process and the implementation of Gap Text Questions.

3.1 Approach

In this section, we determine the system requirements and usability requirements for the Gap
Text Questions and discuss our thought process when designing them.

Requirements de nition. The rst step to design the new Gap Text Question question type
was to design the user interface of the Block Editor. We started by determining what would be
required for the exam author to create the question with the desired functionality, and what Ul
elements we would have to include to make the process e ortless.

A text eld has to be present to specify a text that describes the assignment, just as with
other Xaminer questions. Additionally, we require a separate text eld to provide the text with
the reference solution, which we refer to as theéemplate text The lecturers need a way to mark
parts of the template text to be identi ed as gaps, i.e., those parts that later have to be lled in
by the students. Two kinds of gaps are required:

1. Inline Gaps can be located in one line of text and can have text to the left and right of
them.

2. Multiline Gaps that stretch several lines and can only have text above and below them.

A schematic showcasing how the Gap Text Question could appear to students during an exam
can be seen in Figure 5.

Figure 5: A mockup Gap Text Question. An and a Multiline Gap are specied in a
paragraph of text.

A text eld for the description is already included as a part of the base Block Editor. The
most straightforward way to provide the template text was to provide another, separatetextarea
element. In order to mark the gaps of the template text, we looked at features of markup
languages such as HTML [11] or Markdown [2]. They allow programmers to provide speci c tags
within the contents of a document. Information enclosed by these tags is treated di erently from
the rest of the text by the text processors. The exact approach varies based on the type of tag
that encapsulates the information within. For example, text surrounded by two asterisks, such

as this **bold text** | is rendered by Markdown asbold text . As we can observe, the tags
themselves are not visible to the end user. By utilizing this mechanic, we could specify where in
our template text the gaps would start and end.

SVG as a mean of visualization. With the Block Editor layout gured out, the next problem

we had to solve was the Block Visualizer. First, (1) it must be able to process and visualize the
two kinds of gaps. Additionally, it would be ideal if the students are not limited in their work ows
during the exam process. Everyday features that are expected of modern text editors should be
allowed. Thus, students should be able to: (2) copy and paste text, (3) use keyboard shortcuts
such as(ctrl |+ [V], [ctrl]+ [2], and others to modify the text, and (4) right click a text selection

to bring up a context menu that provides means of editing the text.

A straightforward solution to render the template text is to use Scalable Vector Graph-
ics (SVGs). Despite originally being designed for vector graphics, they allow for inclusion of
other HTML elements. Some elements are supported natively, for example, théext element for
the inclusion of text in graphics. Elements from other XML namespaces (such as HTML) must
be included by importing them using aforeignObject element and wrapping them in it. In our
case, we are using two elements from the (X)HTML namespaceinput elements display a small
inline box, i.e., a rectangular text eld that is placed on the same line as the surrounding text.
Using it, users can freely provide an input text, which makes it suitable to be used for Inline
Gaps.

As input elements do not support multiple lines of text, we usetextarea elements for
the Multiline Gaps. Additionally, textarea elements can be resized arbitrarily, allowing us to
accommodate inputs of any length.

SVGs use a combination of a coordinate system and dedicated width and height values for
placement of elements and drawing of objects. This means that we can deliberately place and
resize ourinput and textarea elements by moving and resizing either the elements themselves
or their parent foreignObject element.

Finally, we determined that solutions provided by students might be longer than the solution
that was intended by the exam author. It is thus necessary to include a mechanism to gracefully
handle these overlong answers.

3.2 Implementation

In this section, we discuss the details of the implementation of Gap Text Questions and the
layout of their user interface.

3.2.1 Block Editor

Implementing the Block Editor for Gap Text Questions was simpli ed using other Xaminer
Block Editors as a template. An example showing the GTQ Block Editor (1) and the GTQ Block
Visualizer (2) can be seen in Figure 6. Thaextarea element for the question description(3) is
already included as a part of every base Block Editor. Additionally, we added a secontkextarea
element to our Block Editor to provide the template text (4). Further controls for the scaling
of the x-axis (5), the scaling of the y-axis(6), and for creating gaps in the template text(7) are
implemented using BootstrapVue's standard user interface elements.

	Abstract
	Kurzfassung
	Introduction
	Background
	System overview
	Technology stack

	Gap Text Questions
	Approach
	Implementation
	Block Editor
	Gap tags
	Block Visualizer

	Gap Image Questions
	Approach
	Implementation
	Block Editor
	Block Visualizer

	Evaluation of the user experience
	Gap Text Questions
	Gap Image Questions

	Future Work
	Gap Text Questions
	Gap Image Questions

	Conclusion
	Literature

