Interoperability from
java.time to Graal.js
Temporal

Bachelor’s Thesis

to confer the academic degree of
Bachelor of Science

in the Bachelor’s Program

Computer Science

JOHANNES KEPLER
UNIVERSITY LINZ

Author
Lukas Tiefenthaler
k11907883

Submission
Institute for System
Software

Thesis Supervisor
DI Lukas Makor

Assistant Thesis Supervisor
Dr. Christian Wirth

January 2023

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straf3e 69
4040 Linz, Austria

jku.at

https://jku.at/

Sworn Declaration

I hereby declare under oath that the submitted Bachelor’s Thesis has been written solely
by me without any third-party assistance, information other than provided sources or
aids have not been used and those used have been fully documented. Sources for literal,
paraphrased and cited quotes have been accurately credited.

The submitted document here present is identical to the electronically submitted text
document.

Linz, January 2023

Lukas Tiefenthaler

Lukas Tiefenthaler

Lukas Tiefenthaler
Bild platziert

Abstract

GraalVM allows embedding language interpreters like Graal.js into Java applications.
Using GraalVM’s Polyglot Interoperability features, the Java application can exchange
data with the guest language. Using the Interop protocol, the guest language can query
data of the host language (Java) similarly to querying native data of the guest language.
An example is to read from a Java Array in code where a JavaScript Array is expected.
That means a Java Array must be supported by the JavaScript code.

Both, Java Temporal (java.time.*) and JavaScript Temporal, are APIs that contain types
that describe date and time values. Furthermore, those libraries implement functionali-
ties, which can be used to calculate using these values. For example, adding two durations
together.

As part of this thesis, java.time.* should be implemented using a conversion, which
can translate Java Temporal objects into Java time objects. To achieve this goal, these
conversion methods must be implemented. They ensure, that the Java object, which
should be supported by the JavaScript code is converted correctly, as well as helper
functions, that determine which Temporal class object is needed.

Kurzfassung

GraalVM erlaubt es eingebettete Sprachinterpreter, wie Graal.js in Java Anwendungen
zu benutzen. Mit der Benutzung von GraalVM’s "Polyglot Interoperability"Feature kann
die Java Anwendung Daten mit einer Gast Sprache austauschen. Man benutzt das In-
terop"Protokoll, um Daten der Hauptsprache (Java) in einer Gastsprache anzufragen,
dhnlich wie wenn man lokal Daten einer Gastsprache anfrégt. Ein Beispiel hierfiir ist das
lesen von einem Java Array, dort wo ein JavaScript Array erwartet wird. Das bedeutet,
dass ein Java Array von einem JavaScript Code unterstiitzt werden muss.

Die Java Temporal (java.time.*) und die JavaScript Temporal sind beides APIs, welche
Typen enthalten mit welchen sie Datums- und Zeit-Werte beschreiben. Auflierdem imple-
mentieren diese Bibliotheken Funktionalitdten, welche benutzt werden kénnen, um mit
diesen Werten zu rechnen. Zum Beispiel, das Addieren von von zwei Zeitspannen.

Als Teil dieser These soll java.time.* mithilfe einer Konvertierungsfunktion implemen-
tiert werden, welche Java Temporal Objekte in Java time Objekte tibersetzen kann. Um
dieses Ziel zu erreichen, sind Umwandlungsmethoden implementiert worden. Diese ver-
sichern, dass das Java Objekt, welches von einem JavaScript Code unterstiitzt werden
soll, richtig umgewandelt worden ist, sowie Hilfsfunktionen, welche feststellen, welches
Temporal Klassenobjekt gebraucht wird.

Contents

Abstract iiii
Kurzfassung iv
1 Introduction 1
2 Fundamentals 3
2.1 GraalVM . . .o 3
2.2 ECMAScript e 3
23 Truffle e 3
2.3.1 Annotations 4

24 Graaljs 4
2.5 ECMAScript Temporal proposal 5

3 Interoperability support with java.time 6
3.1 Algorithm 6
3.2 JavaScript Temporal class objects 6
3.2.1 Imstant 7

3.22 Duration [6] 7

3.2.3 TimeZone Lo 8

324 PlainTime L 8

325 PlainDateo 8

4 Implementation 9
4.1 Setting up the environment 9
4.2 Conversion helper methods L 0L 9
4.2.1 java.time.Instant to Temporal.Instant 9

4.2.2 java.time.Instant to Temporal.Duration 10

4.2.3 java.time.Instant to Temporal. TimeZone 11

4.2.4 java.time.Instant to Temporal.PlainTime 12

4.2.5 java.time.Instant to Temporal.PlainDate 13

4.3 Builtinmethods. L 15
4.3.1 Temporal Instant 15

4.3.2 Temporal Duration 19

4.3.3 Temporal TimeZone 20

4.3.4 Temporal PlainTime L. 21

4.3.5 Temporal PlainDate 23

4.4 ForeignObjectPrototypeNode 24

5 Testing 26
5.1 Tests o o e 26
5.2 Problems 27
52.1 Arity Error 27

5.2.2 TypeError 27

5.2.3 Other problems 27

6 Conclusion 28
Bibliography 29

Chapter 1

Introduction

GraalVM enables the integration of language interpreters like the Graal.js into Java appli-
cations. Using this technology in combination with GraalVM’s Polyglot Interoperability
features, an application, in this case a Java program can exchange data with a guest
language, for example JavaScript. To do that, it uses the Interop protocol, which enables
the guest language to query data from the host language (Java) similarly to querying
native data of the guest language. For example, this process can be imaged as reading
a Java array in code where a JavaScript array is expected. That means, that the Java
array must be supported by the JavaScript code.

For this thesis, this process is applied to the Java Temporal (java.time.*) package, as
well as its respective counterpart in JavaScript, the JavaScript Temporal package. Both
of these packages describe date and time values, as well as functionalities, which are
used to calculate with them. For example, calculating the duration between two points
in time.

However, to make Java Temporal compatible with JavaScript Temporal, multiple con-
version methods must be implemented, in order to make Java Code readable for the
JavaScript language. These conversion methods must be able to link those two languages
together and enable an exchange of data, as well as ensure, that they are converted cor-
rectly and without error. For that however, they need the correct input values, which
have to be calculated differently for each Temporal class object. Furthermore, the con-
version methods must be told which Temporal class object it is currently working on.
For that, additional methods are required, which will be topics of this thesis.

It should be noted, that for this project, only the conversion methods, as well as case
handling are part of this project. This thesis will only go into detail about those features,
and only on a surface level explain other functionalities, or emit them completely, if
deemed unnecessary. With this thesis, I hope to introduce the reader into the process of
converting a Java object into a JavaScript object, so that a similar implementation can
be replicated, using the same, or another Java library. Hence, at the end of this thesis,
the reader should be able to implement something similar with ease.

The thesis is divided into four chapters, apart from the introduction. The first chapter are
the Fundamentals and covers background information that is important for this thesis.
In this chapter we are going into some detail about the components, as well as the basics
needed to get an understanding about what this project entails. This information will
mostly be on the surface level, and should only serve for a general understanding.

Chapter 3 is called Interoperability support with java.time and it goes into more detail
about the project that was implemented. It serves to introduce the reader to the Temporal
class objects, which have been implemented, as well as some of the algorithms that are
used to make the project function. However, this chapter does not go into detail about
how the project was implemented, but rather gives the reader a deeper understanding
about what had to be implemented.

The implementation details are covered in Chapter 4. This is the main chapter of this
theses, and it has the goal to show the reader how the project was implemented, using
many examples. For the first few implementations, it goes into very much detail about

1 Introduction 2

the process, however, many methods, which need to be extended in the implementation
are essentially the same, with only minor changes. Therefore, as the chapter progresses,
the descriptions will become less detailed, only describing new features.

The final one is Chapter 5, the Testing chapter. For this project, many tests have been
written, in order to prove that the conversion is done as intended. This chapter covers
all of them, however, in the same fashion as the previous chapter, will progressively be
less detailed, as the tests are more or less the same.

Chapter 2

Fundamentals

Before we can get started with the task itself, let us first learn some of the most important
fundamentals needed in order to understand how the GraalVM works. The topics that
we are going to talk about are, GraalVM, ECMAScript, Truffle, Graal.js, as well as a
short introduction to the Temporal Proposal.

2.1 GraalVM

GraalVM [3] is a project developed by Oracle. It was created based on the existing
Java Virtual Machine (JVM) and promises to deliver better performance for Java ap-
plications. GraalVM entails a novel dynamic compiler that uses runtime information to
perform extensive optimizations. With the use of a polyglot VM, apart from Java, other
programming languages like JavaScript, Python, Ruby, or LLVM can be executed.

GraalVM runs Java code much more efficient than it is possible with the classic JVM.
It achieves this by either interpreting the code directly, or by using a compiler. The
latter is the most important functionality. It uses the JVM Compiler Interface to provide
highly-efficient machine code for the compiled Java applications, in order to maximize
its efficiency.

Additionally, GraalVM can also run Node.js, Ruby, R and Python. Therefore, these
languages can also profit from the various optimizations performed by the GraalVM.

2.2 ECMAScript

ECMAScript is a standardized version of JavaScript, a programming language that is
primarily used to create interactive front-end web applications. ECMAScript is devel-
oped and maintained by the ECMAScript International. It is yearly republished, with
the latest version being ECMAScript 2022. It is a scripting language that conforms to
the ECMAScript specification and is typically used to create client-side scripts for web
browsers. JavaScript is an implementation of ECMAScript, and so it is fully compliant
with the ECMA[1] specification. Furthermore, all its features are supported by GraalVM.

2.3 Truffle

The Truffle [8] framework allows to implement and run programming languages efficiently
on GraalVM. It simplifies implementing language engines by automatically deriving high-
performance code from interpreters. For that, it uses an abstract syntax tree, which
enables almost any language to be adapted and runnable on the JVM. For Example,
Ruby, R, and also JavaScript, which is the focus language in this thesis, can be adapted
to run on the JVM.

2 Fundamentals 4

2.3.1 Annotations

Truffle provides a handful of annotations, which are used for the implementation of
this work. They are used a lot throughout every Truffle-based language interpreter to
reduce boiler plate code and help the framework generate efficient code. In the next few
subsections, we are going to describe the four most important annotations, which were
needed in order to achieve the given task.

@ImportStatic

The @ImportStatic annotation imports all static functions of a file. It is defined as a class-
level annotation and tells the class which methods it is allowed to work with. Additionally,
it has a parameter, which numbers and configuration values are needed for it to work.
For this thesis, the parameter is called JSConfig.class.

@TruffleBoundary

The @TruffleBoundary annotation marks a method which is considered a boundary for
the Truffle partial evaluation which means it is not further inlined but treated as runtime
call. This might be slightly slower regarding peak performance, but avoids code explosion
especially around library methods.

@Specialization

This annotation defines a method of a node subclass to represent one specialization of an
operation. Multiple specializations can be defined for each operation, and each defines
which kind of input is expected, by using the method signature and the annotation
attributes. This annotation has many constraints, however, in the scope of this task only
one needs to be defined by the user, called guard.

The guard constraint is declared as a boolean expression, which defines whether a input
is applicable to the specialization instance. For example, if the constraint is @Specializa-
tion(guards = "interop.isInstant(thisObj)"), only if this expression returns the value true,
that underlying method will be called. Multiple guards can be defined at once, using a
comma to separate them.

@CachedLibrary

The @CachedLibrary annotation is needed for allowing the use of Truffle libraries. It
uses many constraints which define the behavior that the attached object should have,
however, only one is important for the given task. The value that needs to be defined is
the limit constraint, which defines the number of specialisations that are created before an
uncached specialisation is used. This value is usually set to the string InteropLibraryLimit,
a value that defines which class is used through @ImportStatic. Using this string, the
compiler knows what function to call, the function that is defined with the correct limiter.
In the scope of this task, this annotation is used in order to create the correct JavaScript
Temporal class object.

2.4 Graal.js

Graal.js [2] is an JavaScript implementation, and is not only part of the GraalVM, but is
actually one of its most complete guest language implementations to this point. Fitting

2 Fundamentals 5

for the task of this project, Graal.js does support the execution of standalone JavaScript
applications, as well as the execution of JavaScript from within a Java application. Addi-
tionally it comes with full support for Node.js and is compatible with the latest version
of JavaScript’s language specification, the ECMAScript Language Specification (Sec-
tion 2.2).

Furthermore, not only does it support the interoperability with Java, but with other
Truffle based languages as well, such as Ruby, Python, and R and uses a Truffle-based
AST interpreter for its implementation. [9]. In total, the implementation effort is more
than 80 thousand lines of code, with majority being written in Java, and only 1.5 thousand
lines of code written in JavaScript.

2.5 ECMAScript Temporal proposal

The ECMAScript Temporal proposal provides standard objects and functions for working
with dates and times. The proposal is currently in Stage 3, and has been a long-standing
pain point in ECMAScript. It proposes Temporal, a global object, which acts as a top-
level namespace (like Math), that brings a modern date/time API to the ECMAScript
language. [5]

To give the reader a perspective how the following Temporal class objects are used,
Figure 2.1 has been provided. It shows the relationship between the Temporal class objects
and how they are constructed. A more detailed explanation, about what these Temporal
class objects do is described in Chapter 3.

ISO 8601 / RFC 3339 Calendar
Extension
2020-08-05T20:06:13+09:00[Asia/Tokyo][u-ca=japanese]
PlainMonthDay TimeZone Calendar
PlainYearMonth
PlainDate PlainTime
PlainDateTime
Instant

ZonedDateTime

Figure 2.1: The correspondence between types and machine-readable strings [7]

Chapter 3

Interoperability support with java.time

This chapter is going into detail about the task that should be solved by this bachelor
thesis. The task for this project was to implement the Interop feature for the JavaScript
Temporal package. The goal of this is, that the java.time package which is used in Java
for time conversion to be usable for the JavaScript Temporal package. To achieve this,
some changes need to be done to the GraalVM repository.

As previously mentioned, the goal of this project is to convert a java.time class object
into its JavaScript Temporal equivalent. A programmer who is operating in JavaScript
code can use JavaScript Temporal objects, and using the GraalVM’s polyglot feature, the
user can even operate on Java Objects. In principle, a Java Temporal object should be
usable when it arrives in JavaScript, however, in truth, JavaScript does not understand
it, even if it is essentially the same. For example, A Java duration cannot be added to
a JavaScript instant object under normal circumstances. That is exactly the task that
needs to be solved in order to achieve this exact goal. A conversion must be written, that
can transform a Java class object into JavaScript, so that it can be used everywhere. In
Chapter 4, we are going into more detail how this is achieved.

3.1 Algorithm

The basic implementations for JavaScript class object methods have already been pro-
vided by GraalVM. However, changes need to be done in order for the code to recognize
and work with the code that is provided in Java language. To achieve this, functions which
calculate the correct values for the conversion must be implemented, which transform a
Java object to its JavaScript counterpart.

Every Temporal class must at least have one such function, once for Instant, Dura-
tion, PlainTime, PlainDate and TimeZone. However, most of the time more than one
such function needs to be implemented. That is because, sometimes case handling is not
necessary, or is not wanted. For this project, usually three to four functions have been
implemented, where three of them do essentially the same thing, checking if the function
which is called meets all the requirements. Sometimes they do not need to meet all of
them, which is why multiple such functions exist. The fourth function however is a bit
special. This function is called JavalnstantTolInstant, however, the names varies depend-
ing on the Temporal class which is used at the moment. These functions are responsible
for converting the Java object classes to its JavaScript equivalents. In Chapter 4, we go
more into detail how each of these functions are working and how they are implemented.

3.2 JavaScript Temporal class objects

In this section, we are going into more detail about the individual class objects of the
JavaScript Temporal package. We are going to look at how to distinguish them and what
special characteristics they have. Note that not every Temporal class is mentioned here,
as in this project only a handful are implemented.

3 Interoperability support with java.time 7

3.2.1 Instant

The Temporal. Instant defines a single point in time, called an exact time. It has a precision
in nanoseconds. When a new Instant object is created, a parameter defining the time since
the Unix time [10] must be defined in nanoseconds. However, an exact time can also be
provided using the static function Temporal.Instant.from(). Using this expression, a point
in time can be defined using an ISO 8601 [4] formatted string that can be parsed and
interpreted.

By Default, an Instant is interpreted in the UTC timezone. If it is interpreted in any other
timezone, the value is shifted by a few hours. The nanoseconds representing the Instant
object can be transformed into year, month, day, hours, minutes, seconds, milliseconds,
microseconds and nanoseconds.

If an Instant is defined using the Unix time, a DateTime can be defined, that exists
before 1970-01-01. You can do that by using a negative value for the parameter of a new
Instant. It should be noted, that Instant does not take leap-years into consideration.

3.2.2 Duration [6]

A Temporal. Duration object represents a time span. For example, one hour and 30 min-
utes. This value is represented using the ISO-8601 standard notation. This notation starts
with a ’P’ character, followed by year, month, week and day. Additionally, after that,
it can have a ’T"’ character, followed by hours, minutes, seconds, milliseconds, microsec-
onds and nanoseconds. For example: 'P1YIMIDT1HIM1.1S" represents the duration:
one year, one month, one day, one hour, one minute, one seconds, and 100 milliseconds.
If a unit is omitted, it will be automatically set to zero. It can be noted, that a week can
not be defined with other units, but must be defined all on its own.

This Duration has a special feature compared to every other Temporal class object. It
does not balance its values automatically. That means it is possible to define two hours
as 120 minutes, using the same notation: "PT120M. If you want to automatically balance
these values, a method called balancing must be used.

Balancing

Unlike other Temporal types, the units in Temporal. Duration do not wrap around zero,
because you may want to get a duration in a specific time unit.

Every other Temporal type has a maximum for each time unit. By default, all of them
use the balancing constraint mode by default. That means that every value above the
maximum number will be replaced with the maximum value instead.

If Duration must be balanced, a couple of methods can be applied. For example:

= Rounding
The first method is the rounding method. Here the round function is used on the
duration. Round does have a option called largest Unit. Setting this value to a specific
unit, for example hours, balances the whole expression to hours, but not taking units
greater then hours into account (Listing 3.1).

Listing 3.1: Rounding Duration

1| d = Temporal.Duration.from({ minutes: 80, seconds: 9@ }); // => PT80M90S
2| d.round({ largestUnit: ’hour’ }); // => PT1H2IM30S (fully balanced)

m Serialization
Another method, which works for every Temporal class object is the serialize to a

3 Interoperability support with java.time 8

string, using the toString() method, and deserializing it again by calling from() on
the string.

This works correctly for every unit in duration, except milliseconds, microseconds
and nanoseconds. If those values are greater than 999, the duration will yield an
incorrect value. This has to do with the way those units are implemented and will
be described in Chapter 4

3.2.3 TimeZone

A Temporal. TimeZone object is the representation of a time zone. It uses the JANA time
zone database to get information about the time zone, like the offset between the local
time and UTC at a particular time, daylight saving time (DST), as well as other political
UTC offsets.

For example, this class can be used in order to be able to convert a Temporal.Instant
object into a Temporal. PlainTime object.

3.2.4 PlainTime

A Temporal. Plain Time represents a wall-clock time, and has a precision in nanoseconds.
It is not associated with any time zone. Wall-clock time refers to the concept of a time
which is expressed in everyday usage. For example, a PlainTime object can look like:
15:80:00, which is easily distinguishable as half past three. It should be noted, that
PlainTime is not associated with any specific day, or timezone. It only describes a wall-
clock time.

3.2.5 PlainDate

A Temporal. PlainDate object defines a calendar date, where Calendar date refers to the
concept of a date expressed in everyday usage. It is independent of any time zone and
always represents the whole day. For example, a day can be represented as ’2020-03-14".

Chapter 4

Implementation

In this chapter we are going to describe how the problem in Chapter 3 was solved. To
achieve this, a couple of classes must be changed in order for it to function as intended.
Usually, every JavaScript Temporal class object has its own class in which it is handling
every builtin methods for its class object. For a concrete transformation, a conversion
method had to be implemented for each Java Temporal type. The respective methods
read information from the Java type and create a new object from the set of available
JavaScript Temporal types, that represent the same value as the Java type. Those con-
version methods are then used in the specializations of the Temporal builtin methods
that need to accept those Java types. They make sure that, in case a Java Temporal
type is provided, it is converted to a JavaScript Temporal type. The rest of the builtin
method can thus remain unmodified, as only JavaScript temporal types are allowed to
flow any further into those methods.

4.1 Setting up the environment

In order to get started with this project some actions have to be taken to setup the project
properly on your local system. Oracle has provided a step to step guide on how to get
started using the GraalVM repository. It is recommended to be using a Linux operating
system or a virtual machine that is capable of running a Linux systems, such as Ubuntu.
Similar operating system can be used, such as Windows and Mac, however, that is not
recommended, because setting up the project in these is much more difficult compared
to Linux. A guide for the Linux installation can be found on the official GraalVM git
repository page.

4.2 Conversion helper methods

4.2.1 java.time.Instant to Temporal.lnstant

The class TemporallnstantPrototypeBuiltins provides the methods of the Tempo-
ral. Instant type as previously introduced in Chapter 3. For this class, a couple of methods
need to be implemented. Most of these methods, that are representing the JavaScript
Temporal methods will be introduced in Section 4.3.1. However, another function needs
to be implemented before the conversion can work properly.

Listing 4.1 shows how the function that converts a java.time.instant into a JavaScript
Temporal.Instant is implemented. It can be observed, that the Java instant has been
multiplied by one billion. That’s because the Java object is measured in the unit second,
and its JavaScript counterpart uses the unit nanoseconds. Therefore, a multiplication of
one billion is necessary, in order to get the correct value. Additionally, the nanoseconds
from the Java Instant must be added separately, because instant.getEpochSeconds() only
has a precision accurate enough to get microseconds.

4 Implementation 10

After the conversion is completed, a new JSTemporallnstant object can be created. Should
the calculation fail, because the input is not a Instant object, null should be returned,
indicating that the object could not be created.

Listing 4.1: The method that converts a Java java.time.Instant object to a JavaScript
Temporal Instant object

@TruffleBoundary
public static JSTemporallnstantObject javaInstantToInstant(Object thisObj,
InteropLibrary interop, JSContext context) {
try {
java.time.Instant instant = interop.asInstant(thisObj);
BigInteger bi = BigInteger.valueOf (instant.getEpochSeconds());
bi = bi.multiply(BigInteger.valueOf(1_000_000_000));
bi = bi.add(BigInteger.valueOf(instant.getNano()));
return JSTemporallnstant.create(context, new BigInt(bi));
}
catch (UnsupportedMessageException e) {
return null;

}

4.2.2 java.time.Instant to Temporal.Duration

The class TemporalDurationPrototypeBuiltins provides the methods of the Tempo-
ral. Duration type as previously introduced in Chapter 3. Similarly to the previous class,
this class must be expanded identically. Likewise, this will also be described in Sec-
tion 4.3.2 in more detail. However, yet another function must be implemented, in order
to convert the Java Duration into its JavaScript equivalent.

Listing 4.2 shows how the function that converts a java.time.duration into a JavaScript
Temporal. Duration is implemented. Similarly to Listing 4.1, the Java Duration class does
have the correct units available. Functions like the toSeconds() or toMinutes() do exist.
However, they should rather not be used, as the result can be not what is desired. For
example, two days are correctly saved as two days, however, they are also saved as 48
hours, 2880 minutes, and so on. It makes it difficult to determine which unit is originally
meant. In order to achieve this, other methods must be used, which luckily have already
been provided by GraalVM. The getSeconds() and getNano() methods does, in a way,
what we want it to do.

For example, the getNano() function returns a value which is a combination of mil-
liseconds, microseconds and nanoseconds into a value, where the three right most digits
represent the nanoseconds, the middle three represent the microseconds, and the three
left most the milliseconds. For example, the number 123456789 would represent 123 mil-
liseconds, 456 microseconds and 789 nanoseconds. That can be observed in Listing 4.2,
line 12-14.

getSeconds() works in a similar fashion, but needing a different calculation to get in-
dividual unit values. Using the common calculation used for converting between hours,
minutes and seconds, as observed in Listing 4.2, line 9-11, we can see how each unit has
its value calculated, without having the trouble of getting the wrong values.

It should be noted, that the values years, months, and weeks are not calculated, but
instead specified as zero. That is because, the Java Duration class does not handle these
values. The Period class is responsible for them, but was omitted, as it was not deemed
necessary for the conversion of Java Duration.

Now that the conversion is completed, a new JSTemporalDuration object can be created.
Should the calculation fail, because the input is not a Duration object, null should be
returned.

4 Implementation 11

Listing 4.2: The method that converts a Java java.time.Duration object to a JavaScript
Temporal Duration object

@TruffleBoundary
public static JSTemporalDurationObject javaDurationToDuration(Object thisObj
, InteroplLibrary interop, JSContext context) {

try {
java.time.Duration duration = interop.asDuration(thisObj);
double days = duration.toDays();
double years = 0;
double months = 0;
double weeks = 0;
double hours = Maths.floor(duration.getSeconds() / 3_600) % 24;
double minutes = Maths.floor(duration.getSeconds() / 60) % 60;
double seconds = duration.getSeconds() % 69;
double milsec = Math.floor(duration.getNano() / 1_000_000) % 1_000;
double microsec = Math.floor(duration.getNano() / 1_000) % 1_000;
double nanoseconds = duration.getNano() % 1_000;
return JSTemporalDuration.createTemporalDuration(context, years,
months, weeks, days, hours, minutes, seconds, milsec, microsec,
nanoseconds) ;
3
catch (UnsupportedMessageException e) {
return null;
3
3

4.2.3 java.time.Instant to Temporal.TimeZone

The class TemporalTimeZonePrototypeBuiltins provides the methods of the Tempo-
ral. TimeZone type as previously introduced in Chapter 3. Likewise, this class must be
expanded in a similar fashion as the previous classes. The available functions, which need
to be implemented in this class are described in Section 4.3.3 in more detail. Similarly to
the former classes, this class also has a function called javaTimeZoneTo TimeZone which
needs to be implemented, in order to convert a java.time.Zoneld object to its JavaScript
Temporal. TimeZone equivalent.

Listing 4.3 the function that is responsible for converting a Java Zoneld object into a
JavaScript TimeZone object. For this conversion, only one step is necessary. A Truf-
fleString must be created using the function in Listing 4.3, line 5.

Now that the conversion is completed, a new JSTemporalTimeZone object can be created.
Should the calculation fail, because a TimeZone object could not be created, null should
be returned.

4 Implementation 12

Listing 4.3: The method that converts a Java java.time.Zoneld object to a JavaScript
Temporal TimeZone object

@TruffleBoundary
public static JSTemporalTimeZoneObject javaTimeZoneToTimeZone(Object thisObj
, InteroplLibrary interop, JSContext ctx) {
try {
java.time.Zoneld zone = interop.asTimeZone(thisObj);
TruffleString identifier = TruffleString.fromJavaStringUncached(zone
.getId(), TruffleString.Encoding.UTF_32);

return JSTemporalTimeZone.create(ctx, null, identifier);

3
catch (UnsupportedMessageException e) {
return null;

3

4.2.4 java.time.Instant to Temporal.PlainTime

The class TemporalPlainTimePrototype Builtins provides the methods of the Tempo-
ral. Plain Time type as previously introduced in Chapter 3. The available functions, which
need to be implemented in this class are described in Section 4.3.4 in more detail. Simi-
larly to the previous classes, this class also needs to implement a function, which allows
a correct conversion of the Java LocalTime to its counterpart, the JavaScript Plain-
Time. The function is called javaPlainTimeToPlainTime, and it can be implemented
almost identical to the class handling Duration objects, however requiring an additional
parameter of the BranchProfile class.

Listing 4.4 shows how the function is implemented, which is converting a Java LocalTime,
into a JavaScript PlainTime object. Similarly to the Duration class, hours, minutes, sec-
onds, milliseconds, microseconds, and nanoseconds must be extracted from the LocalTime
object. However, PlainTime works differently from Duration. Duration, in contrast, does
by default not use the balancing feature, meaning that the values of each unit do not
round to zero. More on that topic can be read in Section 3.2.2. Every other JavaScript
Temporal class object does implement balancing by default. That means, that it is unnec-
essary to take those value overflows into consideration, as for example time.getMinute()
can only be in the range of 0-59. That means, that if you want to illustrate 120 minutes,
it would automatically be converted into two hours and zero minutes.

It can be observed in Listing 4.4, line 8-10, that milliseconds, microseconds, and nanosec-
onds are still converted in the same way the Duration class implementation would do.
This is a design choice, that was provided as such by GraalVM and does not have any-
thing to do with balancing.

Now that the conversion is completed, a new JSTemporalPlain Time object can be created.
Should the calculation fail, because a PlainTime object could not be created, null should
be returned.

4 Implementation 13

Listing 4.4: The method that converts a Java java.time.LocalTime object to a JavaScript
Temporal PlainTime object

@TruffleBoundary
public static JSTemporalPlainTimeObject javaPlainTimeToPlainTime(Object
thisObj, InteropLibrary interop, JSContext context, BranchProfile
errorBranch) {
try {
java.time.LocalTime time = interop.asTime(thisObj);
int hours = time.getHour();
int minutes = time.getMinute();
int seconds = time.getSecond();
int milsec = (int) Math.floor(time.getNano() / 1_000_000) % 1_000;
int microseconds = (int) Math.floor(time.getNano() / 1_000) % 1_000;
int nanoseconds = time.getNano() % 1_000;

return JSTemporalPlainTime.create(context, hours, minutes, seconds,
milsec, microseconds, nanoseconds, nanoseconds, errorbranch);
3
catch (UnsupportedMessageException e) {

return null;

3

4.2.5 java.time.Instant to Temporal.PlainDate

The class TemporalPlainDatePrototypeBuiltins provides the methods of the Tempo-
ral. PlainDate type as previously introduced in Chapter 3. The available functions, which
need to be implemented in this class are described in Section 4.3.5 in more detail. Simi-
larly to the previous classes, this class also needs to implement a function, which allows
a correct conversion of the Java LocalDate to its counterpart, the JavaScript PlainDate.
The function is called javaPlainDateToPlainDate, and it is essentially the same as the
PlainTime class, but it does not convert the wall-clock units, like hours, minutes, seconds,
etc., but instead converting the units day, month, and year.

Listing 4.5 shows how the function is implemented, which is converting a Java LocalDate,
into a JavaScript PlainDate object. As mentioned in the previous paragraph, PlainDate
is similar to PlainTime implementation, with the only major difference being, that in-
stead of wall-clock units, year, month and day are converted. As it can be observed in
Listing 4.5, line 5-7, the Java LocalDate object does already have the correct values for
this conversion. That makes it quite easy to convert, as it only needs to be copied.

However, an additional value is needed, a JSDynamicObject, which must fetch the correct
calendar type. Listing 4.5, line 10, shows exactly how this is done, using a context and
realm, which can simply be retrieved by using the getRealm() method.

Now that the conversion is completed, a new JSTemporalPlainDate object can be created.
Should the calculation fail, because a PlainDate object could not be created, null should
be returned.

® N o g A W

~ o o A W N =

4 Implementation 14

Listing 4.5: The method that converts a Java java.time.LocalDate object to a JavaScript
Temporal PlainDate object

@TruffleBoundary
public static JSTemporalPlainDateObject javaPlainDateToPlainDate(Object
thisObj, InteropLibrary interop, JSContext context, JSRealm realm) {

try {
java.time.LocalDate date = interop.asDate(thisObj);
int year = date.getYear();
int month = date.getMonthValue();
int day = date.getDayOfMonth();
JSDynamicObject calendar = TemporalUtil.getIS0860@1Calendar(context,
realm);
return JSTemporalPlainDate.create(context, year, month, day,
calendar);
3
catch (UnsupportedMessageException e) {
return null;
3
3

This class has an additional feature, which the other classes do not have. It collectively
is used by all the previously mentioned classes, to implement functions that help with
the conversion to the JavaScript Temporal class objects, primarily with the beforehand
mentioned exception handling. For the next few examples, code snippets for the Temporal
Instant class object will be shown, however, each of the other classes are an almost
identical copy of these.

Listing 4.6 shows the first method, which is needed for each and every Temporal class.
These functions simply tests if the input obj is already the correct JavaScript Temporal
class object. This function is a basic version of Listing 4.7, and is rarely used.

Listing 4.6: The function that tests if the input is already the correct JavaScript Temporal
class object

protected JSTemporallnstantObject requiresTemporallnstant(Object obj) {
if (!(obj instanceof JSTemporallnstantObject)) {
errorBranch.enter();
throw TemporalErrors.createTypeErrorTemporallnstantExpected();

3
return (JSTemporallnstantObject) obj;

Listing 4.7 is an advanced version of the previous shown function. It also tests the input
object, if it is already of the correct JavaScript Temporal class. If that is not the case, it
does not immediately throw an exception, but uses the additional parameter InteropLsi-
brary to test, if the object can be converted into the correct JavaScript Temporal class
object. If that is the case, this function calls the function, that converts them to the
correct type, as shown in Listing 4.7, line 6. Similarly to the basic function, should both
cases be false, an exception should be thrown.

These methods need to be used for every JavaScript Temporal conversion method at
least once, as it not only tests the validity of the input obj, but also calls the function
that converts it correctly on it.

o o A W N

~ o o &

4 Implementation 15

Listing 4.7: The function that tests if the input is already the correct JavaScript Temporal
class object and converts the input if it is not the case

protected JSTemporallnstantObject requiresTemporallnstant(Object obj,
InteropLibrary interop, JSContext ctx) {
if (obj instanceof JSTemporallnstantObject) {
return (JSTemporallnstantObject) obj;
3
if (interop.isTime(obj)) {
JSTemporallnstantObject inst = TemporallnstantPrototypeBuiltins.
JSTemporallnstantGetterNode. javalnstantToInstant(obj, interop, ctx);
return inst;
3
errorBranch.enter();
throw TemporalErrors.createTypeErrorTemporalInstantExpected();

The final method, as shown in Listing 4.8, does exactly the same as the previous method,
however, it does not throw an exception, if the object could not be converted correctly.
That is because this function is only used, when another method already handles the
exceptions. Therefore, it is not needed to check multiple times.

Listing 4.8: The function that tests if the input is already the correct JavaScript Temporal
class object but does not throw an exception

protected JSTemporallnstantObject convertJavaToJavascriptInstant(Object obj,
InteropLibrary interop, JSContext ctx) {
if (interop.isTime(obj)) {
JSTemporallnstantObject inst = TemporallnstantPrototypeBuiltins.
JSTemporallnstantGetterNode. javalnstantToInstant(obj, interop, ctx);
return inst;

3
return (JSTemporallnstantObject) obj;

The function, which ensures that every conversion only calls object with the correct type.
In the scope of this project, that would be Instant, Duration, TimeZone, PlainTime, and
PlainDate. In the next sections of this chapter, we are going into more detail how the
JavaScript Temporal class methods are implemented.

4.3 Builtin methods

Builtin methods provide the methods of the object of the respective class. For example,
Temporal. Instant.prototype.add provides the methods mylnstant.add..., where myInstant
is a Temporal.Instant class object.

4.3.1 Temporal Instant

In this section we are going into more detail about the methods implemented in Tempo-
ral. Instant class. Those methods include:

m Temporal.Instant.prototype.add
One of the simplest methods, which need to be implemented is the add function.
This method is described first as it can be a simple template for all further methods
discussed. Listing 4.9 shows how the class in which the method is defined is imple-
mented, and analog to it, how every other methods in this file, as well as in other
files should be implemented.

4 Implementation 16

The class is an abstract static class, which extends the JSTemporalBuiltin Operation
class. It uses an @ImportStatic annotation, which has already been explained in Sec-
tion 2.3.1. The class itself has two functions defined. A constructor, which simply
makes a super call, as well as the actual add method, which uses yet another anno-
tation called @Specialization. For more detail on this annotation, see Section 2.3.1

Going into more detail how the add is implemented, we can observe, that the method
has some interesting parameters. The object thisObj, which represents the receiver
("this") of the function, that has been called. In this case, the add has been called.
This object usually is of the type Temporal.Instant. However, in the scope of this
project, java.time.Instant is used, and almost never the most common type Tempo-
ral.Instant, in order to test if the conversion of these two types is possible. In the
latter case, as shown in Listing 4.7, line 2, the object will simply be returned, without
doing anything with it, as it is the expected type.

The second parameter, in this case, is another object, called temporalDurationLike.
This object must be provided as a argument in the function call, and is later used
to increment thisObj by the value provided in this parameter. This object must be
of type Temporal. Duration, as the conversion of a Java.Duration is not supported in
this function.

The third parameter, which does not need to be passed, but is automatically gen-
erated instead, is a new ToLimited TemporalDurationNode object, which is used in
order to create a JSTemporalDurationRecord object. Using this object, the exact du-
ration, that needs to be added to thisObj can be extracted, as shown in Listing 4.9,
line 13-14.

The last parameter for this add function is a InteropLibrary object. This object is
used, in order to determine which JavaScript Temporal object should be expected.
In Section 4.4, we go into more detail, how this process is implemented.

Finally, if the conversion of the Instant object and extraction of the Duration object
are completed, TemporalUtil.addInstant() is called, which increments the Instant by
the value of the Duration, and creates a new JSTemporallnstant object, as shown in
line 14-15.

It should be noted, that most of the mentioned functionality has been provided
prior. The task was the conversion of the types, and therefore the use of the interop
parameter, and in consequence every function that makes use of this argument. For
example the Listing 4.7, as well as Listing 4.8. The same principle also holds for
every other function mentioned in this chapter, and will therefore not be mentioned
additionally.

4 Implementation 17

[T

© © N o u

Listing 4.9: The method that adds two Temporal.Instant values together

@ImportStatic({JSConfig.class})
public abstract static class JSTemporallnstantAdd extends
JSTemporalBuiltinOperation {

protected JSTemporallnstantAdd(JSContext context, JSBuiltin builtin)
{
super(context, builtin);

}

@Specialization
public JSDynamicObject add(Object thisObj, Object
temporalDurationLike,
@Cached("create()")
ToLimitedTemporalDurationNode tolLimitedTemporalDurationNode,
@CachedLibrary(limit = "
InteropLibraryLimit”) InteropLibrary interop) {

JSTemporallnstantObject instant = requireTemporallnstant(thisObj,

interop, getContext());

JSTemporalDurationRecord duration = tolLimitedTemporalDurationNode
.executeDynamicObject (temporalDurationLike, TemporalUtil.
listPluralYMWD);

BigInt ns = TemporalUtil.addInstant(instant.getNanoseconds(),
duration.getHours(), duration.getMinutes(), duration.getSeconds(),
duration.getMilliseconds(), duration.getMicroseconds(), duration.
getNanoseconds());

return JSTemporallnstant.create(getContext(), getRealm(), ns);

b

m Temporal.Instant.prototype.subtract

The subtract class is called JSTemporallnstantSubtract, and it is not very different
from the previous add. The only difference between these two classes is, that if we
look at Listing 4.9, line 14, every duration call has its sign changed. For example,
duration.getHours() becomes -duration.getHours(), and hence forth.

Temporal.Instant.prototype.until and .since

The until and since functions are, however a bit different. First and foremost, both
of these JavaScript Temporal. Instant functions are combined into one, meaning both
use the same function to determine their results. To differentiate between those two
cases, the function utilizes a boolean called isUntil, which indicates, if the should be
handled as an until, or as a since.

Additionally, this function, which is called untilOrSince, uses different parameters.
The parameters thisObj, and InteropLibrary are still used, as they must be used
for every function, however, another object called otherObj is used. This parameter
functions exactly like thisObj. However, as shown in Listing 4.10, a different method is
called (Listing 4.8). The function also has an optional parameter called optionsParam,
which can define modes, like defining the largest/smallest unit which is allowed to
be returned, and so on.

The other parameters are called JSToNumberNode, EnumerableOwnProperty-
NamesNode, ToTemporallnstantNode, and TruffleString. EqualNode, which are used
to call other functions on, and will not be discussed further, as they are not part of
the implementation.

4 Implementation 18

Listing 4.10: UntilOrSince code snippet

1| JSTemporallnstantObject instant = requireTemporallnstant(thisObj, interop
, getContext());

2| JSTemporallnstantObject other = toTemporalInstantNode.execute(
convertJavaToJavascriptInstant(otherObj, interop, getContext()));

m Temporal.Instant.prototype.round
The round class is called JSTemporallnstantRound. It has a function called Round
and only needs an additional parameter, called roundToParam, which is used to
define, to which unit - hour, minute, second, millisecond, microsecond or nanosecond
- the Instant object should be rounded to. By default, the round function uses a half
expand. The function returns a Instant object, which will be rounded to the unit
defined in the parameter roundToParam.

m Temporal.Instant.prototype.equals
The equals class is called JSTemporallnstantEquals. It defines the function Equals,
and once again uses the function described in Listing 4.8 to convert Java Instant to
JavaScript Instant. This function returns a boolean, which is either true, or false,
depending if the thisObj and otherObj are the same.

m Temporal.Instant.prototype.toString
The toString function, in the class JSTemporallnstantToString, once again uses an
additional parameter called optionsParam, where for example, the timezone can be
defined. The parameter thisObj should be a Instant object, which is defined as a
number that defines the time that has past since 1970-01-01. The function then
converts the number into a semi-readable format and returns this as a string.

m Temporal.Instant.prototype.toLocaleString
The ToLocaleString function, which is implemented in the class JSTemporallnstant-
ToLocaleString. It converts the input object into a format, that is readable by a
human. For example, 2019-11-18T11:00:00.000Z could be converted into the format
2019-11-18, 3:00:00 a.m., depending on the location that the user is currently at.

m Temporal.Instant.prototype.toJSON
This function is not implemented

m Temporal.Instant.prototype.valueOf
The function valueOf is implemented in the class JSTemporallnstant ValueOf. This
function only throws a exception if it is called, because, by default, valueOf should
not be supported by the Temporal.Instant class.

m Temporal.Instant.prototype.toZonedDateTime

The function ToZonedDateTime is implemented in the class JSTemporallnstantTo-
ZonedDateTimeNode. The function has, next to the regular parameters a parameter
called item. This item object defines a calendar, as well as a timezone. The calendar
is defined as a Temporal. Calendar object and set to a handful of calendar-types like
gregory, or japanese. The timezone, that needs to be defined, can be chosen from a
list described in the JANA time zone database. After everything has been calculated,
the function will return a JSTemporalZonedDateTime object.

m Temporal.Instant.prototype.toZonedDateTimeISO

The function ToZonedDateTimelISO is implemented in the class JSTemporallnstant-
ToZonedDateTimeISONode. Additionally to the normal parameters, it also has an
parameter called itemParam. This object is a timezone object which defines a time-
zone described in the JANA time zone database. The only difference between this
function and the function described in the previous bullet point is, that by default
the calendar ist set to ISO-8601. This function will also return a JSTemporalZoned-
DateTime object.

4 Implementation 19

4.3.2 Temporal Duration

In this section we are going into more detail about the methods implemented in Tempo-
ral. Duration class. Those methods include:

Temporal.Duration.prototype.with

The with function is the most basic function of the Temporal. Duration class, and
works similarly as the Temporal.Instant class. It once again uses a receiver called
thisObj, which in the scope of this project is usually of the type java.time.Duration.
Once again it will be converted using the function require TemporalDuration (thisObj,
interop, getContext()). The return value for this function is a perfect copy of this
converted value.

Temporal.Duration.prototype.add

The add function works quite similarly to the function mentioned in Tempo-
ral. Instant, however it uses a second Duration object as a parameter, which needs
to be converted as well, using the usual require TemporalDuration(thisObj, interop,
getContext()) for thisObj, but additionally call the function convertJavaToJavascript-
Duration(otherObj, interop, getContext()). Now the add function must get the sum
of both durations and return a this new Duration object.

Temporal.Duration.prototype.subtract

The subtract function is essentially the same as the add function, described in the
previous paragraph, however, after converting both parameters, the second argument
must be subtracted. In the case of this project, a sign change has been used.

Temporal.Duration.prototype.negated

The negated function is quite the same as the previously presented function with.
However, instead of returning a perfect copy right away, it first negates every unit
in the duration. Once again using the require TemporalDuration(thisObj, interop, get-
Context()) to convert the function successfully.

Temporal.Duration.prototype.abs

The abs function will always return a positive function. It first converts the
java.time. Duration type into a Temporal. Duration object and uses the Math.abs func-
tion on it, before returning it as a Duration object.

Temporal.Duration.prototype.round

The round function is implemented in the class JSTemporalDurationRound. The func-
tion has a receiver called thisObj, which must be a Duration object. Additionally, a
option parameter must be present, that determines to what unit the duration value
should be rounded to. The round method uses the half expand rounding mode. Sim-
ilarly to the previous function, thisObj, must be converted, if the input class is not
of type Temporal. Duration. The return value will be a JSTemporalDuration object.

Temporal.Duration.prototype.total

The total function is implemented in the class JSTemporalDurationTotal, and has a
Duration object as a receiver, as well as a parameter called totalOfParam, which de-
termines to which unit the value should be converted. For Example, if that value is set
as seconds, and the input is two minutes, the result should be a JSTemporalDuration
object. Similarly, a conversion of the receiver object must be done.

Temporal.Duration.prototype.toString

The toString function is implemented in the class JSTemporalDurationToString, and
converts units of durations into the compact form for duration. For example, 10
hours would be converted into PT10H. Once again, thisObj must be converted into
a Temporal Duration object. The function returns a string object, as described.

Temporal.Duration.prototype.toLocaleString

The toLocaleString function, which is implemented in the JSTemporalDurationToLo-
caleString class works identically to the toString function. It converts the parameter
thisObj and returns a compact string object as described in the previous bullet point.

4 Implementation 20

Temporal.Duration.prototype.toJSON
This function is not implemented

Temporal.Duration.prototype.valueOf

The function valueOf is implemented in the class JSTemporalDuration ValueOf. This
function only throws a exception if it is called, because, by default, valueOf should
not be supported by the Temporal. Duration class.

4.3.3 Temporal TimeZone

In this section we are going into more detail about the methods implemented in Tempo-
ral. TimeZone class. Those methods include:

Temporal.TimeZone.prototype.get OffsetNanosecondsFor

The getOffsetNanosecondsFor function is implemented in the class JSTemporal Time-
ZoneGetOffsetNanosecondsFor. It has a receiver object called thisobj, which must
be a timezone object. This object is converted using the require TemporalTimeZone
function. Additionally, the function has a parameter called instantParam, which is a
Temporal.Instant class object, which is used to compute the time zone’s UTC offset.
The function returns this calculated UTC offset in nanoseconds.

Temporal.TimeZone.prototype.getOffsetStringFor

The function getOffsetStringFor is implemented in the class JSTemporalTimeZo-
neGetOffsetStringFor, and has, similarly to the previous mentioned function a re-
ceiver timezone object, which needs to be converted as well as a Temporal.Instant
class object that computes the time zone’s UTC offset. However, the function does
not return a value in nanoseconds, but converts it into a string object, like "-08:00",
which indicates a eight hour negative offset.

Temporal.TimeZone.prototype.getPlainDateTimeFor

The getPlainDateTimeFor function is implemented in the class JSTemporalTimeZo-
neGetPlainDate TimeFor. It has a receiver timezone object, that needs to be con-
verted, as well as a Temporal.Instant object, that indicates an exact point in time.
Additionally, the function has an optional calendar parameter, that by default uses
IS0-8601. The function returns a Temporal. PlainDate Time class object, which rep-
resents the date, time and timezone of the provided Instant object.

Temporal.TimeZone.prototype.getInstantFor

The getlnstantFor function is implemented in the class JSTemporalTimeZo-
neGetInstantFor. This function is the counterpart to the function mentioned in the
previous function. It has a timezone receiver object that it converts into a Tempo-
ral. TimeZone object, but instead of transforming a Instant object into a PlainDate-
Time object, it does the opposite and transforms a parameter representing a datetime
object into a instant object.

Temporal.TimeZone.prototype.getPossibleInstantsFor

The function getPossibleInstantsFor is implemented in the class JSTemporal TimeZo-
neGetPossibleInstantsFor. 1t is almost indentical to the previous function, however,
it does not have a optional parameter, that could be used to configure the calculation.

Temporal.TimeZone.prototype.getNextTransition

The getNextTransition function is implemented in the class JSTemporalTimeZo-
neGetNextTransition. It has a receiver timezone object, that needs to be converted
into a Temporal. TimeZone object, as well as a Temporal.Instant object argument.
The function returns the next datetime object, which represents the next time that
the offset of the specified timezone changes. For example, when the when a time
change occurs.

4 Implementation 21

m Temporal.TimeZone.prototype.getPreviousTransition
The getPreviousTransition function is implemented in the class JSTemporalTimeZo-
neGetPreviousTransition, and equally to the previous function returns a datetime
object. This object, however, represents the last time the offset for the specified
timezone has changed.

m Temporal.TimeZone.prototype.toString
The toString function is implemented in the class JSTemporal TimeZoneToString, and
converts a timezone.id object into a human-readable description of the timezone.

m Temporal.TimeZone.prototype.toJSON
The toJSON function is actually implemented in the class JSTemporalTimeZoneTo-
JSON, however, it is the same as the toString function, and should like for the other
classes not be called directly.

m Temporal.TimeZone.prototype.valueOf
The function valueOf is implemented in the class JSTemporalTimeZoneValueOf. This
function only throws a exception if it is called, because, by default, valueOf should
not be supported by the Temporal. TimeZone class. Note that this function does not
exist in the official Temporal. TimeZone implementation, but is still supported by
Graal.js.

4.3.4 Temporal PlainTime

In this section we are going into more detail about the methods implemented in Tempo-
ral. PlainTime class. Those methods include:

m Temporal.PlainTime.prototype.with

The function with is implemented in the class JSTemporalPlainTimeWith. It has
a PlainTime object as a receiver, which needs to be converted into a Tempo-
ral. PlainTime object. Additionally, it has a parameter called timelike, which holds
some, or all properties of the PlainTime object. For example, the PlainTime object
could hold the time "15:30:00". The timelike argument could now set the minute
unit to zero. In that case, the function would return a plaintime object that has, if
converted to a string, the value "15:00:00".

m Temporal.PlainTime.prototype.add
The function add is implemented in the class JSTemporalPlainTimeAdd, and adds
a duration to a the receiver PlainTime object, which must be converted inside the
function. A new JSTemporalPlainTime object is returned at the end of the function.

m Temporal.PlainTime.prototype.subtract
The function subtract is implemented in the class JSTemporalPlainTimeSubtract. It
works in a similar fashion as the previous mentioned function. But instead of simply
adding a duration to a PlainTime object, it first changes the sign of the duration,
because adding it. The result is yet again a new JSTemporalPlainTime object.

m Temporal.PlainTime.prototype.until

The until function is implemented in the class JSTemporalPlainTimeUntil. It has a
PlainTime receiver object, as well as an additional PlainTime parameter. Both of
them must be converted into a Temporal. PlainTime object. However, for the second
argument, the convertJavaToJavaScriptPlainTime function must be used. Addition-
ally, a optional parameter can be defined, which defines the rounding mode that can
be used. After calculating the difference of both PlainTime object, a JSTemporalDu-
ration object will be returned.

m Temporal.PlainTime.prototype.since
The since function is implemented in the class JSTemporalPlain TimeSince, and works
identically to the previously mentioned function. It calculates the difference between
both PlainTime object and returns a JSTemporalDuration object.

4 Implementation 22

m Temporal.PlainTime.prototype.round
The round function is implemented in the class JSTemporalPlainTimeRound. It has
a PlainTime receiver object, which needs to be converted into a Temporal. PlainTime
object, as well as a parameter called roundToParam, which defines the unit, to which
the PlainTime object should be rounded to. This function uses the half expand
rounding mode, and returns a new JSTemporalPlainTime object.

m Temporal.PlainTime.prototype.equals

The equals function is implemented in the class JSTemporalPlainTimeEquals. The
function is split into two seperate functions. One that expects that the second pa-
rameter is already a Temporal. PlainTime object, and the other, that does expect it
not to be. Both methods have a PlainTime receiver object, as well as an additional
PlainTime parameter. For the first method, only the receiver object must be con-
verted. For the seond, both of them must be converted into a Temporal. PlainTime
object. However, for the second argument, the convertJavaToJavaScriptPlainTime
function must be used. Both function return a boolean value, which is either true or
false.

m Temporal.PlainTime.prototype.toString
The toString function is implemented in the class JSTemporalPlainTimeToString,
and converts a PlainTime object into a wall-clock time.

m Temporal.PlainTime.prototype.toLocaleString
The toLocaleString function, which is implemented in the JSTemporalPlainTime-
ToLocaleString class works identically to the previous function. It converts the pa-
rameter thisObj and returns a wall.clock time.

m Temporal.PlainTime.prototype.toJSON
The toJSON function is implemented in the class JSTemporalPlainTimeToJSON,
however, it is the same as the toString function, and should like for the other classes
not be called directly.

m Temporal.PlainTime.prototype.valueOf
The function valueOf is implemented in the class JSTemporalTimeZoneValueOf. This
function only throws a exception if it is called, because, by default, valueOf should
not be supported by the Temporal. TimeZone class.

m Temporal.PlainTime.prototype.toZonedDateTime
The toZonedDateTime function is implemented in the class JSTemporalPlainTime-
ToZonedDateTime. It has a PlainTime receiver object, which needs to be converted
into a Temporal. PlainTime object, as well as a parameter called item. This parame-
ter holds a Temporal. PlainDate object, as well as a Temporal. TimeZone object from
the TANA time zone database. The function returns a JSTemporalZonedDate Time
object.

m Temporal.PlainTime.prototype.toPlainDateTime
The toPlainDateTime function is implemented in the class JSTemporalPlainTime-
ToPlainDateTime. It has a PlainTime receiver object, which needs to be converted
into a Temporal. PlainTime object, as well as a parameter which represents a Tem-
poral. PlainDate object. The function returns a JSTemporalPlainDateTime object.

m Temporal.PlainTime.prototype.getISOFields
The getISOFields function is implemented in the class JSTemporalPlainTimeGetl-
SOFields. It only has a PlainTime receiver object, which must be converted into a
Temporal. Plain Time object. This function returns all units defined in the PlainTime
object.

4 Implementation 23

4.3.5 Temporal PlainDate

In this section we are going into more detail about the methods implemented in Tempo-
ral. PlainDate class. Those methods include:

Temporal.PlainDate.prototype.with

The function with is implemented in the class JSTemporalPlainDate With. It has a
receiver PlainDate object, which must be converted inside the function, as well an
additional PlainDate parameter, which is used to set specific units of the first param-
eter to the defined values. Similarly to the with function mentioned for PlainTime,
the PlainDate object "2000-01-24" with the day changed to 30, the function would
return a new PlainDate object, with the value 2000-01-30.

Temporal.PlainDate.prototype.withCalendar

The function withCalendar is implemented in the class JSTemporalPlainDate With-
Calendar. It has a receiver PlainDate object, which must be converted inside the
function, as well as a Temporal. Calendar object. The function returns a new JSTem-
poralPlainDate object, which is projected into the defined Calendar object.

Temporal.PlainDate.prototype.add

The function add is implemented in the class JSTemporalPlainDateAdd, and adds
a duration to a the receiver PlainDate object, which must be converted inside the
function. A new JSTemporalPlainDate object is returned at the end of the function.

Temporal.PlainDate.prototype.subtract

The function subtract is implemented in the class JSTemporalPlainDateSubtract. It
works in a similar fashion as the previous mentioned function. But instead of simply
adding a duration to a PlainDate object, it first changes the sign of the duration,
because adding it. The result is yet again a new JSTemporalPlainDate object.

Temporal.PlainDate.prototype.until

The until function is implemented in the class JSTemporalPlainDateUntil. It has a
PlainDate receiver object, as well as an additional PlainDate parameter. Both of
them must be converted into a Temporal. PlainDate object. However, for the second
argument, the convertJavaToJavaScriptPlainDate function must be used. Addition-
ally, a optional parameter can be defined, which defines the rounding mode that can
be used. After calculating the difference of both PlainDate object, a JSTemporalDu-
ration object will be returned.

Temporal.PlainDate.prototype.since

The since function is implemented in the class JSTemporalPlainDateSince, and works
identically to the previously mentioned function. It calculates the difference between
both PlainDate object and returns a JSTemporalDuration object.

Temporal.PlainDate.prototype.equals

The equals function is implemented in the class JSTemporalPlainDateEquals. Tt has
a PlainDate receiver object, as well as an additional PlainDate parameter. Both of
them must be converted into a Temporal. PlainDate object. However, for the sec-
ond argument, the convertJavaToJavaScriptPlainDate function must be used. The
function returns a boolean value, which is either true or false.

Temporal.PlainDate.prototype.toString
The toString function is implemented in the class JSTemporalPlainDateToString,
and converts a PlainDate object into a string that represents the date in ISO-8601.

Temporal.PlainDate.prototype.toLocaleString

The toLocaleString function, which is implemented in the JSTemporalPlainDate-
ToLocaleString class works identically to the previous function. It converts the pa-
rameter thisObj and returns human-readable date as a string.

4 Implementation 24

m Temporal.PlainDate.prototype.toJSON
The toJSON function is implemented in the class JSTemporalPlainDateToJSON,
however, it is the same as the toString function, and should like for the other classes
not be called directly.

m Temporal.PlainDate.prototype.valueOf
The function valueOf is implemented in the class JSTemporalPlainDateValueOf. This
function only throws a exception if it is called, because, by default, valueOf should
not be supported by the Temporal. PlainDate class.

m Temporal.PlainDate.prototype.toZonedDateTime
The toZonedDateTime function is implemented in the class JSTemporalPlainDate To-
ZonedDateTimeNode. It has a PlainDate receiver object, which needs to be converted
into a Temporal. PlainDate object, as well as an parameter called item, which holds
a Temporal. PlainTime object, as well as a Temporal. TimeZone object. The function
returns a new JSTemporalZonedDate Time object, which combines the PlainDate ob-
ject with the item parameter.

m Temporal.PlainDate.prototype.toPlainDateTime
The toPlainDateTime function is implemented in the class JSTemporalPlainDateTo-
PlainDateTime. It has a PlainDate receiver object, which needs to be converted into
a Temporal. PlainDate object, as well as optional PlainTime parameter. The function
returns a JSTemporalPlainDateTime object.

m Temporal.PlainDate.prototype.toPlainYearMonth
The toPlainYearMonth function is implemented in the class JSTemporalPlainDate-
ToPlain YearMonth. It has a PlainDate receiver object, which needs to be converted
into a Temporal. PlainDate object. The function returns a object which represent year
and month of the PlainDate object.

m Temporal.PlainDate.prototype.toPlainMonthDay
The toPlainMonthDay function is implemented in the class JSTemporalPlainDate-
TotoPlainMonthDay. It has a PlainDate receiver object, which needs to be converted
into a Temporal. PlainDate object. The function returns a object which represent
month and day of the PlainDate object.

m Temporal.PlainDate.prototype.getISOFields
The getISOFields function is implemented in the class JSTemporalPlainDateGetl-
SOFields. It only has a PlainDate receiver object, which must be converted into a
Temporal. PlainDate object. This function returns year, month, week and day of the
PlainDate object.

4.4 ForeignObjectPrototypeNode

The ForeignObjectPrototypeNode class defines how the mapping between the foreign Java
type and the native JavaScript type should be done.to the program how the mapping be-
tween the foreign Java type and the native JavaScript type should be done. For example,
if the value is a foreign Instant, Temporal.Instant.prototype should be used.

4 Implementation

Listing 4.11: The method that determines which Temporal class object is used

@Specialization(limit = "InteropLibraryLimit")
public JSDynamicObject doTruffleObject(Object truffleObjct,
@CachedLibrary("truffleObject”) InteropLibrary interop) {

JSRealm realm = getRealm();

else if (interop.
return realm.

3

else if (interop.
return realm.

3

else if (interop.
return realm.

3

else if (interop.
return realm.

3

else if (interop.
return realm.

3

else {
return realm

b

isInstant(truffleObject)) {
getTemporallnstantPrototype();

isDuration(truffleObject)) {
getTemporalDurationPrototype();

isDate(truffleObject)) {
getTemporalPlainDatePrototype();

isTime(truffleObject)) {
getTemporalPlainTimePrototype();

isTimeZone(truffleObject)) {
getTemporalTimeZonePrototype();

.getObjectPrototype();

Chapter 5

Testing

In the final chapter of this thesis we are going to look at some tests that are written
in order to confirm that every function is working as expected. This chapter describes
how tests are implemented, what is tested or omitted from testing, and why several tests
currently fail.

The tests have been written in the class Temporallnterop Test, which was created for the
purpose of writing the tests for every Temporal class conversion methods. The tests were
written in Java, using the JUnit framework. However, different testing methods could
also be used.

For the most part, one test has been implemented for each Temporal class method. It is
not necessary to implement multiple tests, because the task of this project was not to
test, if the methods work for each scenario, but test if the conversion was done correctly.
That usually only requires one test. For the most part, every test is implemented in a
similar fashion, meaning that test could be copied and pasted the same way, for each
method, only changing a couple of lines of code.

5.1 Tests

In the Listing 5.1, you can observe, how such an test can be implemented. To mark
a method as as test, it must have the annotation @Test. The tests do not need any
@Before or @After methods, but instead constructs and deconstructs everything they
need by themselves.

Every test must define a String code, which defines the code that should be called as
JavaScript. As can be observed in Listing 5.1, line 3, this String object includes a variable
called javalnst, implying that this variable is a Java Instant object. This object is defined
in line 5, and must be a java.time object. In this case, it is a Instant object, which holds
the number 7100 _000_000. In order to use the instant object, a Context object must be
created. Line 7-11, showcase how such a context has been created. Basically, it defines the
language which should be used (line 7), configures which public constructors, methods,
fields or classes are accessible by the user (Line 8). Typically, this should be set to the
value HostAccess.ALL, which allows a full unrestricted access of the host objects. The
parameter in line 9, called allowFEzxperimentalOptions should be set to the value true.
Additionally, a context can define a couple of options, which can be defined as shown in
line 10-11.

Now that the context has been created, a value must be bound to it. That is done by
defining an identifier, which must be of the same name, that is used in Listing 5.1, line
3, as well as the Temporal class object, defined in line 5. The instant value should now
be bound to the context, and can be used to evaluate the code defined in line 5. This
value will return a Value class object, as shown in line 13, which holds the return value
of any Temporal class method that was used. Now that we have a result, we can use the
method assertEquals() to test, if the the return value is the expected result.

26

w N =

5 Testing 27

Listing 5.1: A JUnit test

@Test
public void testInstantAdd() {
String code = "javalnst.add(Temporal.Duration.from(’PT1H)).

epochMilliseconds;"”;
java.time.Instant inst = Instant.ofEpochMilli(100_000_000);
try (Context ctx = context.newBuilder(”js").
allowHostAccess(HostAccess.ALL).
allowExperimentalOptions(true).
option(JSContextOptions.FOREIGN_OBJECT_PROTOTYPE_NAME, "true”).
option(JSContextOptions.TEMPORAL_NAME, "true”).build()) {
ctx.getBindings(ID).putMember(”javalnst”, inst);
Value result = ctx.eval(ID, code);
Assert.assertEquals(100_000_000L, result.asLong());
}
3

5.2 Problems

As mentioned at the start of this chapter, some methods do not return the result that
is expected of them, or upright throw an exception. Unfortunately, the things that need
to be changed in order to make these tests work can not be changed that easily. They
have to do with the implementation of GraalVM, and have to be solved in future work.
Usually, these tests are ignored using the annotation @Ignore. Let us look at some of
these problems.

5.2.1 Arity Error

An ArityFException is thrown, when a executable or instantiable object was provided with
the wrong number of arguments. That error is not the fault of how the test was written.
The problem is, that the JavaScript method, that is used in the test has the same name
as a Java method. For example, the Java method until has two arguments. However, the
JavaScript does only have one argument, and because the compiler does first check for
Java functions, an ArityFzxception is thrown, saying, that an argument is missing.

5.2.2 Type Error

The Type Error is called, when a Temporal class object is expected, but no such object has
been set. This error happens, quite similarly to the ArityFzception, because the function
does exist in both languages. However, this time, the number of arguments was correct,
and the Java method was used. However, in doing so, the return value is wrong, and a
error message like TypeError: Temporal. Duration expected is written into the terminal.
An example for this would be the negated() function.

5.2.3 Other problems

Another error does occur among the tests. That error only appears for constructor meth-
ods, and it will be left for future work to resolve that specific issue.

Chapter 6

Conclusion

In this project, support for using java.time.* in JavaScript Temporal code has been
implemented. A large number of use-cases can be covered by the solution provided. Some
areas remain unsolved for the moment and require further consideration. Those unsolved
issues include the Temporal.Calendar, PlainMonthDay, PlainYearMonth, as well as the
ZonedDateTime class objects. At this point, a differentiation between these class objects,
and the class objects that have been implemented in this thesis is not possible, and
remains to be solved in future work.

In the extent of this thesis, all implementations have been tested. It should be noted,
that those tests only determine if the conversion between Java Temporal to JavaScript
Temporal is possible. Most functions have additional parameters, which have not been
used in the tests. For example optional parameters that determine if the value should be
rounded. Those tests remain for future work.

However, some tests failed regardless. As mentioned in Chapter 5, some challenges could
not be resolved in this thesis. For reminder, Arity Errors, and Type Errors, which oc-
curred, because there exists a conflict between the used methods and the Java.time
methods. Therefore this challenge remains to be resolved by future work.

28

Bibliography

[n. d.] ECMAScript Description. Retrieved 10/05/2022 from https://www.ecma-i
nternational.org/technical-committees/tc39.

[n. d.] Graal.js. Retrieved 11/17/2002 from https://github.com/oracle/graaljs.

[n. d.] GraalVM. Retrieved 11/17/2002 from https://www.graalvm.org/latest/do
cs/getting-started.

[n. d.] ISO 8601. Retrieved 10/05/2022 from https://en.wikipedia.org/wiki/ISO

_ 8601.

[n. d.] Proposal-Temporal. Retrieved 10/05/2022 from https://github.com/tc39/p
roposal-temporal.

[n. d.] Temporal Duration. Retrieved 01/24/2023 from https://tc39.es/proposal-t
emporal/docs/#Temporal-Duration.

[n. d.] The correspondence between types and machine-readable strings. Retrieved
01/15/2023 from https://tc39.es/proposal-temporal /docs/.

[n. d.] Truffle. Retrieved 11/17/2002 from https://www.graalvm.org/22.0/referen
ce-manual /java-on-truffle.

[n. d.] Truffle-based AST. Retrieved 10/05/2022 from https://www.javascripttuto
rials.net /graal-js-javascript-on-the-jvm.

[n. d.] Unix Time. Retrieved 10/05/2022 from https://en.wikipedia.org/wiki/Uni

X time.

29

https://www.ecma-international.org/technical-committees/tc39
https://www.ecma-international.org/technical-committees/tc39
https://github.com/oracle/graaljs
https://www.graalvm.org/latest/docs/getting-started
https://www.graalvm.org/latest/docs/getting-started
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://github.com/tc39/proposal-temporal
https://github.com/tc39/proposal-temporal
https://tc39.es/proposal-temporal/docs/#Temporal-Duration
https://tc39.es/proposal-temporal/docs/#Temporal-Duration
https://tc39.es/proposal-temporal/docs/
https://www.graalvm.org/22.0/reference-manual/java-on-truffle
https://www.graalvm.org/22.0/reference-manual/java-on-truffle
https://www.javascripttutorials.net/graal-js-javascript-on-the-jvm
https://www.javascripttutorials.net/graal-js-javascript-on-the-jvm
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

	Sworn Declaration
	Abstract
	Kurzfassung
	Contents
	Introduction
	Fundamentals
	GraalVM
	ECMAScript
	Truffle
	Annotations

	Graal.js
	ECMAScript Temporal proposal

	Interoperability support with java.time
	Algorithm
	JavaScript Temporal class objects
	Instant
	Duration duration
	TimeZone
	PlainTime
	PlainDate

	Implementation
	Setting up the environment
	Conversion helper methods
	java.time.Instant to Temporal.Instant
	java.time.Instant to Temporal.Duration
	java.time.Instant to Temporal.TimeZone
	java.time.Instant to Temporal.PlainTime
	java.time.Instant to Temporal.PlainDate

	Builtin methods
	Temporal Instant
	Temporal Duration
	Temporal TimeZone
	Temporal PlainTime
	Temporal PlainDate

	ForeignObjectPrototypeNode

	Testing
	Tests
	Problems
	Arity Error
	Type Error
	Other problems

	Conclusion
	Bibliography

