
Seminar: Garbage Collection WS 05/06

Conservative Garbage
Collection for C

Christian Höglinger
Matr. -Nr. 0256505

Jänner 2006

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Overview . 4

2 Conservative Garbage Collection 5
2.1 A taxonomy of Conservatice Garbage Collection 5
2.2 How it works . 6
2.3 Possible problems . 7

2.3.1 Space leaks . 7
2.3.2 Interior pointers . 9
2.3.3 Optimizing compilers . 9

3 An example garbage collector for C 11
3.1 Memory management in C . 11
3.2 Principles of the collector . 12

3.2.1 Allocation . 13
3.2.2 Collection . 14

3.3 Pointer identification . 15
3.4 The Boehm-Demers-Weiser collector as leak detector 17

4 Performance 18

5 Summary 20

Bibliography 21

2

1 Introduction

1.1 Motivation

Nowadays, most popular programming languages (Java, languages in the .NET envi-
ronment, Smalltalk...) offer Garbage Collection to relieve the programmer of the often
tedious and error-prone task of memory management. Programming in those languages
most often involves creating and maintaining a greater number of objects (encapsulated
data). When programming is centered around such objects it is somehow a natural de-
mand to have automatic memory management. It’s simply difficult to trace the validity
of an object over its lifetime and deallocate used memory just at the right moment.
Objects are often quite huge as well, thus allocation on the stack is not an option.

In addition, those modern languages were designed at a time, when hardware was not
much of a limiting factor any more. In most cases additional instructions for garbage
collection are easily affordable and do not limit a program’s performance significantly.

But what about more traditional, imperative languages like C? Being designed in
cooperation with the Unix system in the seventies its original purpose was to be used
for the implementation of operating systems (specifically Unix) and system software.
Over time, C became very popular and has been used for every task imaginable. Now
there is a C compiler available for almost any platform and the language is still in heavy
use, especially when high performance is desired or when there is a need for accessing
hardware directly (e.g. when writing device drivers).

For such a machine-intimate language, memory management can be quite a challeng-
ing task for the programmer and is often a source of errors. Memory might be deallocated
to early or not at all (memory leaks). Having to deal with memory addresses leads to
pointer errors and causes program crashes in the best and unexpected behaviour in the
worst cases.

Providing automatic memory management in such an environment may lead to more
stable and efficient programs and relieve the programmer from debugging complicated
code for allocating and deallocating memory.

3

1 Introduction

1.2 Overview

The general concept of conservative garbage collection is reviewed in chapter 2. It
describes the common technique for garbage collection in an uncooperative environment
as well as its problems. Though concepts apply for similar languages as well, C will be
the prime example for this paper.

Thus, chapter 3 deals with a concrete implementation of a conservative garbage col-
lector for the C language. The chapter provides a description, some implementation
details and a discussion of consisting problems (especially with optimizing compilers).
Chapter 4 reviews the collectors performance in comparison to explicit memory man-
agement strategies. In 5 the contents of this paper are reviewed and a quick summary
is given.

4

2 Conservative Garbage Collection

2.1 A taxonomy of Conservatice Garbage Collection

As H.J. Boehm and M. Weiser state in [1] "[c]onventional automatic storage manage-
ment systems rely on the user program or, more precisely, the object code generated from
the user program [...]. At a minimum, enough information is maintained to allow the
collector to distinguish references from other data."1 Most common automatic memory
management systems rely on the compiler and the runtime environment to trace allo-
cated memory which will not be used again by the program and thus can be reclaimed
by the system and reallocated for other purposes. Therefor it is at least necessary to
know which data in memory is actually a reference that points to previously allocated
data. For that purpose, memory objects are usually tagged. Information whether such a
specific memory object is a reference may be directly stored within the object itself (e.g.
by reserving one bit 2) or by increasing the object’s size to provide additional space for
the tagging data.

Having knowledge of the existing references, according to [3] mainly two garbage
collection techniques can be applied to find reclaimable data.

Reference counting simply counts how many references point to a certain object. As
soon as there is no reference left, the object (its portion of memory) can be deallocated.
Reference counting may not be used on circular data structures. It imposes a significant
overhead on the program’s execution for immediately updating counters (on pointer
assignments) all the time during execution. Tracing garbage collectors start with a
set of so called "root pointers". Root pointers are exactly those references pointing to
allocated data. Root pointers can be found on the stack, in global areas or in registers.
A tracing garbage collector starts with the root pointers and traces all references to and
from referenced memory recursively "until all objects accessible from the roots have been

1Boehm H.J., Weiser M.: "‘Garbage collection in an uncooperative environment"’. In Software -
Practice and Experience 18(9), 1988, p. 2.

2Reserving one bit already reduceses the accessible address range of a pointer or the value range of an
integer by 50%.

5

2 Conservative Garbage Collection

found"3. Objects which can be reached through root pointers are marked as reachable.
After this marking phase all objects which are not reachable 4 are deleted. Essentially,
that is, what an ordinary mark and sweep garbage collector does. Still, knowledge of
which data is a reference is necessary to sieve out the set of root pointers.

One special tracing-technique is called conservative pointer finding. At first every
memory object on the stack, in global areas or in registers is treated as a potential
reference. Among those, the actual references pointing at allocated data have to be
identified.

So called conservative garbage collectors (collectors which use conservative pointer
finding) usually have no information about where roots can be found, about the stack
frame layout and which words are pointers and which are not. No help is received
from the runtime environment or the compiler. In [5] the term conservative garbage
collector is described as a collector "that operates in uncooperative environments devoid
of assistance from compilers"5.

2.2 How it works

In general, conservative garbage collection (based on mark and sweep) works executing
the following few steps.

• Here begins the mark-phase:
At first the garbage collector has to identify the set of initial root pointers. Those
usually must be collected from the stack, global areas and registers. This is highly
system dependent, as stack layout or register conventions may differ significantly
on various architectures.

• Each root pointer has to be checked, whether it is a true reference or just arbitrary
data. What are the criteria that distinguish a reference from random data?
A true reference has to point into the allocated heap. The garbage collector has to
keep records of which memory regions it has allocated from the system. Thus, if a

3Demers A., Weiser M. et al.: "Combining generational and conservative garbage collection: Frame-
work and implementations". In Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, San Francisco, CA, 1990, p. 261.

4Those are all objects which have been allocated but not marked. Therefor the garbage collector must
keep trace of all allocated objects, e.g. storing addresses and object sizes in a table.

5Jones, R., Lins, R.: Garbage Collection: Algorithms for Automatic Dynamic Memory Management.
Chichester et al.: John Wiley, p. 230.

6

2 Conservative Garbage Collection

memory object points into such an allocated region, it’s still a potential reference,
otherwise it may be ignored for the rest of the current collection.
Valid references not only have to point into heap data, but also exactly at the
beginning of an allocated object. As a result the collector has to be able to keep
trace of all allocated objects as well. Depending on the style of allocation, the
garbage collector might for example keep multiple tables for allocated objects or
use some other, more efficient/appropriate data structures and algorithms. We will
look at a concrete implementation of a conservative garbage collector in chapter 3.
Usually, most of the data will already fail the first test. This is simply more efficient
than looking up every potential pointer in e.g. a table.

• Each pointer that has passed the previous step is a potential reference to allocated
data. Still "false references" may exist by chance. It is perfectly possible that for
example a memory object which represents an integer in the program points to
some allocated object at the time of garbage collection. An object, which is in-
deed referenced, gets marked (according to the mark and sweep garbage collection
algorithm). This object is then recursively scanned for additional references.
After this step, all objects that are reachable (and possibly some more) have been
marked.

• This is the remaining sweep-phase:
All unmarked objects are deleted and their memory is made available for future
allocations again.

Following these steps assures that no object is deleted though it is still in use (still
referenced). The next section will discuss some problems that may be encountered
during conservative garbage collection.

2.3 Possible problems

2.3.1 Space leaks

The probably most important problem for conservative garbage collectors is what is
called a "space leak"6 in [5]. Space leaks occur when false references are encountered
and memory that should be freed for reallocation is falsely retained. The frequency and

6Jones, R., Lins, R.: p.235.

7

2 Conservative Garbage Collection

Figure 2.1: In this example it is assumed that there is no pointer to the beginning of the
list. Actually the list will not be used any more and is ready to be collected.
Unfortunately a false reference points to the second item of the list, thus all
items except the list’s head are kept allocated, because the garbage collector
recursively follows all pointers in the list and marks the corresponding items.
For bigger and more complex data structures just one false reference may
easily prevent lots of memory to be reclaimed.

impact of space leaks is highly dependent on the style of the program using the garbage
collector. If a greater number of disjointed small data chunks are allocated a misiden-
tification won’t do much harm to overall memory consumption. If, on the other hand,
the program mostly operates on big tightly linked data structures, a misidentification
might cause a great portion of data to be falsely retained. If a false reference for example
points to some item at the beginning of a linked list, most of the list will be kept (fig.
2.1).

Looking solely at integers it seems quite unlikely that it turns out to be a false refer-
ence. A 32 bit system 2?? different addresses. Obviously, a lot of integers had to be used
to increase chances of misidentification high enough for imposing a serious threat with
generating too much space leaks. Normally many integers will contain relatively small
numbers, which are no valid heap addresses on most systems. A greater source of false
references are large chunks of data. A picture editing program for example may keep
a bitmap representation of the currently edited picture on the heap. This bitmap can
easily span several megabytes and will surely be referenced from other internal struc-
tures or from within the root pointers as long as the user edits the picture. That’s
why the whole bitmap is scanned for references on garbage collection. Assuming that

8

2 Conservative Garbage Collection

pointers have to be aligned to multiples of four and the size of the bitmap is around 16
megabytes7 the garbage collector would have to check four million possible references. In
addition, if pointers itself do not have to be aligned, data literally has to be scanned byte
by byte for possible references. This again greatly increases the chance for discovering
false references.

The same problem applies to large strings or any other big, unstructured objects that
are referenced. To circumvent this problem, the conservative garbage collector may
offer the programmer a possibility to mark data, which surely does not contain any
references. This could be done by providing a special allocation routine. Data that had
been allocated using this special routine, would simply not be scanned for references
(but marked) by the collector when encountered during a collection cycle.

2.3.2 Interior pointers

In general, only those pointers are accepted as valid, that point to the beginning of an
allocated object. However, it is perfectly possible (though a quite unsafe practice) to
only store interior pointers to an object. That might for example be the address of a
struct member in C. With knowledge of the struct layout, the address of the struct itself
can easily be computed from an interior pointer for manually freeing the struct. But
from the view of a conservative garbage collector no pointer to the beginning of the
struct is present and as a result the allocated memory for the struct will be reclaimed if
no other references are present. This would be disastrous.

Normally, such a problem can and should be prevented by a good program design,
however, the collector in 3 accepts interior pointers as valid in its default configuration.
Considering interior pointers highly increases the set of available valid referencable ad-
dresses (by adding the range of all interior addresses of an allocated object), and thus
highly increases the chance for false references and space leaks.

2.3.3 Optimizing compilers

In order to provide more efficiency, optimizing compilers might not immediately clear
registers containing references that are not accessed any more. In case of a garbage
collection, the referenced objects will certainly be retained. This provides a space leak
as long as the false reference is not removed (which should not take too long when

7That would apply to a 32 bit, 2000*2000 resolution bitmap

9

2 Conservative Garbage Collection

Figure 2.2: When iterating over an array, usually one register is reserved for the index
variable and one for the pointer to the beginning of the array. To access an
array element, its address is computed of the pointer and the index. In this
example in order to save one register, the pointer to the beginning of x is
temporarily not accessible. The actual index is computed through pointer
arithmetics. The original value of x can be restored after leaving the loop.
While executing the loop, x is only referenced by an interior pointer, thus it
might be erroneously reclaimed if interior pointers are not supported.

speaking of registers).
A much more dangerous case of optimization is presented in the following example. If
a compiler senses a shortage of registers it could use optimization techniques to reduce
the number of registers being needed. Fig. 2.2 shows a possible scenario taken from [5].
There an even more dangerous example is presented, where not even an interior pointer
is kept during the loop. This can surely be devastating for the garbage collector and the
program.

10

3 An example garbage collector for C

This chapter presents an example implementation of a garbage collector, the Boehm-
Demers-Weiser collector, using conservative pointer finding. This collector was first
written in the late eighties and since then heavily improved and made available for
many architectures. It relies on no information from the compiler. The collector uses
a mark and sweep algorithm and can also be set to an incremental mode to minimize
pauses when collecting.

It is used in various projects amongst whom the best known are probably Mono,
Mozilla and GCJ, the GNU java compiler.

In order to thoroughly understand the collector, it is helpful to get a general idea on
how memory management in C is usually done.

3.1 Memory management in C

In C, memory management is entirely done explicitly by hand. The programmer has
to take care of allocation and deallocation of heap memory manually. According to
W. Richard Stevens in [6] the ANSI C-standard specifies three functions for memory
allocation 1:

1. malloc is used to allocate a specified number of bytes of memory. For a typical
implementation of the C standard library, available heap memory is organized in
freelists. If not enough memory is available, underlying system calls are used to
increase the program’s address space.

2. calloc is used like malloc except that the allocated space is initialized to zeroes.

3. realloc reallocates previously allocated memory. This is especially interesting for a
conservative garbage collector, as the reallocated block of memory might be moved

1Stevens W. R.: Advanced Programming in the UNIX Environment. 26th edition, Boston et al.:
Addison-Wesley, 2003, p. 169.

11

3 An example garbage collector for C

in order to gain enough space to satisfy the request. In such a case internal data
structures keeping trace of allocated memory have to be kept consistent.

4. Most systems provide additional helper functions for convenience.

Each of these allocation functions returns a reference to the newly allocated memory.
When not used anymore, this space can be manually freed by invoking the free function
with the previously acclaimed reference. As each block of allocated memory has its size
prepended, free can exactly reclaim the right amount of memory. Keeping trace of all
those allocated memory and freeing it as soon as it is not used anymore can be a difficult
task for complex problems and is a source of memory leaks. That’s why an automatic
memory management system comes in handy.

3.2 Principles of the collector

In order to be fully accepted in the C environment, according to [5], the collector has to
meet a few requisites:

• Programs must only pay for garbage collection if they use it. If a program does not
use automatic memory management, the collector must never be invoked. Thus,
the garbage collector should be optional and not part of any standard library.

• The collector must not force any existing libraries to be rewritten. It’s unlikely that
vendors would recompile, test and redistribute their libraries just for supporting
optional garbage collection. This would simply require too much effort put into a
feature, maybe only a few customers would use.

• The collector must work perfectly in cooperation with existing compilers. Again,
no one can expect any compiler to be rewritten. Users will not switch the compiler
to gain support for automatic memory management as a lot of programs are highly
dependent upon a certain compiler2. If another compiler was used, programs itself
would have to be rewritten partly.
Neither can the collector rely on marking or tagging by the compiler, nor will a
compiler know anything about the workings of the collector. This is, however,
fully compliant with the philosophy of conservative garbage collection.

2Programs may rely on non-standard features or special optimizations only provided by a certain
compiler.

12

3 An example garbage collector for C

Figure 3.1: The system heap can be used arbitrarily by the user program or libraries.
The collected heap itself is a logically self contained subset of the system
heap. It mainly contains the 4 Kb blocks for collector allocated memory
and a number of control structures for the collector. These are the block
headers, the freelist and the structures for the two level search tree used for
fast pointer finding which will be examined in section 3.3.

To fulfill these criteria, the collector is simply implemented as a library. Programs, that
want to use the collector, have to link against this library. No compiler, system libraries
or operating systems have to be modified in order to enable usage of the collector.

The Boehm-Demers-Weiser collector provides a replacement for the traditional al-
location functions. The malloc(), realloc() and free() methods are substituted by the
collector’s own GC_MALLOC(), GC_REALLOC() and GC_FREE()3 respectively. A
user may simply replace the system’s allocation methods in the source code and remove
or comment out calls to free() or insert a header file containing appropriate macros. The
program does not even have to be recompiled, just relinked against the collector library.

3.2.1 Allocation

Despite running with the garbage collector, a program may use the heap with calls to
malloc() and free() explicitly. The heap itself can be thought of as two distinct sub-
heaps. One part is explicitly managed by the user (and libraries), the other part is
managed by the garbage collector. This can be seen in some more detail in fig. 3.1.
Available memory is organized in Blocks of 4 Kb4. Each Block contains only objects of

3Actually this method should never have to be used, but in certain cases it might be useful to free
memory explicitly.

44 Kb corresponds to the page-size on most systems.

13

3 An example garbage collector for C

the same size. If more than 4 Kb on objects of a certain size are needed, multiple blocks
are used. Each block is referenced by a block-header struct, that additionally contains
information about the size of the allocated objects in the block as well as a bitmap used
for marking. Block header structs are organized in a linked list sorted by the address of
the referenced blocks.

Free space in blocks is managed on a free list for each object size. On allocation, the
first entry from this free list is used. If a not enough free space is present for an allocation
(the freelist for the requested object size is empty), the collector tries to acquire more
free space doing a collection5. If a collection fails to free enough space new blocks are
requested from the system.

Large objects (larger than half the block size) are treated differently. Large objects
get, if possible, allocated to the first block large enough. To gain blocks larger than 4Kb
adjacent free blocks may be merged if a corresponding flag is set. Usually such large
enough blocks are directly allocated from the system though.

The Boehm-Demers-Weiser collector uses blacklisting to avoid allocating objects to
areas pointed to by false references. Therefor it keeps track of false references. Whenever
a false reference that points into the collected heap is identified, it is added to the
blacklist. Thus chances for space leaks can already be minimized during allocation.
More on identifying false references is presented in section 3.3.

3.2.2 Collection

Collection is invoked whenever a certain threshold of allocated memory has been passed.
Basically, the collector follows the strategy of mark and deferred sweep. The main
problems in the mark phase are finding the root set and identifying references in general.
Examining the stack, global areas and registers for getting the root set requires exact
knowledge of each specific system the collector runs on. A great portion of the collector’s
source code deals with system specific differences in stack layout, layout of the global
areas and registers and techniques how to acquire and examine words to be identified.

5Actually, because the collector usually runs in an incremental mode, the sweep phase is resumed for
the corresponding block.

14

3 An example garbage collector for C

3.3 Pointer identification

It is essential for any conservative garbage collector to identify valid references that point
to allocated memory objects. Any word, encountered during identification of the root
set and during the mark phase is at first treated as a valid reference. For sieving out
invalid references a few tests are conducted.

At first, a reference is tested whether it points into the allocated heap at all. Most
data will already fail this test. For further identification of references, a two-level tree
structure is used. According to [2] the tree structure is considered especially important
because of the following reasons6:

1. It is central to fast collector operation.

2. Some other collectors appear to use inferior data structures to solve the same
problem.

3. Variations of the data structure are more generally useful.

It is very important that potential references can be identified very fast, because during
collection possibly a very high number of memory words may have to be examined. This
is the main goal of the structure.

Every word that has to be identified is divided into three parts. The detailed lengths
of these parts are dependent on the system’s architecture but usually are ten bits (high
bits), ten bits (middle bits) and twelve bits (low bits). A graphical representation of the
tree is shown in figure 3.2.

The high and middle bits are used to get a block descriptor (block header,) out of the
tree structure. The high bits are used as an index into the GC_top_index. Assuming
ten high bits and a 32 bit address space, GC_top_index fits perfectly into one page
in virtual memory on most systems. Each entry of GC_top_index points to a data
structure called bottom_index. bottom_index mainly consists of an array, that itself
is indexed by the middle bits. Any field of that array contains a pointer to a block
descriptor (struct hblkhdr). If the pointer actually points into a large object which is
not managed within a 4Kb block, this is treated here and handled appropriately. The

6Boehm, H. J.: Two-Level Tree Structure for Fast Pointer Lookup.
http://www.hpl.hp.com/personal/Hans_Boehm/gc/tree.html, 14.1.2006.

15

3 An example garbage collector for C

Figure 3.2: This shows the Two-Level Tree Structure for Fast Pointer Lookup as used
in the collector.

block header points to a GC_obj_map. Objects of the same size all traceable over the
same GC_obj_map but may be distributed over several 4Kb blocks. Thus the pointer
of the header does not exactly point to the start of the GC_obj_map but to an offset,
from where the entries of the corresponding block can be traced.

From this offset, the GC_obj_map is indexed by the low bits. The result is either
a displacement to the beginning of an allocated object (the reference is valid) or an
indication that the reference cannot be valid. In the first case, when collecting, the
corresponding mark bit is set in the block header and collection is resumed for the
currently discovered object.

16

3 An example garbage collector for C

For saving memory, not all entries of GC_top_index point to a valid bottom_index.
Most entries will actually point to a NULL structure which indicates that there has not
been any memory allocated in the specific range pointed to by the high bits.

Traversing the two level tree requires only a few machine instructions on most archi-
tectures. It provides a fast and memory efficient way of identifying references.

3.4 The Boehm-Demers-Weiser collector as leak detector

The collector may also be used for detecting memory leaks in otherwise explicitly man-
aged programs. A special compiler flag has to be set to enable leak detection.

When running the program, each call to the allocation methods are traced back to
the calling method. The caller’s call-stack is saved internally along the collectors usual
data structures. From time to time garbage collection is started. For explicitly managed
programs, unused memory objects should be freed as soon as possible. Thus, when
the collector encounters unreferenced objects during the mark-phase, the object and its
call-stack are reported. Memory leaks can easily identified using this technique. The
most popular user of the Boehm-Demers-Weiser collector as a leak detector is probably
the Mozilla project.

17

4 Performance

In [7] a performance measurement of conservative garbage collection in comparison to
various explicit memory management algorithms has been conducted.

Six different programs were all executed using various memory management strate-
gies. In particular four explicit allocators and the Boehm-Demers-Weiser collector were
used. The explicit allocators consisted of standard implementations from different Unix
systems and one algorithm by Knuth. The CPU overhead generated from memory man-
agement can be examined in figure 4.1. Surprisingly, the conservative garbage collec-

Figure 4.1: Comparison of peak memory usage. The Boehm-Demers-Weiser collector is
encircled red, explicit methods are encircled blue.

tor did exceptionally well in comparison to explicit techniques. Seemingly the overhead
caused by automatic management was compensated for by the way the collector updates
memory management data structures when freeing unallocated memory. The algorithm
is only started from time to time, but therefor collects a greater amount of unclaimed
memory, whereas explicit management has to start its routines (e.g. traversing lists) on
every call of free(). Thus, according to [7] "potential CPU perform- ance should not be

18

4 Performance

a factor in choosing between explicit and automatic algorithms."1

The maximum amount of used memory can be examined in figure 4.2. It is no surprise,

Figure 4.2: Comparison of CPU usage. The Boehm-Demers-Weiser collector is encircled
red, explicit methods are encircled blue.

that in most cases more memory is needed when using the garbage collector. The
collector simply needs additional data structures for managing allocated blocks and for
maintaining the two level search tree which was examined in section 3.3. Also, for each
allocation of a previously not allocated object size is requested a new 4 Kb block has to
be requested from the memory. Thus, if lots of different sized small objects are allocated,
much space is wasted on nearly empty blocks.

1Zorn B.: "The Measured Cost of Conservative Garbage Collection." In Software - Practice and
Experience 23(7), 1993, p. 743

19

5 Summary

The foundations of conservative garbage collection were discussed in chapter 2. Chapter
3 provided a closer look at a widely used implementation of a conservative collector
for the language C. Internals of allocation and collection were reviewed in more detail.
In chapter 4, the performance of conservative collection compared to explicit memory
management was examined.

Conservative garbage collection has proven to be a useful method for making programs
more reliable and assist programmers in the difficult task of memory management. Still,
serious problems can arise if unsafe programming techniques are applied or highly opti-
mizing compilers modify the code in a dangerous way. Best suited for mark and sweep
techniques, it’s hard to apply conservative garbage collection to copying collectors. The
main reason is the persisting chance of misidentifying arbitrary data for pointers. When
a copying collector updates its references it may overwrite such arbitrary data, which is
not acceptable.

In [3] the role of conservative collection is suitably defined as follows: "Conservative
garbage collection has great potential for being the foundation of a language-independent
system of collection, but precludes copying in the general case."

20

Bibliography

[1] Boehm H.J., Weiser M.: "Garbage collection in an uncooperative environment". In
Software - Practice and Experience 18(9), 1988, pp. 807-820.

[2] Boehm, H. J.: Two-Level Tree Structure for Fast Pointer Lookup.
http://www.hpl.hp.com/personal/Hans_Boehm/gc/tree.html, 14.1.2006.

[3] Demers A., Weiser M., Hayes B., Boehm H., Bobrow D. and Shenker S.: "‘Combin-
ing generational and conservative garbage collection: Framework and implemen-
tations". In Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, San Francisco, CA, 1990, pp. 261-269.

[4] Diwan A., Moss E., Hudson R.: "Compiler Support for Garbage Collection in a
Statically Typed Language". In Proceedings of the Conference on Programming
Language Design and Implementation(PLDI), San Francisco, CA, 1992, pp. 273-
282.

[5] Jones, R., Lins, R.: Garbage Collection: Algorithms for Automatic Dynamic Mem-
ory Management. Chichester et al.: John Wiley, 1996.

[6] Stevens W. R.: Advanced Programming in the UNIX Environment. 26th edition,
Boston et al.: Addison-Wesley, 2003.

[7] Zorn B.: "The Measured Cost of Conservative Garbage Collection." In Software -
Practice and Experience 23(7), 1993, pp. 733-756.

21

	Introduction
	Motivation
	Overview

	Conservative Garbage Collection
	A taxonomy of Conservatice Garbage Collection
	How it works
	Possible problems
	Space leaks
	Interior pointers
	Optimizing compilers

	An example garbage collector for C
	Memory management in C
	Principles of the collector
	Allocation
	Collection

	Pointer identification
	The Boehm-Demers-Weiser collector as leak detector

	Performance
	Summary
	Bibliography

