
IBM Research Lab in HaifaIBM Research Lab in Haifa

Testing Multi-threaded Testing Multi-threaded
Java Programs with Java Programs with
ConTest-LiteConTest-Lite

Eitan FarchiEitan Farchi
Shmuel UrShmuel Ur
Evgeny GoldinEvgeny Goldin
Yarden NirYarden Nir
Orit EdelsteinOrit Edelstein

H
R
L

OutlineOutline

Why is concurrency a testing issue?
Using ConTest-Lite to find concurrent bugs is simple
Concurrent bugs and why they are not found
Overview of ConTestLite

Finding concurrent bugs
Debugging and coverage support

Methodology
What are good concurrent tests?
Re-running tests

Using ConTest-Lite (continued)

H
R
L

Concurrency introduces non-determinism
Multiple executions of the same test may have different
interleaving (and different results!)

an interleaving is the relative execution order of the program threads
Re-executing a test on a single stand-alone processor
is not useful
Debugging affects the timing
No useful coverage measures for the interleaving
space
Result: Most bugs are found in system tests, stress
tests, or by the customer

Why is Concurrent Testing Hard?Why is Concurrent Testing Hard?

H
R
L

Re-executing on a Stand-alone Processor Is Not Re-executing on a Stand-alone Processor Is Not
UsefulUseful

executed
interleavings

An exponential space of possible interleavings:

H
R
L

Real Life Motivation Real Life Motivation

Project: file system (IFS for the AS/400)
Stage: component test
Observed behavior: "use-count" values corrupted
during stress test
Time wasted: several calendar months, more than 0.5PY
Main difficulty: failure was not repeatable
Fault description: incorrect use of compare-and-swap
result
Bug should have been found during Unit Test!

H
R
L

Using conTestLite to Find Concurrent Using conTestLite to Find Concurrent
Bugs is simpleBugs is simple

Instrument the program under test
Add conTest-Lite to the classpath used when
executing the program under test
Run your tests

Example: Service() method is not synchronized

H
R
L

With ConTest, each test will go a long wayWith ConTest, each test will go a long way

H
R
L

OutlineOutline

Why is concurrency a testing issue?
Using conTest-Lite to find concurrent bugs is
simple
Concurrent bugs and why they are not found
Overview of ConTest-Lite

Finding concurrent bugs
Debugging and coverage support

Methodology
What are good concurrent tests?
Re-running tests

Using contest-Lite (continued)

H
R
L

Example of an Interleaving-sensitive Test ResultExample of an Interleaving-sensitive Test Result

Threads A and B execute (i=0; add(&i))
The result depends upon the interleaving
Would not be revealed in a typical test

A1
A2
A3
B1
B2
B3

2

A1
B1
B2
A2
B3
A3

1

Interleaving

Result:

add(int *x){
1 int tmp =
*x;
2 tmp++;
3 *x = tmp;
}

Program

H
R
L

static final int NUM = 5;
static int Global = 0;

public static void main(String[] argv){
 Global = 0;
 threads[0] = new Adder(1);
 threads[1] = new Adder(10);
 threads[2] = new Adder(100);
 threads[3] = new Adder(1000);
 threads[4] = new Adder(10000);

 // Start Threads
 for(int i=0;i<NUM;i++){ threads[i].start(); }

 try{ Thread.sleep(1000); } catch(Exception exc){}

 // Print Results
 System.out.println(Global);
}

How much is 1+10+100+1000+10000?How much is 1+10+100+1000+10000?

H
R
L

class Adder extends Thread

 int Local;

 Adder(int i){
 Local = i;
 }

 public void add(){
 example.Global += Local;
 }

 public void run(){
 add();
 }

class Adderclass Adder

H
R
L

Coverage Results Without ConTestCoverage Results Without ConTest

H
R
L

Coverage Results with ConTestCoverage Results with ConTest

H
R
L

Java Source code

 public void add(){
 example.Global += Local;
 }

Byte Code

Method void add()
 0 getstatic #3 <Field int Global>
 3 aload_0
 4 getfield #2 <Field int Local>
 7 iadd
 8 putstatic #3 <Field int Global>
 11 return

method Addmethod Add

H
R
L

A Bug We Published...A Bug We Published...

H
R
L

class ObjectOne implements Runnable {
 public void run() {
 if(RaceField.race == false)
 {
 RaceField.race = true;
 System.out.println("Mine");
 }
 }
}
class RaceField {
 public static boolean race = false;
}

Expected and observed Behavior:
 One "Mine" is printed by the thread that won the race

Possible bug:
 More than one "Mine" is printed

Creating a Critical Section is TrickyCreating a Critical Section is Tricky

H
R
L

static void transfer(Transfer t) {

 balances[t.fundFrom] -= t.amount;
 balances[t.fundTo] += t.amount;
}

Expected Behavior:
Money should pass from one account to another

Observed Behavior:
Sometimes the amount taken is not equal to the amount received

Possible bug:
Thread switch in the middle of money transfers

Atomicity is Never AssuredAtomicity is Never Assured

H
R
L

Bug found by ConTest in Websphere Site AnalyzerBug found by ConTest in Websphere Site Analyzer

Crawler, a ~1000 line Java component, is part of the
Websphere Site Analyzer used to perform content
analysis of web sites
Bug description:

if (connection != null) connection.setStopFlag();
1. connection is checked to be !null
2. CPU is lost
3. connection is set to null before CPU is regained
If this happens before connection.setStopFlag(); is executed, an
exception is taken

This bug was found while we were still testing ConTest
This bug should (also) be found in unit testing...

H
R
L

A high availability servlet server has a hash table that is
kept synchronized using a cluster
The high availability servlet has a primary and a backup
node
The primary node caches the hash table
Objects are trees: deep copy is obtained using an
auxiliary table

primary

A Servlet Server Bug (HA. Tomcat)A Servlet Server Bug (HA. Tomcat)

hash table

cache

auxiliary table

H
R
L

Bug description
thread1:

A node becomes primary
Start deep copying of hash table to CACHE table using the auxiliary table

thread2:
A cache miss on object A occurs
Start deep copying of object A from hash table to CACHE table using auxiliary
table

thread1:
Complete deep copying of hash table to the CACHE table. Auxiliary table is
discarded

thread2:
An attempt is made to access the auxiliary table

A Servlet Server BugA Servlet Server Bug

H
R
L

Frame of mind when the program is written
Requires thread switching at precise locations
Typical testing environment

Thread switch occurs at repeating locations
Execution is almost deterministic
No load/stress

Not enough of the right kind of tests
Not enough tests

Why are these bugs not found?Why are these bugs not found?

H
R
L

OutlineOutline

Why is concurrency a testing issue?
Using conTestLite to find concurrent bugs is simple
Concurrent bugs and why they are not found
Overview of ConTest-Lite

Finding concurrent bugs
Debugging and coverage support

Methodology
What are good concurrent tests?
Re-running tests

Using contestLite (continued)

H
R
L

We instrument every concurrent event
Concurrent events are the events whose order determines the
result of the program

At every concurrent event, a random based decision is
made whether to cause a context switch

For example, using a sleep statement
Philosophy:

Modify the program in such a way that it will be more likely to
exhibit bugs (without introducing new bugs)
Minimize impact on the testing process
Re-use existing tests
Utilize the time computers are not being used (nights,
weekends, etc.)

How Does ConTest-Lite Find Bugs?How Does ConTest-Lite Find Bugs?

H
R
L

ConTest is composed of the following
components

An instrumentation engine that
Creates hooks for the irritator and for coverage printing
Generates coverage models

The instrumentation is done at the bytecode level
An irritator that randomly, or using heuristics, generates
new interleaving on-the-fly
Seed replay component
Coverage component
Deadlock component
Orange box component

ConTest-Lite OverviewConTest-Lite Overview

H
R
L

ConTest-Lite Architecture - Static ViewConTest-Lite Architecture - Static View

Optional

Application
under test

Instrumentation

Application
+ irritator

instrumentation

Coverage Model
Replay

Deadlock
Orange box

H
R
L

ConTest Architecture - Dynamic ViewConTest Architecture - Dynamic View

Optional

Deadlock
Orange box

Test Coverage
information

Replay
information

Execute
instrumented

program

Results

H
R
L

Why Bugs are Found with ConTestWhy Bugs are Found with ConTest

Thread switches in many places
Random interleaving; the interleaving changes
between runs of the same test
Result: executing tests many times is more likely
to find bugs

H
R
L

Coverage with ConTest-LiteCoverage with ConTest-Lite

H
R
L

Replay of Tests with ConTest-LiteReplay of Tests with ConTest-Lite

Replay is very important to enable debugging
Replay in ConTest-Lite is done by collecting the seed
of the random function and using it again

Very efficient; replay is as fast as the original run
Replay is not guaranteed

Different interleaving in parts of the application that are not
instrumented
Context switch due to different workloads
In ConTest, replay is guaranteed but the entire program
needs to be instrumented

H
R
L

Orange BoxOrange Box

if(connection!=null)
connection.setStopFlag();

We know that connection==null but we don't know
why
Orange box to the rescue

The last N program locations and values of variables are
printed

H
R
L

DeadlockDeadlock

The program, or part of it, is in deadlock
Deadlock support provides information on:

Locks and the threads that wait on them
Threads and the locks they are waiting on
Lock owners

H
R
L

Partial Instrumentation (Pragma)Partial Instrumentation (Pragma)

Sometimes it is desirable that only part of a file will be
instrumented. The reasons could be:

Performance
Debugging, adding print statements without changing the timing

H
R
L

OutlineOutline

Why is concurrency a testing issue?
Using conTestLite to find concurrent bugs is
simple
Concurrent bugs and why they are not found
Overview of ConTest-Lite

Finding concurrent bugs
Debugging and coverage support

Methodology
What are good concurrent tests?
Re-running tests

Using contestLite (continued)

H
R
L

User Scenario Before ConTestUser Scenario Before ConTest

Run Test

Fix BugFinish

Check
Results

ProblemCorrect

H
R
L

User Scenario Before ConTestUser Scenario Before ConTest

Check
Results

Run Test with interleaving
decided by heuristic
Record interleaving
Update coverage

Check
Coverage

Target

Fix Bug
Rerun Test
with Replay
information
Orange box
Deadlock

Problem

Correct

Not Reached

Finish

Reached

H
R
L

Good Tests - Multi-threadingGood Tests - Multi-threading

Multi-threading is a MUST
Simple test, multi-threaded application
Multi-threaded test, simple application
Multi-threaded test, multi-threaded application

Do you introduce contentions?
Is the test risk driven?
Running the tests in different environments

What is an environment?
What is the importance of the environment?

H
R
L

Good Tests - AutomationGood Tests - Automation

A test should be automated if it will be executed more
than 10 times by hand
Automation requires programming

Cost is high per test
Automation can sometimes be done with dedicated
tools (capture replay)
Very useful for regression

H
R
L

Good Tests - Comprehensive SuiteGood Tests - Comprehensive Suite

Every test is good -- what about the test suite?
Measurement of coverage

Regular coverage measurements (method, block)
Multi-threaded coverage measurements (interference)

Working with test generators
Expected results
Automatic selection

H
R
L

Re-running TestsRe-running Tests

Without ConTest you run each test a few times in every
environment
With ConTest you run each test many times in one or
more environments
Benefits

Possible to use fewer tests
Possible to test in fewer environments

H
R
L

Re-running Tests - Problem and OpportunitiesRe-running Tests - Problem and Opportunities

What about expected results?
Getting expected results
Working without expected results

Finding a bug; how do you find it again?
Running with seed
Maintaining additional information

How many times should a test be executed?

H
R
L

Checklist to RememberChecklist to Remember

Many threads exist in test, application, or both
The threads should have contention between them
A test should contain automatic result verification
Each test should be executed many times; seed should
be saved after each run that failed
Testing should be risk driven

H
R
L

Lessons from Hursley DeploymentLessons from Hursley Deployment

Fully automate the following:
Implement while(currentCoverage < requiredCoverage);
On failure associate replay information with

log files
error result
jvm that failed
Also if several JVMs are invoked by the test

Support efficient instrumentation of a partial set of a jar file
chosen using an exclude list or using a regular expression
Provide a specific exclude list for the rt.jar

H
R
L

OutlineOutline

Why is concurrency a testing issue?
Using conTestLite to find concurrent bugs is
simple
Concurrent bugs and why they are not found
Overview of ConTest-Lite

Finding concurrent bugs
Debugging and coverage support

Methodology
What are good concurrent tests?
Re-running tests

Using contestLite (continued)

H
R
L

Partial ReplayPartial Replay

A debugging aid
Increases the likelihood that the same
synchronization bug will reoccur
Seed of the pseudo random sequence is save
and then used to reproduce the same
sequence of delays that occurred in the
original run

H
R
L

Partial Replay LimitationsPartial Replay Limitations

Partial replay increases the chance that the
bug will reoccur but does not guarantee it
Program timing is determined by many factors:

The scheduler algorithm
The computer architecture
The network delays
The system load

To increase the chance of replay neutralize
factors that impact timing

For example, run on a dedicated machine to
neutralize system load

H
R
L

Use of Partial ReplayUse of Partial Replay

Specify the seed property seed = true
At runtime a seed value will be written to the
playBackSeed{timeStamp}.txt file
To replay this run, reset the seed property to
seed = 987654321 (the number taken from the
playBackSeed file)

H
R
L

Using ConTest Heuristics Using ConTest Heuristics
A heuristic is the algorithm used to

Create "noise"
Increase the chance of revealing a synchronization
bug

The amount of noise can be controled by a
strength property
Play with the heuristics to determine the
maximum noise you may introduce and still get
a reasonable performance

H
R
L

Using ConTest Heuristics Using ConTest Heuristics
To use the sleeps heuristics with strength 50
specify the following in the property file:

mode = sleeps
sleepsStrength = 50

The current available heuristics are
yields
sleeps
synchYields

H
R
L

Concurrent CoverageConcurrent Coverage
Concurrent coverage is used to check that
every instrumented location has been reached
Instrumenting: a list of instrumented locations
is created
An instrumented location is identified by

 file name, method name, class name, line number
 instrumentation type

For every executed test a coverage trace is
created
Coverage is analyzed using FoCuS (Please
contact us to get FoCuS)

H
R
L

Download ConTest-Lite at:Download ConTest-Lite at:

http://w3.haifa.ibm.com/softwaretesting/ConTest

H
R
L

A deadlock bug found by conTest in WEBSM (CBJ)
Using contest advance features:

Partial instrumentation of code segments
Deadlock support
Orange box support

"Appendix" outline"Appendix" outline

H
R
L

WEBSM is a web system management tool provided
by Tivoli on AIX.
WEBSM uses CBJ for its remote method invocation
Bug scenario

A return value of a remote invocation is written to a cyclic
buffer and read by the application thread that invoked the
remote call.
If a parameter is a reference to a remote class instance, CBJ
loads the class remotely.

WEBSM (CBJ) DeadlockWEBSM (CBJ) Deadlock

H
R
L

It may be that the application thread waits for the
remote class to load while a parameter is returned
If

the cyclic buffer where parameters are written is full and
the next parameter wins the race

 a deadlock is created

WEBSM (CBJ) DeadlockWEBSM (CBJ) Deadlock

H
R
L

The thread listening on the port attempts to write to a full
parameter buffer

This buffer is never emptied since the application thread is waiting for
the remote class instance (that should be written to a second buffer
by the thread listening on the port. However, it is never written as this
thread is waiting for the parameter buffer to be emptied.)

parameter buffer

Remote object buffer

application

full

port

WEBSM (CBJ) DeadlockWEBSM (CBJ) Deadlock

H
R
L

public Hashtable getHashApp() throws Exception {
/* App.class exists on server's classpath not on the
client !*/

 App app = new App();
 int b1[] = new int[10000];
 for (int i=0; i < b1.length; i++)
 b1[i] = i;
 int b2[] = new int[10000];
 for (int i=0; i < b2.length; i++)
 b2[i] = i;
 Hashtable h = new Hashtable();
 h.put("aaaa", b1);
 h.put("ccc", app);
 h.put("eee", b2);
 return h;
 }

The test case that found the CBJ DeadlockThe test case that found the CBJ Deadlock

H
R
L

Partial InstrumentationPartial Instrumentation

Partial instrumentation is important as
Coverage is collected only on the instrumented parts

Used, for example, when coverage needs to be collected
only on new functionality

Uninstrumented print statements can be added
without affecting replay
Performance is enhanced

Partial instrumentation can be done
by choosing a subset of the application files
by instrumenting part of a specific file

H
R
L

Instrumenting Part of a FileInstrumenting Part of a File

In the java file
Instrumentation.pragma ("off"); will turn the
instrumentation off
Instrumentation.pragma ("on"); will turn it on

conTest's jar file should be available to the
application when compiling

H
R
L

Deadlock and Orange Box SupportDeadlock and Orange Box Support

Agent1 and Agent2 try to capture two different
locks, but in reverse order
Thus, the program has a deadlock
An auxiliary thread

activates the deadlock support mechanism
calls the required APIs to print deadlock information

Orange box is also used by introducing an
auxiliary thread

