
(c) Christoph Steindl Test-Driven Development (Unit) 1

Test-Driven Development
at the Unit Testing Level

Dr. Christoph Steindl

(c) Christoph Steindl Test-Driven Development (Unit) 2

Motivation
If you intend to test after you‘ve developed the system, you won‘t have the time for
testing.

Write the tests before the code!

If things get complicated, you might fear that „the system“ doesn‘t work.
Execute the tests and get positive feedback (everything still works) or get pointed

to the bit that does not / no longer work.

If you‘re overwhelmed by the complexity, you get frustrated.
Start with the simplest thing and proceed in tiny steps!

If you don‘t have tests for the code, you shouldn‘t use it / ship it.
This can‘t happen if you write the test first (so you reach better test coverage than

with functional tests).

If performance is only considered late, you won‘t be able to just „add a little more
performance“ to the system.

Re-use unit tests for performance tests even during development and don‘t start
with performance tests late in the project!

(c) Christoph Steindl Test-Driven Development (Unit) 3

Red – Green – Refactor
Red

Write a little test that doesn‘t work (and perhaps
doesn‘t even compile at first).

Green
Make the test work quickly (committing whatever sins
necessary)

Refactor
Eliminate all of the duplication created in merely
getting the test to work, improve the design.

(c) Christoph Steindl Test-Driven Development (Unit) 4

Why?
The test is the executable specification.

You start thinking about the goal first, then about the possible implementations.
You understand the program‘s behavior by looking at the tests. The tests tell
you more than just an API description, they show the dynamics, how to use the
API.

You develop just enough.
You get to the goal as quick as possible.
You don‘t develop unnecessary code.
There is no code without a test.
There is no test without a user requirement.

Once you get one test working, you know it is working now and forever.
You use the tests as regression tests.

The tests give us the courage to refactor.
You can prove that everything still works after the refactoring by simply
executing the tests.

It‘s funnier that way, it reduces fear.

(c) Christoph Steindl Test-Driven Development (Unit) 5

How?
Don‘t start with objects (or design, or ...), start with a
test.

Write new code only if an automated test has failed.
First think of the goal, the required functionality.
Then think of the perfect interface for that operation (from the
outside, black-box view).

Run the test often – very often.
To determine whether you‘ve reached the goal.
To catch any bugs that have crawled back in.

Make little steps (during coding and refactoring)
So little that you feel comfortable with them.
Make them larger if you feel.
Make them smaller if you don‘t proceed with your expected
velocity.

(c) Christoph Steindl Test-Driven Development (Unit) 6

Use Tools
Framework for automating the unit tests

E.g. Junit
Integrated development environment

For writing tests, using auto-completion and generation of
missing code.
For running the tests
For refactoring
E.g. Eclipse

Build environment
For executing tests automatically and during the build process
For computing code coverage
For generating test reports
E.g. Maven

(c) Christoph Steindl Test-Driven Development (Unit) 7

Flavors of Unit Tests

(c) Christoph Steindl Test-Driven Development (Unit) 8

How to Use Junit?
Install the framework (see homework).
Write tests (one for each feature)

Write the expected goal first.
Assert that the actual result equals the expected result.
Work backwards to compute the expected result.
Finally write the setup code needed at the start of the test.

Combine tests to test suites.
Extract common setup and tear down code into test
fixtures.
Execute tests or test suites (see homework).
Organize your test suites.

(c) Christoph Steindl Test-Driven Development (Unit) 9

Assert

(c) Christoph Steindl Test-Driven Development (Unit) 10

TestCase

(c) Christoph Steindl Test-Driven Development (Unit) 11

First Example
public class Calculator
{
public double add(double number1, double number2)
{
return number1 + number2;

}
}

Calculator.java

import junit.framework.TestCase;

public class TestCalculator3 extends TestCase {
public void testAdd() {
Calculator calculator = new Calculator();
double result = calculator.add(10, 50);
assertEquals(60, result, 0);

}
}

TestCalculator.java

(c) Christoph Steindl Test-Driven Development (Unit) 12

(c) Christoph Steindl Test-Driven Development (Unit) 13

How to Use Eclipse?
Install it (see homework).
Develop the program

Write tests
Use auto-completion to generate the missing code
Execute the tests
Refactor the code

(c) Christoph Steindl Test-Driven Development (Unit) 14

How to Use Ant?
Install it (see homework).
Write the „build file“ (build.xml).

Name the project
Define the „default“ target
Define properties (global variables)

Write the „targets“.
For compiling
For executing the tests
For creating the documentation (Javadoc, test results,...)
For bundling the deliverables

Execute the targets (see homework).
Use Grand (http://www.ggtools.net/grand/) to visualize a
build file.

http://www.ggtools.net/grand/

(c) Christoph Steindl Test-Driven Development (Unit) 15

<project name="sampling" default="test">

<property file="build.properties"/>

<property name="src.dir" location="src"/>
<property name="src.java.dir" location="${src.dir}/java"/>
<property name="src.test.dir" location="${src.dir}/test"/>

<property name="target.dir" location="target"/>
<property name="target.classes.java.dir"

location="${target.dir}/classes/java"/>
<property name="target.classes.test.dir"

location="${target.dir}/classes/test"/>

<property name="target.report.dir"
location="${target.dir}/report"/>

</project>

• Name
• Default target
• Properties from a file
• Additional properties

Build.xml for Ant (1/5)

(c) Christoph Steindl Test-Driven Development (Unit) 16

<target name="compile.java">
<mkdir dir="${target.classes.java.dir}"/>
<javac destdir="${target.classes.java.dir}">

<src path="${src.java.dir}"/>
</javac>

</target>

<target name="compile.test" depends="compile.java">
<mkdir dir="${target.classes.test.dir}"/>
<javac destdir="${target.classes.test.dir}">

<src path="${src.test.dir}"/>
<classpath>

<pathelement location="${target.classes.java.dir}"/>
</classpath>

</javac>
</target>

<target name="compile" depends="compile.java,compile.test"/>

Compile targets
Build.xml for Ant (2/5)

(c) Christoph Steindl Test-Driven Development (Unit) 17

Build.xml for Ant (3/5)
<target name="test" depends="compile">

<mkdir dir="${target.report.dir}"/>
<junit printsummary="yes" haltonerror="yes" haltonfailure="yes"

fork="yes">
<formatter type="plain" usefile="false"/>
<formatter type="xml"/>
<test name="junitbook.sampling.TestDefaultController"

todir="${target.report.dir}"/>
<classpath>

<pathelement location="${target.classes.java.dir}"/>
<pathelement location="${target.classes.test.dir}"/>

</classpath>
</junit>

</target>

Test target

(c) Christoph Steindl Test-Driven Development (Unit) 18

Build.xml for Ant (4/5)
<target name="test" depends="compile">

<mkdir dir="${target.report.dir}"/>
<property name="tests" value="Test*"/>
<junit printsummary="yes" haltonerror="yes" haltonfailure="yes">

<formatter type="plain" usefile="false"/>
<formatter type="xml"/>
<batchtest todir="${target.report.dir}">

<fileset dir="${src.test.dir}">
<include name="**/${tests}.java"/>
<exclude name="**/AllTests.java"/>

</fileset>
</batchtest>
<classpath>

<pathelement location="${target.classes.java.dir}"/>
<pathelement location="${target.classes.test.dir}"/>

</classpath>
</junit>

</target>

Batch test target

(c) Christoph Steindl Test-Driven Development (Unit) 19

Build.xml for Ant (5/5)
<target name="report" depends="test">

<mkdir dir="${target.report.dir}/html"/>
<junitreport todir="${target.report.dir}">

<fileset dir="${target.report.dir}">
<include name="TEST-*.xml"/>

</fileset>
<report todir="${target.report.dir}/html"/>

</junitreport>
</target>

Report target

<target name="clean">
<delete dir="${target.dir}"/>

</target>

Clean target

(c) Christoph Steindl Test-Driven Development (Unit) 20

How to Use Maven?
Install it (see homework).
Generate the project template and directory structure.
Adapt the project template.
Generate Eclipse files by: „maven eclipse“
Compile the sources by: „maven java:compile“
Execute the tests by: „maven test“
Generate Ant „build.xml“ by: „maven ant“
Generate CruiseControl file by: „maven cruisecontrol“
Run CruiseControl by: „maven cruisecontrol:run“
Generate Reports by: „maven site“

(c) Christoph Steindl Test-Driven Development (Unit) 21

Project.xml for Maven (1/4)
<?xml version="1.0" encoding="ISO-8859-1"?>

<project>
<pomVersion>3</pomVersion>
<id>junitbook-sampling</id>
<name>JUnit in Action - Sampling JUnit</name>
<currentVersion>1.0</currentVersion>
<organization>
<name>Manning Publications Co.</name>
<url>http://www.manning.com/</url>
<logo>http://www.manning.com/front/dance.gif</logo>

</organization>
<inceptionYear>2002</inceptionYear>
<package>junitbook.sampling</package>
<logo>/images/jia.jpg</logo>

</project>

• Name,...

(c) Christoph Steindl Test-Driven Development (Unit) 22

Project.xml for Maven (2/4)
<description>

Chapter 3 presents a sophisticated test case to show how JUnit
works with larger components. The subject of our case study is
a component found in many applications: a controller. We
introduce the case-study code, identify what code to test, and
then show how to test it. Once we know that the code works as
expected, we create tests for exceptional conditions, to be
sure our code behaves well even when things go wrong.

</description>
<shortDescription>
Chapter 3 of JUnit in Action: Sampling JUnit

</shortDescription>

<url>http://sourceforge.net/projects/junitbook/</url>

Description

(c) Christoph Steindl Test-Driven Development (Unit) 23

Project.xml for Maven (3/4)
<developers>

<developer>
<name>Vincent Massol</name>
<id>vmassol</id>
<email>vmassol@users.sourceforge.net</email>
<organization>Pivolis</organization>
<roles>

<role>Java Developer</role>
</roles>

</developer>
</developers>

Developers

(c) Christoph Steindl Test-Driven Development (Unit) 24

Project.xml for Maven (4/4)
<build>

<sourceDirectory>src/java</sourceDirectory>
<unitTestSourceDirectory>src/test</unitTestSourceDirectory>
<unitTest>

<includes>
<include>**/Test*.java</include>

</includes>
<excludes>

<exclude>**/AllTests.java</exclude>
<exclude>**/TestDefaultController?.java</exclude>

</excludes>
</unitTest>

</build>

Directories

(c) Christoph Steindl Test-Driven Development (Unit) 25

Benefits of Using Maven
Standardizes the directory structure and targets.
Brings a lot of pre-defined targets (jar, junit, site,
changelog, checkstyle, clover, eclipse, ear,
cactus, jboss,…).
Downloads all dependent jars as necessary.

(c) Christoph Steindl Test-Driven Development (Unit) 26

Stubs
fake the behavior of real code that may exist or that may not have been
written yet.
allow you to test a portion of a system without the other part being
available.
do not change the code you’re testing but instead adapt to provide
seamless integration.
usually hard to write, especially when the system to fake is complex.
needs to implement the same logic as the code it is replacing, and that is
difficult to get right for complex logic.
can be difficult to maintain because they’re complex.
are better adapted for replacing coarse-grained portions of code.
they’re more a vestige of the past, when the general consensus was that
tests should be a separate activity and should not modify the code.

(c) Christoph Steindl Test-Driven Development (Unit) 27

Mock Objects
allow testing in isolation
allow you to unit-test at the finest possible level and develop method by
method, while providing you with unit tests for each method.
allows to test code that has not yet been written (as long as you at least
have an interface to work with).
allows to unit-test one part of the code without waiting for all the other
parts.
allows to write focused tests that test only a single method, without side
effects resulting from other objects being called from the method under
test.
do not implement any logic: They are empty shells that provide methods to
let the tests control the behavior of all the business methods of the faked
class.

(c) Christoph Steindl Test-Driven Development (Unit) 28

Expectations
Write your test case with a mock object.
Tell the mock object what it will experience (= predict
the behaviour of the code to be tested).
Let your code (to be tested) use the mock object instead
of the (to be) environment (= generate the actual
behaviour).
Tell the mock object to verify whether it has been
exercised by the code in the predicted way (= compare
the actual to the predicted behaviour).

(c) Christoph Steindl Test-Driven Development (Unit) 29

When to Use Mock Objects
The real object has non-deterministic behavior.
The real object is difficult to set up.
The real object has behavior that is hard to
cause (such as a network error).
The real object is slow.
The real object has (or is) a UI.
The test needs to query the object, but the
queries are not available in the real object (for
example, “was this callback called?”)
The real object does not yet exist.

(c) Christoph Steindl Test-Driven Development (Unit) 30

In-Container Testing
When components (to be tested) interact with their container, and the
container services are available only when the container is running, test the
component within the container.
Mock Objects allow outside-the-container testing, where as Cactus allows
in-container testing for J2EE components like servlets and JSPs.
Although the concept is generic, the tools that implement in-container unit-
testing are very specific to the underlying API being tested.
For a test to run in the container, you need to start the container
beforehand (start container, deploy code, start test outside the container,
call code inside the container, verify the result outside the container).
Configuration becomes more difficult, since you have to configure the
container within the test (before you start the container).

(c) Christoph Steindl Test-Driven Development (Unit) 31

When to Use Mock Objects vs. In-
Container Testing

The main difference is that In-Container Testing performs not only
unit tests but also integration tests and, to some extent, functional
tests. The added benefits come at the cost of added complexity.
Mock-object tests are usually harder to write, because you need to
define the behavior of all calls made to the mocks. For example, if
your method under test makes 10 calls to mocks, then you need to
define the behavior for these 10 calls as part of the test setup.
In-container testing provides real objects for which you only need to
set some initial conditions.
If the application to unit-test is already written, it usually has to be
refactored to support mock-object testing. Extra refactoring is
generally not needed with in-container testing.
A good strategy is to separate the business-logic code from the
integration code (code that interacts with the container), and then:

Use mock objects to test the business logic.
Use in-container testing to test the integration code.

(c) Christoph Steindl Test-Driven Development (Unit) 32

References
Kent Beck: Test-Driven Development: By Example, Addison-
Wesley, 2002.
David Astels: Test-Driven Development: A Practical Guide, Prentice
Hall, 2003.
Frank Westphal: Testgetriebene Entwicklung, dpunkt.verlag, 2004
Vincent Massol: Junit in Action, Manning Publications, 2003.
J. B. Rainsberger: Junit Recipes, Manning Publications, 2004.
Andrew Hunt, David Thomas: Pragmatic Unit Testing, Pragmatic
Bookshelf, 2004.
Johannes Link, Peter Fröhlich: Unit Tests mit Java, dpunkt.verlag,
2002.

(c) Christoph Steindl Test-Driven Development (Unit) 33

Online References
Unit Testing:

xUnit: http://www.xprogramming.com/software.htm
Junit: http://junit.org
NUnit: http://sourceforge.net/projects/nunit/

Automated Build:
Ant: http://ant.apache.org/
Grand: http://www.ggtools.net/grand/
NAnt: http://nant.sourceforge.net/

Integrated Development Environment:
Eclipse: http://eclipse.org
SharpDevelop: http://www.icsharpcode.net/OpenSource/SD/

Build Environment:
Maven: http://maven.apache.org/

http://junit.org/
http://junit.org/
http://sourceforge.net/projects/nunit/
http://ant.apache.org/
http://www.ggtools.net/grand/
http://nant.sourceforge.net/
http://eclipse.org/
http://www.icsharpcode.net/OpenSource/SD/
http://maven.apache.org/
http://maven.apache.org/

(c) Christoph Steindl Test-Driven Development (Unit) 34

Online References
On Ward Cunningham‘s original wiki:

http://c2.com/cgi/wiki?TestDrivenProgramming
http://c2.com/cgi/wiki?TestFirstDesign

Various Resources
http://www.testdriven.com/
http://www.xprogramming.com/xpmag/testFirstGuidelines.htm
http://www.objectmentor.com/writeUps/TestDrivenDevelopment
„Aim, Fire“:
http://www.computer.org/software/homepage/2001/05Design/index.htm

http://c2.com/cgi/wiki?TestDrivenProgramming
http://c2.com/cgi/wiki?TestDrivenProgramming
http://c2.com/cgi/wiki?TestFirstDesign
http://c2.com/cgi/wiki?TestFirstDesign
http://www.testdriven.com/
http://www.xprogramming.com/xpmag/testFirstGuidelines.htm
http://www.objectmentor.com/writeUps/TestDrivenDevelopment
http://www.computer.org/software/homepage/2001/05Design/index.htm

	Test-Driven Developmentat the Unit Testing Level
	Motivation
	Red – Green – Refactor
	Why?
	How?
	Use Tools
	Flavors of Unit Tests
	How to Use Junit?
	Assert
	TestCase
	First Example
	How to Use Eclipse?
	How to Use Ant?
	Build.xml for Ant (1/5)
	Build.xml for Ant (2/5)
	Build.xml for Ant (3/5)
	Build.xml for Ant (4/5)
	Build.xml for Ant (5/5)
	How to Use Maven?
	Project.xml for Maven (1/4)
	Project.xml for Maven (2/4)
	Project.xml for Maven (3/4)
	Project.xml for Maven (4/4)
	Benefits of Using Maven
	Stubs
	Mock Objects
	Expectations
	When to Use Mock Objects
	In-Container Testing
	When to Use Mock Objects vs. In-Container Testing
	References
	Online References
	Online References

