Testing Multi-threaded
Java Programs with
ConTest-Lite

Eitan Farchi
Shmuel Ur
Evgeny Goldin
Yarden Nir
Orit Edelstein

b A
IBM Research Lab in Haifa AN
.

<




@ Outline

= Why is concurrency a testing issue?

= Using ConTest-Lite to find concurrent bugs is simple
= Concurrent bugs and why they are not found

= Overview of ConTestLite

— Finding concurrent bugs
— Debugging and coverage support

= Methodology
—What are good concurrent tests?
—Re-running tests

= Using ConTest-Lite (continued)



@ Why is Concurrent Testing Hard?

= Concurrency introduces non-determinism

— Multiple executions of the same test may have different
interleaving (and different results!)
» an interleaving is the relative execution order of the program threads
= Re-executing a test on a single stand-alone processor
is not useful

= Debugging affects the timing

= No useful coverage measures for the interleaving
space

= Result: Most bugs are found in system tests, stress
tests, or by the customer



Re-executing on a Stand-alone Processor Is Not
Useful

An exponential space of possible interleavings:

executed
Interleavings




@ Real Life Motivation

= Project: file system (IFS for the AS/400)
= Stage: component test

= Observed behavior: "use-count” values corrupted
during stress test

= Time wasted: several calendar months, more than 0.5PY
= Main difficulty: failure was not repeatable

= Fault description: incorrect use of compare-and-swap
result

= Bug should have been found during Unit Test!



Using conTestLite to Find Concurrent
Bugs is simple

= [nstrument the program under test

= Add conTest-Lite to the classpath used when
executing the program under test

= Run your tests
— Example: Service() method is not synchronized



@ With ConTest, each test will go a long way




@ outine

= Why is concurrency a testing issue?
= Using conTest-Lite to find concurrent bugs is
simple
= Concurrent bugs and why they are not found
= Overview of ConTest-Lite
— Finding concurrent bugs
— Debugging and coverage support
= Methodology
—What are good concurrent tests?
— Re-running tests

= Using contest-Lite (continued)




@ Example of an Interleaving-sensitive Test Result

e Threads A and B execute (i=0; add(&i))
e The result depends upon the interleaving
e \Would not be revealed in a typical test

Program Interleaving
add(int *x){ A1 A1
1 int tmp = A2 B1
*X; A3 B2
2  tmp++; B1 A2
3  *x=tmp; B2 B3
} B3 A3

Result: 2 1



How much is 1+10+100+1000+10000?

static final int NUM = 5;
static int Global = O;

public static void main(String[] argv) {

Global = 0;
threads[0] new Adder (1) ;
threads|[1] new Adder (10) ;

threads[2]
threads|[3]
threads|[4]

new Adder (100) ;
new Adder (1000) ;
new Adder (10000) ;

// Start Threads
for(int i1=0;i<NUM;i++){ threads[i] .start(); }

try{ Thread.sleep(1000); } catch(Exception exc) {}

// Print Results
System.out.println (Global) ;



L\" class Adder

class Adder extends Thread
int Local;

Adder (int i) {
Local = 1i;

}

public void add() {
example.Global += Local;

}

public void run/() {
add() ;

}



whd
o
-
c
O
o
e
-
O
£
b —
2]
-—
-
0
@
14
@
(o)
©
—
Q
>
O
o

L]
-
1]
m
et
=
=]
1]
i
=
'
u
e
m
u
-
(1]
o
)

Number of Tasks: @ Covered: E| Coverage Percentage: 3.125

Click on a column header to sort the rows by this column

percentage

100.0

QLT OF

TOTAL COVERA.LIMIGQLIE COVE...

1000

Close

ThreadE

Export

ThreadDr

Print

Thread

ThreadB

ThreadA




Coverage Results with ConTest

E;_,% Here are the legal tasks :

Mumber of Tasks: @ Covered: @ Coverage Percentage: 100.0

Click on a column header to sort the rows by this colu...

Threads | ThreadB| ThreadZ | ThreadD | ThreadE| TOTAL COVERAGE | UNIQUE COVERAGE | QLT OF percentage
0 0 0 0 0 2 1 1 100.0
1 0 0 0 0 20 1 1 100.0
0 1 0 0 0 18 1 1 100.0
1 1 0 0 0 36 1 1 100.0
0 0 1 0 0 S 1 1 100.0
1 0 1 0 0 47 1 1 100.0
0 1 1 0 0 15 1 1 100.0
1 1 1 0 0 1= 1 1 100.0
0 0 0 1 0 3 1 1 100.0
1 ] 0 1 ] 34 1 1 100.0
0 1 0 1 0 19 1 1 100.0
1 1 0 1 0 52 1 1 100.0
0 ] 1 1 0 S 1 1 100.0
1 ] 1 1 0 56 1 1 100.0
0 1 1 1 0 19 1 1 100.0
1 1 1 1 0 100 1 1 100.0
0 ] 0 ] 1 2 1 1 100.0
1 ] ] ] 1 17 1 1 100.0
0 1 0 0 1 13 1 1 100.0
1 1 0 0 1 32 1 1 100.0
0 0 1 0 1 4 1 1 100.0
1 0 1 0 1 o7 1 1 100.0
0 1 1 0 1 11 1 1 100.0
1 1 1 0 1 45 1 1 100.0
0 0 0 1 1 3 1 1 100.0
1 0 0 1 1 21 1 1 100.0
0 1 0 1 1 17 1 1 100.0
1 1 0 1 1 &0 1 1 100.0
0 0 1 1 1 10 1 1 100.0
1 0 1 1 1 &7 1 1 100.0
0 1 1 1 1 15 1 1 100.0
1 1 1 1 1 107 1 1 100.0
Print Export Close




method Add

Java Source code

public void add() {
example.Global += Local;

}

Byte Code

Method wvoid add()
0 getstatic #3 <Field int Global>
3 aload O
4 getfield #2 <Field int Local>
7 iadd
8 putstatic #3 <Field int Global>
11 return



A Bug We Published...

A race condition is a possible source for a defect, since the walue of the wariable at the
time of reading depends on the scheduling. Howewer, nat all race conditions are defects.
For example, the following code swaps twa integers. There is a race condition, but no
defect, as the swapping occurs regardless of the interleawing.

clazs Change]
statlc int = = 4, ¥ = 5;
ffUsed to i1mplement a busy walt.
static int z1 = -1, 22 = -1;
F/8wap the value of » and v concurrently

public static veold main (String args[ ] )
inew Threadinew Changedi )] .starti ];
inew Threadinew ChangeBi( 1)) . starti ];}

1
class Changed implementzs Bunnablef
public vold runi )]
Change .zl = Change _ x;
while (Change.z2 == -1]
System.oukt println (™A 1z walting");
Change.x = Change.z2;}}
clazs ChangeP ilmplements Bunnable]
public veld runi ]
Change .z2 = Change . v;
while (Change . z1 == -1]
Svestem. out _println (B 1s walting”);
Change.y = Change.zl;}}

It should be noted that race conditions are execution-dependent: a program might be in
a race condition in one execution and not inanother. Therefore, tools that detect races
at run time (or by analyzing the trace of a given run; are likely to miss some potential
data races.



@) Creating a Critical Section is Tricky

class ObjectOne implements Runnable ({
public void run() {
if (RaceField.race == false)
{
RaceField.race = true;
System.out.println ("Mine") ;

}
}

class RaceField {
public static boolean race = false;

}

Expected and observed Behavior:
One "Mine" is printed by the thread that won the race

Possible bug:
More than one "Mine" is printed



Atomicity is Never Assured

static void transfer (Transfer t) {

balances[t.fundFrom] -= t.amount;
balances|[t.fundTo] += t.amount;

}

Expected Behavior:
—Money should pass from one account to another

Observed Behavior:
— Sometimes the amount taken is not equal to the amount received

Possible bug:
— Thread switch in the middle of money transfers



@ Bug found by ConTest in Websphere Site Analyzer

= Crawler, a ~1000 line Java component, is part of the
Websphere Site Analyzer used to perform content
analysis of web sites

= Bug description:

= if (connection = null) connection.setStopFlag();

1. connection is checked to be null
2. CPU is lost
3. connection is set to null before CPU is regained

= |f this happens before connection.setStopFlag(); is executed, an
exception is taken

= This bug was found while we were still testing ConTest
= This bug should (also) be found in unit testing...



@ A Servlet Server Bug (HA. Tomcat)

= A high availability serviet server has a hash table that is
kept synchronized using a cluster

= The high availability serviet has a primary and a backup
node

= The primary node caches the hash table

= Objects are trees: deep copy is obtained using an
auxiliary table

hash table

/ auxiliary table

cache

primary




A Servlet Server Bug

= Bug description
—thread1:
» A node becomes primary
» Start deep copying of hash table to CACHE table using the auxiliary table
—thread?2:

» A cache miss on object A occurs

» Start deep copying of object A from hash table to CACHE table using auxiliary
table

—thread1:

» Complete deep copying of hash table to the CACHE table. Auxiliary table is
discarded

—thread?2:
» An attempt is made to access the auxiliary table



@ Why are these bugs not found?

= Frame of mind when the program is written
= Requires thread switching at precise locations

= Typical testing environment
— Thread switch occurs at repeating locations
— Execution is almost deterministic
—No load/stress

= Not enough of the right kind of tests

= Not enough tests



@ Outline

= Why is concurrency a testing issue?

= Using conTestLite to find concurrent bugs is simple
= Concurrent bugs and why they are not found

= Overview of ConTest-Lite

— Finding concurrent bugs
— Debugging and coverage support

= Methodology
—What are good concurrent tests?
— Re-running tests

= Using contestLite (continued)




@ How Does ConTest-Lite Find Bugs?

= We instrument every concurrent event

— Concurrent events are the events whose order determines the
result of the program

= At every concurrent event, a random based decision is
made whether to cause a context switch
—For example, using a sleep statement
= Philosophy:
— Modify the program in such a way that it will be more likely to
exhibit bugs (without introducing new bugs)
— Minimize impact on the testing process
— Re-use existing tests

— Utilize the time computers are not being used (nights,
weekends, etc.)



@ ConTest-Lite Overview

= ConTest is composed of the following
components

— An instrumentation engine that
= Creates hooks for the irritator and for coverage printing
= Generates coverage models

The instrumentation is done at the bytecode level

— An irritator that randomly, or using heuristics, generates
new interleaving on-the-fly

— Seed replay component
— Coverage component
— Deadlock component
— Orange box component



Q ConTest-Lite Architecture - Static View

Optional



ConTest Architecture - Dynamic View

Coverage Replay

Test information information

Optional

Execute
instrumented
e program
Deadlock

Orange box

v

Results




@ Why Bugs are Found with ConTest

= Thread switches in many places

= Random interleaving; the interleaving changes
between runs of the same test

= Result: executing tests many times is more likely
to find bugs



Coverage with ConTest-Lite

E‘g’,j'HerE are the legal tasks : I I I E
Number of Tasks: 350 Covered: 151| Coverage Percentage: [43.142857
Click on a ¢olumn header to sort the rows by this column

classeshlame LuTALGOVER |UNIQUECOY |  OUTOF | percentage |
ord.apache.tomceat.core.Responselmpl 2657 35 58 60.344826 |-
ord.apache.jasper.compiler.DumbParseEventListener 0 0 17 0.0 i
org.apache.tomcat.logging.LogDaemon 153 4 5 80.0 i
ReaperLongServiet D 0] 2 0.0 ]
org.apache.jasper.compiler.ForwardGenerator 0 0 2 0.0
org.apache.tomcat.util. SessionUtil$PriviledgedldGenerator 0] 0 Y 0.0
org.apache.tomcat. adapter AdapterHandler 0] 0 I 0.0
org.apache.jasper.compiler.Parser$SetProperty 0 0 3 0.0
org.apache.tomcat.session.StandardManagerHA 2629 38 T2 B2. 77778
SimpleSessionServiet 0 0 2 0.0
org.apache.tomcat.request.Jspinfo 0 0 9 0.0
org.apache.tomcat.facade.ServletinputStreamFacade D D [ 0.0
org.apache.tomcecat.service.connector Aipy1ZInputStream 0 0 4 0.0
org.apache.jasper.compiler.Mark$IncludeState 0 0 1 0.0
org.apache.tomcat.util. BuffTool D D 10 0.0
org.apache.jasper.serviet.JasperLoader 44 2 14 14.285714
org.apache.jasper.compiler.Parser$Tag D 0 2 0.0
org.apache.tomcat.service.PoolTcpEndpeint 1081 11 27 40.74074
org.apache.tomcat.context. SCAction 65 4 4 100.0
org.apache.tomcat.util. CookieTools 42 (] T 85.71429
com.ibm.hatomcat.EasyVYector 19 2 3 66.666664
com.ibm.hatomcat. RootObjectEntry 451 T 9 TT1.77778
org.apache.jasper.compiler.JspParseEventListener$BufferHandler 0 0 2 0.0
org.apache.jasper.compiler.ServietWriter 0 0 12 0.0
org.apache.jasper.compiler.ConstantPool 0] 0 Y 0.0
ord.apache.tomceat.util. RecyeleBufferedinputStream 214 3 3 100.0
org.apache.tomcat, util. xml. XmlAction &7 4 4 100.0
org.apache.tomcat.facade. . HttpServiletRequestFacade 320 11 51 21.568628
ord.apache.jasper.serviet.ServietEndgine D 0] 3 0.0 |
ora.avache iasper Commandl ineContext (o] [v] 31 0.0 =

Export Close




@ Replay of Tests with ConTest-Lite

= Replay is very important to enable debugging

= Replay in ConTest-Lite is done by collecting the seed
of the random function and using it again
—Very efficient; replay is as fast as the original run

= Replay is not guaranteed

— Different interleaving in parts of the application that are not
Instrumented

— Context switch due to different workloads

—In ConTest, replay is guaranteed but the entire program
needs to be instrumented



@ Orange Box

mif (connection!=null)
connection.setStopFlag() ;

= We know that connection==null but we don't know
why

= Orange box to the rescue

— The last N program locations and values of variables are
printed



@ Deadlock

= The program, or part of it, is in deadlock

= Deadlock support provides information on:
— Locks and the threads that wait on them
— Threads and the locks they are waiting on
—Lock owners



@ Partial Instrumentation (Pragma)

= Sometimes it is desirable that only part of a file will be
instrumented. The reasons could be:

— Performance
— Debugging, adding print statements without changing the timing



@ Outline

= Why is concurrency a testing issue?
= Using conTestLite to find concurrent bugs is
simple
= Concurrent bugs and why they are not found
= Overview of ConTest-Lite
— Finding concurrent bugs
— Debugging and coverage support
= Methodology
—What are good concurrent tests?
— Re-running tests

= Using contestLite (continued)




User Scenario Before ConTest

Run Test -

Finish Fix Bug




User Scenario Before ConTest

Run Test with interleaving
> decided by heuristic <

Record interleaving
Update coverage

Not Reached

Problem
Fix Bug

Rerun Test

Check with Replay
Coverage information
Target Orange box

Deadlock
Reached

Finish




@ Good Tests - Multi-threading

= Multi-threading is a MUST
— Simple test, multi-threaded application
— Multi-threaded test, simple application
— Multi-threaded test, multi-threaded application
= Do you introduce contentions?
= |s the test risk driven?
= Running the tests in different environments
—What is an environment?
—What is the importance of the environment?



@ Good Tests - Automation

= A test should be automated if it will be executed more
than 10 times by hand

= Automation requires programming
— Cost is high per test

= Automation can sometimes be done with dedicated
tools (capture replay)

= Very useful for regression



@ Good Tests - Comprehensive Suite

= Every test is good -- what about the test suite?

= Measurement of coverage

— Regular coverage measurements (method, block)

— Multi-threaded coverage measurements (interference)
= Working with test generators

— Expected results

— Automatic selection



@ Re-running Tests

= Without ConTest you run each test a few times in every
environment

= With ConTest you run each test many times in one or
more environments

= Benefits
— Possible to use fewer tests
— Possible to test in fewer environments



@ Re-running Tests - Problem and Opportunities

= What about expected results?
— Getting expected results
— Working without expected results
= Finding a bug; how do you find it again?
— Running with seed
— Maintaining additional information
= How many times should a test be executed?



@ Checklist to Remember

= Many threads exist in test, application, or both
= The threads should have contention between them
= A test should contain automatic result verification

= Each test should be executed many times; seed should
be saved after each run that failed

= Testing should be risk driven



@ Lessons from Hursley Deployment

= Fully automate the following:

— Implement while(currentCoverage < requiredCoverage);

— On failure associate replay information with
> log files
> error result
> jvm that failed
» Also if several JVMs are invoked by the test

— Support efficient instrumentation of a partial set of a jar file
chosen using an exclude list or using a regular expression

— Provide a specific exclude list for the rt.jar



@ Outline

= Why is concurrency a testing issue?

= Using conTestLite to find concurrent bugs is
simple
= Concurrent bugs and why they are not found
= Overview of ConTest-Lite
— Finding concurrent bugs
— Debugging and coverage support
= Methodology
—What are good concurrent tests?
— Re-running tests

= Using contestLite (continued)




@ Partial Replay

= A debugging aid
= |[ncreases the likelihood that the same
synchronization bug will reoccur

= Seed of the pseudo random sequence is save
and then used to reproduce the same
sequence of delays that occurred in the
original run




@ Partial Replay Limitations

= Partial replay increases the chance that the

bug will reoccur but does not guarantee it
= Program timing is determined by many factors:

-T
-T
-T
-T

ne scheduler algorithm
ne computer architecture
ne network delays

ne system load

= To increase the chance of replay neutralize
factors that impact timing

— For example, run on a dedicated machine to
neutralize system load



@ Use of Partial Replay

= Specify the seed property seed = true

= At runtime a seed value will be written to the
playBackSeed{timeStamp}.txt file

= To replay this run, reset the seed property to
seed = 987654321 (the number taken from the
playBackSeed file)



@ Using ConTest Heuristics

= A heuristic is the algorithm used to
— Create "noise”
— Increase the chance of revealing a synchronization
bug
= The amount of noise can be controled by a
strength property

= Play with the heuristics to determine the
maximum noise you may introduce and still get
a reasonable performance




@ Using ConTest Heuristics

= To use the sleeps heuristics with strength 50
specify the following in the property file:
—mode = sleeps
—sleepsStrength = 50

= The current available heuristics are
—Yyields
—sleeps
—synchYields




@ Concurrent Coverage

= Concurrent coverage is used to check that
every instrumented location has been reached

= Instrumenting: a list of instrumented locations
Is created

= An instrumented location is identified by
— file name, method name, class name, line number
— Instrumentation type

= For every executed test a coverage trace is
created

= Coverage is analyzed using FoCuS (Please
contact us to get FoCuS)




@Download ConTest-Lite at:

http://w3.haifa.ibm.com/softwaretesting/ConTest



@ "Appendix" outline

= A deadlock bug found by conTest in WEBSM (CBJ)

= Using contest advance features:
— Partial instrumentation of code segments
— Deadlock support
— Orange box support



@ WEBSM (CBJ) Deadlock

= WEBSM is a web system management tool provided
by Tivoli on AIX.

= WEBSM uses CBJ for its remote method invocation

= Bug scenario

— A return value of a remote invocation is written to a cyclic
buffer and read by the application thread that invoked the
remote call.

—If a parameter is a reference to a remote class instance, CBJ
loads the class remotely.



@ WEBSM (CBJ) Deadlock

= [t may be that the application thread waits for the
remote class to load while a parameter is returned
= |f
—the cyclic buffer where parameters are written is full and
—the next parameter wins the race

a deadlock is created



@ WEBSM (CBJ) Deadlock

= The thread listening on the port attempts to write to a full
parameter buffer
— This buffer is never emptied since the application thread is waiting for
the remote class instance (that should be written to a second buffer
by the thread listening on the port. However, it is never written as this
thread is waiting for the parameter buffer to be emptied.)

application
parameter buffer

full

Remote object buffer




The test case that found the CBJ Deadlock

public Hashtable getHashApp () throws Exception {
/* App.class exists on server's classpath not on the
client !'*/

App app = new App();
int bl[] = new int[10000];

for (int i=0; i < bl.length; i++)
bl[i] = 1i;

int b2[] = new int[10000];

for (int i=0; i < b2.length; i++)
b2[i] = 1i;

Hashtable h = new Hashtable() ;

h.put("aaaa", bl);

h.put("cecec", app):;

h.put ("eee", b2);

return h;



@ Partial Instrumentation

= Partial instrumentation is important as

— Coverage is collected only on the instrumented parts

» Used, for example, when coverage needs to be collected
only on new functionality

— Uninstrumented print statements can be added
without affecting replay

— Performance is enhanced

= Partial instrumentation can be done
— by choosing a subset of the application files
— by instrumenting part of a specific file



@ Instrumenting Part of a File

= |[n the java file

— Instrumentation.pragma ( "off" ); will turn the
instrumentation off

— Instrumentation.pragma ( "on" ); will turn it on

= conTest's jar file should be available to the
application when compiling



@ Deadlock and Orange Box Support

= Agent1 and Agent2 try to capture two different
locks, but in reverse order

= Thus, the program has a deadlock
= An auxiliary thread

— activates the deadlock support mechanism
— calls the required APIs to print deadlock information

= Orange box is also used by introducing an
auxiliary thread



