
(c) Christoph Steindl Testing of Parallel Programs 1

Testing of Parallel Programs

Dr. Christoph Steindl

(c) Christoph Steindl Testing of Parallel Programs 2

Why is Concurrent Testing Hard?
Concurrency introduces non-determinism

Multiple executions of the same test may have
different interleaving (and different results!)
Re-executing a test on a single stand-alone
processor is not useful

Debugging affects the timing
No useful coverage measures for the
interleaving space
Result: Most bugs are found in system tests,
stress tests, or by the customer

(c) Christoph Steindl Testing of Parallel Programs 3

Interleaving
Interleaving is the relative execution order of program
threads.
Threads A and B execute inc().
The result depends on the interleaving.
This would not be revealed in a typical test.

1. public class Interleaving {
2. static int global = 0;

3. public static void inc() {
4. int temp = global;
5. temp = temp + 1;
6. global = temp;
7. }
8. }

A B

Result: global = 2 global = 1

A B

(c) Christoph Steindl Testing of Parallel Programs 4

Java Source Code and Bytecodes
public void inc() {

Global += Local;
}

Method void inc()
0 getstatic #3 <Field int Global>
3 aload_0
4 getfield #2 <Field int Local>
7 iadd
8 putstatic #3 <Field int Global>

11 return

(c) Christoph Steindl Testing of Parallel Programs 5

Why are these bugs not found?
Frame of mind when the program is written
Requires thread switching at precise
locations
Typical testing environment

Thread switch occurs at repeating locations
Execution is almost deterministic
No load/stress

Not enough tests
Not enough of the right kind of tests

(c) Christoph Steindl Testing of Parallel Programs 6

Testing Parallel Programs with
ConTest

Develop the program just as any other program
(e.g. with TDD).
Start with your automated unit tests.
How to use ConTest?

Instrument the program with ConTest.
Re-execute the tests (with the ConTest library on the
classpath)
Verify that the tests still pass (or correct any errors).
Use coverage information to add tests for parallelism.

(c) Christoph Steindl Testing of Parallel Programs 7

How Does ConTest-Lite Find Bugs?
ConTest instruments every concurrent event

Concurrent events are the events whose order determines the result of the
program (a synchronization primitive like a “synchronized block” or an
“object.wait” or shared memory access)
At the bytecode level
Creates hooks for the irritator and for coverage printing
Generates coverage models
Instrumentation can be limited to selected parts

At every concurrent event, a random based decision is made whether
to cause a context switch

For example, using a sleep statement
Philosophy:

Modify the program in such a way that it will be more likely to exhibit bugs
(without introducing new bugs)
Minimize impact on the testing process
Re-use existing tests
Utilize the time computers are not being used (nights, weekends, etc.)

(c) Christoph Steindl Testing of Parallel Programs 8

Race Detection
A race is usually defined as two accesses to the same
memory, at least one of which is a write, done by two
different threads with no synchronization between the
accesses.
Unlike all other race detection tools, in ConTest the race
detection component never reports on races to the user.
When this component finds a race, it communicates with
the replay and irritator components to ensure that the
test is re-executed; this time the race will be forced to
occur in the opposite order.
If the race results in a bug, the user can view any
execution that caused the bug with a debugger, and to
stop at a breakpoint just before the race occurs.

(c) Christoph Steindl Testing of Parallel Programs 9

(c) Christoph Steindl Testing of Parallel Programs 10

Instrumentation in detail
Every read of variable v is replaced by:

(type of v) after_read(before_read(id), v, id)
Any part of the expression which represents a
write, v = SomeExpression, is replaced by:

(type of v)after_write(v = (type of v)
before_write(SomeExpression, id), id)

(c) Christoph Steindl Testing of Parallel Programs 11

Concurrent Coverage Model
Synchronized block

synchronization visited covered if this synchronization block was reached
synchronization blocking and synchronization blocked

covered when a thread reached a synchronized block A, and stopped because another
thread was inside a block B synchronized on the same lock.
In this case, block A will be reported as blocked, and block B as blocking (both in addition to
visited).
Some synchronization tasks cannot be covered - for example, if a synchronized block is
necessarily the first to be performed in the program, it can only be blocking, and never
blocked. But this is rare.
Normally, a synchronization block can sometimes block and sometimes be blocked. If you
don't get a full coverage, this is a cause for concern: the test may be insufficient, or
alternatively (if there can't possibly be contention) the synchronization may be redundant.
synchronization retaking

reported when a thread synchronizes on a lock it is already holding (that is, at the inner
block). This type does not appear in the list of tasks to be covered, but may be seen when
viewing the runtime coverage trace. If a synchronization was fully covered (was both
blocking and blocked), it doesn't matter whether it was also retaking or not. But if a task is
missing - a synchronization was never blocked or never blocking - checking whether it was
retaking may help in understanding why.

Object.wait call
wait visited covered if this synchronization block was reached
wait repeated reported if this wait was called twice within the same synchronized block

(c) Christoph Steindl Testing of Parallel Programs 12

Other types of Concurrent Coverage
Shared variables coverage

Names of variables detected as shared in a given run, i.e accessed by
more than one thread, written to the directory sharedVarTraces.
Each line in the trace files describes one variable. It contains the full
class name and the variable name, separated by space. For example,
com.ibm.some_project.SomeClass someMember.

Interfered location pairs coverage
writes its files to directory locationPairsTraces.
Each line in the trace file of this coverage type contains a pair of
program locations that were encountered consecutively in the run, and
a third field which is "t" or "f". It is "f" if the two locations were run by the
same thread, and "t" otherwise - that is, "t" means there was a context
switch there.
It can be used to test the quality of the tests, and whether we actually
get interleavings we didn't get before - whether we have context
switches in new places.

(c) Christoph Steindl Testing of Parallel Programs 13

References
Shmuel Ur,
http://cs.haifa.ac.il/courses/softtest/testing2004/index.html

Multithreaded Java program test generation,
IBM Systems Journal, Vol. 41, no. 1, 2002,
„Software Testing and Verification“

http://cs.haifa.ac.il/courses/softtest/testing2004/index.html

	Testing of Parallel Programs
	Why is Concurrent Testing Hard?
	Interleaving
	Java Source Code and Bytecodes
	Why are these bugs not found?
	Testing Parallel Programs with ConTest
	How Does ConTest-Lite Find Bugs?
	Race Detection
	
	Instrumentation in detail
	Concurrent Coverage Model
	Other types of Concurrent Coverage
	References

