
Author
Alexander Kainzinger,
Bsc
k11802873

Submission
Institute for System
Software

Thesis Supervisor
Dipl.-Ing Dr. Markus
Weninger, Bsc

October 2024

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Workflow
Enhancements for
the Online
Examination Tool
Xaminer

Master Thesis
to obtain the academic degree of

Diplom-Ingenieur
in the Master’s Program

Computer Science



Abstract

The online exam system Xaminer has undergone several functional expansions. However,
its design and technological stack have not kept up with the times, making maintenance
and use more difficult. This thesis addresses these issues by modernizing the frontend
stack, decoupling frontend and backend components, and implementing user-side quality-
of-life (QOL) improvements. Modernizing the frontend from Vue.js 2 to Vue.js 3 ensures
compatibility with current standards, enhancing performance and maintainability. Several
architectural enhancements were made, such as decoupling the frontend and backend
using Docker and Docker Compose to improve system resilience. Establishing a CI
pipeline with GitHub Actions streamlined updates. User-side improvements include
single PDF exports of exam results, support for preliminary submissions, subquestion
formatting, and real-time updates on the exam administration page. These enhancements
improve the user experience for students and lecturers. The thesis achieves a modernized,
decoupled architecture with streamlined deployment and notable improvements in user
functionality, contributing to the advancement of the online examination system Xaminer.

i



Kurzfassung

Das Online-Prüfungssystem Xaminer hat diverse funktionale Erweiterungen erfahren,
jedoch konnte sein Design und technologischer Stack in dieser Zeit nicht auf dem neuesten
Stand gehalten werden, was die Wartbarkeit und Nutzung erschwert. Diese Arbeit adres-
siert diese Probleme durch die Modernisierung des Frontend-Stacks, die Entkopplung von
Frontend- und Backend-Komponenten und die Implementierung von benutzerseitigen
Quality-of-Life (QOL) Verbesserungen. Die Modernisierung des Frontends von Vue.js 2
auf Vue.js 3 stellt die Kompatibilität mit aktuellen Standards sicher und verbessert die
Performance und Wartbarkeit. Des weitern wurden mehrere architektonische Verbesse-
rungen vorgenommen. Die Entkopplung von Frontend und Backend mit Docker und
Docker Compose verbessert die Systemresilienz des Systems. Durch die Einrichtung einer
CI-Pipeline mit GitHub Actions wurde der Update Prozess zusätzlich vereinfacht. Zu
den Verbesserungen auf der Benutzerseite für Studierende und Dozenten gehören der
PDF-Export von Prüfungsergebnissen, die Unterstützung für vorläufige Einreichungen,
die Formatierung von Unterfragen und Echtzeit-Updates auf der Prüfungsverwaltung-
seite. Diese Erweiterungen verbessern die Benutzerfreundlichkeit für Studierende und
Dozenten. Die Dissertation erzielt eine modernisierte, entkoppelte Architektur mit opti-
mierter Bereitstellung und bedeutenden Verbesserungen der Benutzerfunktionalität und
trägt damit zur Weiterentwicklung des Online-Prüfungssystems Xaminer bei. Das Benut-
zererlebnis wird durch diese Erweiterungen der Funktionen für Studenten und Dozenten
verbessert.

ii



Contents

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Technoloy Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Backend - Spring Boot & Kotlin . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Frontend - Vue & TypeScript . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Application Programming Interface - API . . . . . . . . . . . . . . . 7

2.2 Deployment and Development Tools . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Version control (Git) & GitHub . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Xaminer Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Deployment & Hosting . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Modernize Frontend Stack 14
3.1 Vue 3 Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Bundling Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Migration Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Dynamic Route Generation . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Testing Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Deployment and Hosting 21
4.1 Containerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Docker Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Backend & Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 Reverse Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Automated Builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 GitHub Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



Contents

5 Bidirectional Communication 31
5.1 Technology Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Socket.IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Connection Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Question with Sub-questions 37
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.1 Recursiveness in the Backend . . . . . . . . . . . . . . . . . . . . . . 38
6.2.2 Recursiveness in the Frontend . . . . . . . . . . . . . . . . . . . . . 39

7 Question Search 41
7.1 Motivation & Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2.1 Recursive SQL Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Preliminary Submission 46
8.1 Motivation & Status Quo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.2 Concept & Security Considerations . . . . . . . . . . . . . . . . . . . . . . . 47
8.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9 Single PDF Export 53
9.1 Motivation & Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10 Usage and Evaluation 56
10.1 Docker & Docker-Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.2 Questions with Sub-Questions . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.3 Question Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.4 Single PDF Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.5 Bi-directional Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.6 Developer Experience Improvements . . . . . . . . . . . . . . . . . . . . . 61

10.6.1 Frontend Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.6.2 Automated Builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

11 Conclusion and Outlook 65

iv



Master's Thesis

Workflow enhancements for the online examination tool Xaminer

Student: Alexander Kainzinger, BSc

Advisor: Dipl.-Ing. Dr. Markus Weninger, BSc

Start date: October 2023

The coronavirus outbreak in 2020 strongly changed the way how teaching is performed at universities.
Most classes switched to an online teaching mode – including digital exams. While teaching mostly
went back to teaching in presence, a number of exams are still performed digitally. For this, the online
examination tool Xaminer has been developed at the Institute for System Software at the JKU. Since its
first version, the tool has been expanded into various directions but still has potential to provide more
quality-of-life features, for users as well as for the developers.
 
Thus, the goal of this thesis is to target these quality-of-life features as well as the system’s architecture
to increase its easy-of-use as well as its simplicity of hosting the system. Overall, the enhancements
can be divided in the following categories, which should be tackled in the given order:
 Modernize Frontend Stack: Even though Xaminer constantly received new feature, only little time

has been spent on keeping its tech stack up-to-date. For example, Xaminer was built using the
frontend framework Vue.js 2. Yet, since September 2020 Vue.js 3 is available. Thus, old libraries
and frameworks should be brought up-to-date and should be checked for compatibility.

 Deployment and Hosting: Since Xaminer was first released, its frontend and backend have been
strongly coupled. It is thus not possible to restart the one without the other. Part of this thesis is to
de-couple  both  entities,  setting  up Docker  and Docker  Compose settings  for  both,  and to  run
automatic tests using GitHub Actions upon repository commits („CI pipeline“). A setup guide has to
be written that describes how to host Xaminer on a server and how to restart it if necessary.

 User-side  QOL  improvements:  Over  the  years,  various  „nice-to-have“  feature  requests  have
accumulated which should be targeted in this thesis. These include:
◦ PDF export in a single file:  Currently, exam results can be exported in a .zip file containing

one .pdf  file  per  student  submission.  In  the future,  it  should  also be possible  to  export  all
submission in a single .pdf  file that  can be easly printed double-sided (one sheet of  paper
should never contain the submission of more than one student).

◦ Preliminary exam submissions: Currently, students can only submit the exam once. To prevent
data loss, it should be possible to also save exams preliminary.

◦ Questions with subquestions:  One of the most requested features by lecturers is to support
questions  with  sub-questions,  e.g.,  multiple  questions  sharing  the  same  descripiton  and
summing up their points to a common end score. This involves a nice editor to define such
questions as well as nice formatting during exam participation.

 Bi-directional server-client communication: Currently, certain pages have to be manually refreshed
to show the most current data, first  and foremost the exam admin page. This page is used to
monitor which students are still working on their exam and which students have already submitted.
In this thesis, this page should be reworked to automatically update when a new submission has
been perfomed. The exam supervisor should also be informed with a small popup / notification that
a new submission has been performed.

Modalities:
The progress of the project should be discussed at least every three to four weeks with the advisor.  A time
schedule and a milestone plan must be set up within the first two weeks and discussed with the advisor and the
supervisor. It should be continuously refined and monitored to make sure that the thesis will be completed in time.
The final version of the thesis is expected to be finished before the 31.10.2024.

Dipl.-Ing. Dr. Markus Weninger, Bsc

Institute for System Software

T +43-732-2468-4361

markus.weninger@jku.at



1 Introduction

The coronavirus pandemic necessitated a rapid shift to online education, disrupting
traditional teaching and examination methods at universities. This sudden transition
highlighted the limitations of existing online learning platforms like Moodle, particularly
for coding exams. In response, the Institute for System Software (SSW) at Johannes Kepler
University (JKU) developed Xaminer, an online examination tool designed to address these
shortcomings. Xaminer allows various questions, including text, single- or multiple-choice,
and coding questions with syntax highlighting and in-browser compilation.

Despite its initial success and continuous updates, Xaminer requires significant enhance-
ments to improve its technology stack, deployment process, and user experience. This
thesis aims to modernize Xaminer by updating its frontend from Vue.js 2 to Vue.js 3,
improving performance and compatibility with modern libraries. Decoupling the fron-
tend and backend, implementing Docker configurations, and setting up a continuous
integration (CI) pipeline will streamline deployment and maintenance.

User experience improvements are also crucial. Key enhancements include consolidating
exam results into a single PDF file, allowing preliminary exam submissions to prevent
data loss, and supporting complex question structures with sub-questions. Additionally,
implementing bi-directional server-client communication will enable real-time updates
and notifications, enhancing exam monitoring capabilities.

Moreover, these updates will foster a more efficient and engaging experience for lecturers
and students. Lecturers will benefit from enhanced exam creation tools with better
visual dependencies and live notifications of submissions. Students will have a more
reliable platform that safeguards their work through continuous server backups, ensuring
no data loss, even in the event of a browser crash. By modernizing the development
infrastructure with tools like Docker and GitHub Actions, the process of adding new

1



1 Introduction

features and maintaining the system will become more streamlined, ultimately supporting
the sustained evolution of Xaminer.

By addressing these specific areas, this thesis aims to significantly enhance the functionality,
usability, and maintainability of Xaminer, ensuring that it remains a valuable tool for
digital examinations for many semesters to come.

1.1 Outline

The further structure of this thesis is as follows: In Chapter 2, we introduce the technolo-
gies used and mention sources of truth relied upon during the implementation while also
describing the general idea and architecture of Xaminer. Following that, each chapter
covers an individual important component that has changed or is newly introduced to the
software. Chapter 3 explains how the frontend application has been modernized, drasti-
cally improving the development experience and future-proofing Xaminer. In Chapter 4,
we will elaborate on the second part of modernizing and future-proofing the application
by creating modern shippable containers to run the software and automating the build
steps required. Chapter 5 introduces new bidirectional communication enhancements,
providing new capabilities of sending real-time updates to supervisors of specific student
actions such as submitting the exam. Chapter 6, 7, 8, and 9 introduce the four new quality-
of-life improvements for supervisors and students such as sub-questions, a question search
for creating exams, or creating a single PDF of all submissions ready to be sent to the
printer. For documentation of the newly introduced improvements to Xaminer, Chapter 10
will give a short evaluation and a glance at how each feature can be leveraged. Finally, we
provide a brief conclusion and outlook on future work in Chapter 11.

2



2 Background

In this section, we go over the technological stack, concepts of the architecture, which is
split into backend and frontend, and resources relied on to plan, implement, and verify all
parts of the system. Lastly, we will provide a short overview of the current system.

2.1 Technoloy Stack

The foundation on which the system is built can be divided into two main concepts that
are connected using a standardized interface. Understanding each part of the system is
crucial to preparing the changes accordingly so that no existing functionality is broken.
However, to achieve the desired improvements, a deep knowledge of the newly introduced
components and software is also needed.

A solid understanding of object-oriented programming and software architecture is essen-
tial for effectively working with the backend system. Proficiency in Java or Kotlin, along
with practical experience with the Spring Boot framework (Section 2.1.1), is particularly
valuable. The source code for this part of the application can be mainly written using
IntelliJ IDEA and the latest stable Java LTS-version 17. JetBrains offers the Ultimate edition
for students at no cost, allowing for better IDE integration when working with the Spring
Boot framework, such as intelligent code insight, inspections, instant code navigation, and
many more.

Secondly, deep knowledge and understanding of HyperText Markup Language (HTML),
Cascading Style Sheets (CSS), and JavaScript (JS), which are the main languages used to
create a frontend (Section 2.1.2) should be known or acquired through personal education.
A learning-by-doing can be performed when working with the framework Vue as Xaminer
is using this framework for building the user interface. Implementation and test code for

3



2 Background

the second part of the application can be written using Visual Studio Code with many
different open-source plugins to improve productivity, code insights, and inspections.

Defining the interface for connecting those two concepts using an Application Programming
Interface (API) (Section 2.1.3), the introduction of automated testing and building of the
application stack using GitHub Action, and the change to the hosting setup to make use
of Docker instead of directly hosting the application on a server, in addition to basic Linux
and Bash understanding, should also be well known to gain a good understanding of each
of the following sections.

Finally, many internet resources like the Spring Boot, Vue, Cypress, GitHub Action, and
Docker documentation, or tutorial sites like Baeldung1 provided a comprehensive and
helpful elaboration about certain features of the framework, using practical code-samples
and detailed explanations.

2.1.1 Backend - Spring Boot & Kotlin

When referring to a backend in software engineering, typically, this is part of an application
that operates behind the scenes (or in the “background“), creating an abstraction between
a representation layer and a storage layer. The storage layer, in most cases, is a database,
such as PostgreSQL or MongoDB. On the other hand, the representation layer would be
referred to as frontend, which will be discussed in Section 2.1.2. The backend always runs
on remote hardware, e.g., a server that needs to be reachable through the internet. In
most cases, only one instance of such an application is running, but also through scaling,
multiple instances of the same application can be running to improve performance on
high traffic.

The data access or processing layer handles requests, manages data, and generates a
response that can be transmitted to the representation layer. Often, it contains a lot of
application logic, such as business rules, algorithms, or processing logic that determines
“how“ the data is handled and what responses are generated based on the input or other
events.

1https://www.baeldung.com

4



2 Background

To allow such request-response behavior, data management, etc., a framework - in this
case, Spring Boot - can be used as a foundation. The Spring Boot framework includes
components right out of the box, such as:

• Spring framework2 provides a comprehensive programming and configuration
model for modern Java-based enterprise applications.

• Embedded web server such as Tomcat or Jetty to handle Hypertext Transfer Protocol
(HTTP) requests.

• Automatic configuration of Spring and 3rd party libraries whenever possible.

What this means is that Spring Boot, in its latest version 3, provides the “chassis“ for
creating an executable program that includes the web server that will help us to handle
HTTP requests, automatically configure any additional dependencies, and other features
that help us to create a production-ready application. Spring also provides extra depen-
dencies for database connection, user authentication, or mail transfer. These dependencies
can be included in the dependency management system, which automatically adds and
configures them for the Spring Boot application.

Building this API can be easily done using multiple Spring annotations to define a re-
source, as seen in the example in Listing 2.1. To provide information to the framework
that a certain class should be treated as a REST controller, we annotate it with the cor-
responding annotation and optionally with a base API path using @RequestMapping().
Implementing the actual endpoint, defining a method, return value, and annotating it
with its corresponding annotation provides enough information for building the endpoint.
The example provides only a very basic setup, nevertheless, more complex tasks with
query parameters, or other HTTP operations with data are built similarly.

1 @RestController

2 @RequestMapping("/api")

3 class MyExampleController() {

4 @GetMapping("/hello-world")

5 fun sendHelloWorld() = "Hello, World"

6 }

Listing 2.1: Example REST controller

2https://spring.io/projects/spring-framework

5



2 Background

Testing is as important as the actual implementation, requiring at least one test case when
writing a new feature or fixing a bug. For simple unit tests, JUnit as the most commonly
known framework, was chosen. When writing more complex integration tests, such as
calling an HTTP API endpoint, the Spring application needs to be started and set to testing
mode allowing a replacement of certain services with mocked implementations creating
reproducible, predictable test cases.

2.1.2 Frontend - Vue & TypeScript

The frontend is the so-called representation layer, visualizing the data retrieved from the
backend. This part of the application, in comparison to the backend, runs locally on a
user’s machine in the browser. This means there can be 0:N instances running of the same
frontend, all communicating with the same backend.

As is commonly known, a web page usually consists of three components: HTML, CSS,
and JS, which are used to build the skeleton, style it, and make it interactive. On top of
that, building a modern webpage comes with deciding on a frontend framework that,
similarly to the backend, should simplify and support the development experience, e.g.,
by creating a component-based programming model for building user interfaces. In this
case, Vue was already present to create a single-page application (SPA3).

Vue out-of-the-box is only the framework that runs in the browser, it does not come with
any build tool or testing engine. These parts have to be installed and configured separately
to be able to run the application for development or production.

• development - locally runs a web server that serves non-minified HTML, CSS, and JS
files, including a reload mechanism to propagate file changes to the browser, making
it easy to immediately see changes without performing a full page reload. Addition-
ally, debugging is much easier because all source code is served unoptimized with
the drawback of being slower.

• production - bundles, minifies, and optimizes the HTML, CSS, and JS files to be an
efficient application that can be served through any web server. Debugging is much
more complicated or even impossible due to the obfuscated source code.

3SPA is a web app implementation that loads only a single web document, and then updates the body
content of it via JavaScript APIs [1]

6



2 Background

• testing - two approaches are available for testing. Unit testing, or in this context
component testing and end-to-end testing. As the name component testing suggests,
only a single component is tested at a time, e.g., the navigation component. End-
to-end testing, on the other hand, is testing everything, multiple screens (including
multiple components), optionally including communication with the backend.

2.1.3 Application Programming Interface - API

For the representation layer to be able to communicate with the processing layer, an
interface must be defined to allow for data exchange. This interface is defined as a contract
on how to communicate with each other using request and response - called API. There
are different ways that APIs can be built, mostly those interfaces rely on HTTP(S):

REST APIs “Representational State Transfer“, which is the most popular and flexible way
to create modern APIs. It defines a set of functions like GET, POST, PUT, and DELETE for a
client to exchange data. The server uses the input to start internal functions and returns
the output data to the client after processing [2].

WebSocket APIs enable real-time, bidirectional communication between clients and
servers by establishing a persistent connection that remains open, allowing continuous
data exchange [3]. Unlike the traditional request-response model of HTTP, WebSockets
support full-duplex communication, meaning both parties can send and receive messages
independently and simultaneously [4].

A common data format for both REST APIs and WebSocket APIs is JavaScript Object
Notation (JSON) due to its lightweight nature and ease of parsing, compared to formats
like Extensible Markup Language (XML).

2.2 Deployment and Development Tools

To put the source code into an executable program, be able to collaborate on the same
codebase, or help developers with various tools to improve their experience, some other
software is required.

7



2 Background

2.2.1 Docker

As a lightweight, reliable, and effective method of containerization, Docker significantly
decreases complexity and issues when running modern applications, especially in the
cloud. At the core of Docker’s significance lies its ability to encapsulate an application and
its dependencies into a single, portable container. This containerization ensures that the
application runs identically regardless of the environment. Key to Docker’s functionality
are its core components [5]:

Docker Engine An open-source containerization technology for building and container-
izing your applications. It serves the Docker Daemon & Docker Client.

Docker Daemon Listens for Docker API requests and manages Docker objects such as
images, containers, networks, and volumes.

Docker Client The primary way that users can interact with Docker. The docker com-
mand uses the Docker API for CLI calls.

Docker Images Serve as immutable templates for containers, ensuring consistency across
different environments.

Docker Containers Instances of these images provide the isolated environments in which
applications run.

Docker Client Docker Host

Docker Daemondocker build

docker pull

docker ...

Docker Registry

Containers Images

Container

Container

Image

Figure 2.1: Docker architecture & components overview.

These elements work together to create, manage, and run containers (Figure 2.1). The
use of Dockerfiles to automate the creation of images through a script of instructions
enables reproducibility and version control, which is crucial for maintaining consistency
in software delivery. For distribution of such Docker Images, a Docker Registry must be

8



2 Background

used to be able to serve an application using the Docker Daemon. Often, a local registry
that is automatically installed with the Docker Engine can be used, but there are also many
free options in the cloud, such as http://hub.docker.com to distribute Docker Images
across the web.

2.2.2 Version control (Git) & GitHub

Git is a distributed version control system crucial for modern software development. It
tracks changes, manages versions, and enables collaboration for multiple developers to
work on a project simultaneously without conflicts. Each change is recorded in a commit,
forming a detailed project history that allows reverting to previous states and comparing
changes [6].

Git supports various collaborative workflows, such as pull requests and code reviews,
enhancing team productivity. Platforms like GitHub facilitate these processes, enabling
discussions and code reviews before merging changes into the main branch. Git integrates
seamlessly with continuous integration and continuous deployment (CI/CD) systems such
as GitHub Actions, automating testing, building, and deployment processes, enhancing
software quality and delivery speed.

2.2.3 Frontend

The frontend consists of many different tools and software to be executable and testable.
Status-quo before starting the thesis, the application was built using Node.js4 v14, Webpack
for bundling, and WebdriverIO for testing. One goal of the thesis was to modernize this
stack, changing the application to now use Node.js v22 (latest as of the thesis), Vite for
bundling, and Cypress for testing. Additionally, the package manager for managing all
dependencies has been exchanged from the default npm (node package manager - shipped
with Node.js) with yarn to make better use of some caching behavior later needed for the
automated builds.

4Node.js is a free, open-source, cross-platform JavaScript runtime environment that lets developers create
servers, web apps, command line tools, and scripts.

9

http://hub.docker.com


2 Background

Yarn is an established open-source package manager used to manage dependencies in
JavaScript projects. It assists with the process of installing, updating, configuring, and
removing package dependencies [7].

Webpack is a static module bundler for modern JavaScript applications. When Webpack
processes the application, it internally builds a dependency graph from one or more entry
points and then combines every module the project needs into one or more bundles, which
are static assets to serve the content [8].

Vite.js is a build tool that aims to provide a faster and leaner development experience
for modern web projects. It consists of two major parts: a dev server that provides rich
feature enhancements over native ES modules and a build command that bundles the
code with Rollup for production [9].

WebdriverIO is a progressive automation framework built to automate modern web and
mobile applications. It simplifies the interaction with the app and provides a set of plugins
that help one to create a scalable, robust, and stable test suite [10].

Cypress is a next-generation frontend testing tool built for the modern web [11].

ESLint statically analyzes code to find problems quickly. It is built into most text editors,
and it can run ESLint as part of a continuous integration pipeline [12].

2.2.4 Backend

The backend consists mainly of the Spring Boot framework split up into multiple depen-
dencies, e.g., spring-boot-starter-web as the basis of the framework, or spring-boot-
starter-security used for user authentication, and many more. Additionally, the appli-
cation is written using Kotlin. As a foundation for Kotlin, Java Development Kit (JDK)
version 17 is required. For dependency management, building, and testing, the following
tools are used:

Gradle Build Tool is a fast, dependable, and adaptable open-source build automation
tool with an elegant and extensible declarative build language. Gradle is the most popular
build system for the Java Virtual Machine (JVM) and is the default system for Android
and Kotlin Multi-Platform projects [13].

10



2 Background

JUnit5 is the current generation of the JUnit testing framework, which provides a modern
foundation for developer-side testing on the JVM. This includes focusing on Java 8 and
above, as well as enabling many different styles of testing [14].

2.3 Xaminer Overview

The application consists of multiple screens, specifically built for different stakeholders,
differentiating between publicly accessible resources and protected resources requiring
a user sign-in. Currently, only a single instance at a time can serve a single institute (no
multi-tenancy).

We differentiate between three roles:

Students do not require any authentication due to a unique identification key in the URL
when joining an exam.

Supervisors which also require no authentication as they are also identified through a
unique key in the URL, which is different from the students’ identification.

Exam editors are the only stakeholders of the system requiring a sign-in as they can
create, modify, and delete exams, manage students on the exam as well as can export the
submissions for the students. Authentication is performed through a sign-in, creating a
unique “session“ on the backend once the user has successfully authenticated.

2.3.1 Architecture

As already discussed, Xaminer uses the server-client architecture pattern with a strong
separation of business logic in the backend. Each functionality has a logical “domain“ serv-
ing specific purposes, such as the SubmissionController handling requests of students
submitting their results, but also serving endpoints for downloading such submissions for
exam correction.

Endpoints can be either protected by the sign-in if the action performed needs proper
authentication or can be put to “public“ and potentially require some other way of
identification based on the requester.

11



2 Background

Web server (Jetty)

Frontend

xaminer.jar

Exam EditorStudent Supervisor

ExamControllerSubmissionController

API

Figure 2.2: Xaminer high-level architecture overview.

Figure 2.2 represents some use cases that the application might serve. As we can see in
the overview, the whole application is made available through the built-in web server
to serve both the frontend and backend. This means that the API served through the
backend can only be running as a single instance in the current setup, meaning that limited
scaling options are available for load-balancing high demand on multiple applications to
improve user experience. This somewhat limiting factor of the deployment will be further
discussed in Section 2.3.2.

2.3.2 Deployment & Hosting

A critical aspect of the thesis is to change the setup of how the application is hosted on a
server. The current setup as seen in Figure 2.3 is a .jar file - containing the backend and
frontend - directly running on the host operating system (OS). This file is sent to the server
from a local computer where Xaminer was built using a Secure Shell (SSH) connection to
the remote host. After copying, if any existing instance is running, the process is killed,
and the new .jar file is executed.

12



2 Background

Database

User interface (Frontend)

API (Backend)

xaminer-1.3.0.jar

Virtual Machine

postgres:16.1

Figure 2.3: Current Xaminer hosting setup on a virtual machine.

Some concerns regarding this setup include:

• Direct access to the host OS causes potential issues if the application is being com-
promised, as it has full access to all information on the system it is running. Due to
the lack of isolation, there is a certain security risk.

• Java and any third-party library must be installed on the host OS (e.g., wkhtmltopdf
used for generating PDFs). Especially when setting up new instances, all the required
software must be documented.

• Updates for libraries on the OS are rather inconvenient and would require central
management especially if Common Vulnerabilities and Exposures (CVE) are published,
depending on the severity one should act quickly mostly due to no isolation (as
previously mentioned).

13



3 Modernize Frontend Stack

This chapter covers the changes performed to upgrade the core framework of the frontend.
Upgrading the core framework used for building the application has many benefits for
the development experience, user experience, and maintainability.

3.1 Vue 3 Upgrade

Upgrading the core framework for the frontend offers numerous reasons and benefits.
One significant advantage is the maintainers’ active support and ongoing development,
which ensures timely bug fixes, enhancements, and new features essential in the fast-
paced world of web development. Performance improvements are another key benefit,
achieved through various optimizations leveraging the latest web standards, such as
newer JavaScript standards and new APIs for rendering.

Additionally, the ease of online information lookup and documentation for Vue 3 is vastly
improved, as online resources typically focus on the most recent version of the framework.
This upgrade also introduces several recommended libraries and tools, further enhancing
developer productivity and ensuring Xaminer remains future-proof for years to come.
One major upgrade includes migrating to the bundling tool Vite.js (Vite), which will be
discussed in detail in Section 3.2. Furthermore, Vue 3’s Composition API provides more
flexible and scalable code organization, making it easier to manage larger applications.
The developer experience is enhanced with improved tooling, streamlined workflows,
and better integration capabilities.

14



3 Modernize Frontend Stack

3.2 Bundling Tool

The suggested setup when using Vue 3 is to use Vite as a bundling tool [15]. When setting
up a completely new Vue application via create-vue1, it will automatically use Vite in the
background per default. As Vite was created by the same person as the Vue framework, it
provides first-class support for Vue Single File Component (SFC). This means, that the
old bundling tool Webpack had to be replaced during the migration, causing little to no
issues except finding some alternatives for custom logic and 3rd party libraries. To better
understand the benefits of this upgrade, we will look at the technical difference between
these two bundling tools.

Webpack is a powerful and widely-used module bundler designed to transform and
compile modern JavaScript applications. It plays a critical role in the frontend devel-
opment ecosystem by enabling developers to manage and optimize the assets and de-
pendencies of their applications. At its core, Webpack takes a central configuration file
(webpack.config.js) and an entry point, then traverses the dependency graph of the
application, bundling the various modules, assets, and resources into one or more output
files [16] (Figure 3.1). This process not only consolidates the code but also optimizes it
for performance, making it ready for deployment. Additionally, Webpack is excellent at
maximizing the output for usage in production as it includes advanced features like tree
shaking and code splitting.

entry

route

route

...

module

module

module

module

...

Server readyBundle

Figure 3.1: Life-cylce of Webpack’s bundling mechanism.

1https://github.com/vuejs/create-vue

15

https://github.com/vuejs/create-vue


3 Modernize Frontend Stack

Vite.js is an advanced build tool that addresses many limitations of traditional bundlers,
offering several core features that enhance the development experience. It achieves far
faster builds and real-time module updates, which considerably shorten development
cycle times, by utilizing native ECMAScript Modules (ESM) and modern browser capa-
bilities [16] (Figure 3.2). Instead of bundling one or more output files that are served to
the browser, Vite only transforms and serves source code on demand, letting the browser
handle the job of a bundler. Native ESM, therefore, represents a significant advancement
in JavaScript’s module system, providing a standardized and efficient way to organize
and manage code by improving import and export statements to define and utilize
dependencies, facilitating modularity and reusability.

entry

route

route

...

module

module

module

module

...

Server ready

HTTP request

Dynamic import

Figure 3.2: Life-cycle of Vite’s bundling mechanism using Native ESM.

Vite’s zero-configuration setup simplifies the initial project setup, making it accessible and
efficient for developers. What this means is that little to no configuration is required, as
the default settings provide a perfect baseline to get started. Vite also supports hot module
replacement, allowing changes to be reflected instantly without full page reloads, thereby
improving productivity [16].

In conclusion, using Vite over Webpack offers several compelling advantages. The biggest
advantage of Vite is the significantly faster build time and a smoother development
experience by leveraging native ESM making it a more modern and efficient choice for
building web applications in 2024.

16



3 Modernize Frontend Stack

3.3 Migration Path

The migration from Vue 2 to Vue 3 was achieved very straightforwardly by following the
official migration guide2 while also checking and fixing various errors when trying to
build the application. In the following Section 3.3.1, we detail the most complex challenges
of the migration from Webpack to Vite. For that, the existing configuration had to be
ported to the new build tool, where one bigger challenge needed to be tackled during
migration.

3.3.1 Dynamic Route Generation

Based on the folder structure and component names, custom logic using Webpack auto-
matically generates paths that a user can navigate to. For example, a component located in
src/views/demo.ts with a corresponding src/views/demo.vue automatically generates
a path https://xaminer.jku.at/demo.html.

When using Vite, instead of implementing this custom logic to handle it, a library called
“unplugin-vue-router“ can be used to provide dynamic route generation based on the
folder structure. In addition, it creates typings for the TypeScript components so no typing
errors occur when redirecting programmatically between pages.

In Xaminer’s old version, using Webpack, each route generated its own HTML file con-
taining multiple JS files split up into the following structure:

• <page-path>.js self-written code for the page navigated to such as handling the exam
submission API logic.

• chunk-commmon.js a JS "chunk" containing self-written, shared code such as the
header navigation or footer component of the page.

• chunk-vendor.js external code for the Vue framework and other libraries required for
rendering the page.

Figure 3.3 shows that each route a user navigates to initially loads the HTML, then the
linked JS files before rendering the actual page.

2https://v3-migration.vuejs.org

17

https://xaminer.jku.at/demo.html


3 Modernize Frontend Stack

loaddemo.html

xaminer.jku.at/demo.html

xaminer.jku.at/login.htmlUser

demo.js

chunk-vendor.js

renderchunk-common.js "demo" page

loadlogin.html

login.js

chunk-vendor.js

renderchunk-common.js "login" page

Figure 3.3: Page loading behavior before migrating to Vue 3.

The new approach uses only a single HTML file (index.html) that renders the content
based on programmatically detecting the path in the URL. This dynamic detection of
the route and rendering of the corresponding page is handled by the “vue-router“. This
allows for improved performance due to decreased loading times for HTML files and
better optimizations of the JS files.

The structure changes to the following:

• index.html containing the very basic HTML structure used to apply the page content
dynamically based on the route. This file is only loaded once when initially opening
the Xaminer application.

• index.js containing the Vue framework, other external libraries, shared code, and
paths to other JS "chunk" files.

• <chunks>.js containing logic for self-written components. These chunks are deter-
mined by the bundler on build time - usually, each Vue component (TypeScript file)
is translated into a chunk.

Compared to Figure 3.3, Figure 3.4 shows that only a single HTML file is required for
loading the page, which loads an initial JS file holding links to all other JS files needed to
render the page. Upon calling a specific route, the browser automatically loads the file in
the background before rendering the page.

18



3 Modernize Frontend Stack

load
index.html

xaminer.jku.at

User

xaminer.jku.at/demo

index.js

"demo" page

"login" page

render
demo.js

render
login.js

xaminer.jku.at/login

Figure 3.4: Page loading behavior after migration to Vue 3 using “vue-router“.

This allows for improved navigation speed between pages while also reducing the amount
of requests for the same files. Additionally, after loading the initial JS file, the loading
mechanisms of the framework can be optimized because the browser is already aware of
all possible combinations of required JS files on navigation. The old approach required
a reset of this for every page change as the browser performs a full reload (reducing the
performance and increasing the load on the server) on navigation.

3.4 Testing Tool

In addition to upgrading the framework and bundler, the Vue documentation also highly
recommends the use of Cypress for testing. This means that the existing testing framework
WebdriverIO, including all test cases, had to be migrated. Even though the test cases
remained the same, the syntax for each case had to be rewritten entirely. Additionally,
Cypress is limited by exactly one browser window, requiring a complete re-write of all test
cases that involve interactions by multiple users, e.g., joining the exam and reactivating a
student’s exam.

Syntax change mainly included two steps:

Refactoring of *.page.ts files, which separates the testing logic from how an element
can be retrieved from the Document Object Model (DOM). Under some circumstances,
getting the element from the DOM required some custom logic, e.g., receiving the exact

19



3 Modernize Frontend Stack

row and column of a table. For reference, Listing 3.1 and Listing 3.2 should provide an
example of the performed changes, each retrieving the “title“ of the login page by using
their unique ID.

1 get heading () {

2 return $('#index-content #login-header')

3 }

Listing 3.1: Old *.page.ts syntax (Webdriver.IO)

1 get heading () {

2 return cy.get('#index-content #login-header')

3 }

Listing 3.2: New *.page.ts syntax (Cypress)

Change of *.spec.ts is required to make Cypress “understand“ our test cases again.
Every assertion statement needed a syntax change, also sometimes including more refac-
toring and additional chaining of statements. Further, file names had to be changed from
“*.spec.ts“ in favor of “*.cy.ts“.
For reference, Listing 3.3 and Listing 3.4 showcases an example of the changes.

1 it('should open and render welcome text (not logged in)', async () => {

2 await expect(Login.heading).toHaveTextContaining('Please log in.')

3 })

Listing 3.3: Old *.spec.ts syntax (Webdriver.IO)

1 it('should open and render welcome text (not logged in)', () => {

2 Login.heading.should('contain.text', 'Please log in.')

3 })

Listing 3.4: New *.cy.ts syntax (Cypress)

Instead of different methods such as toHaveTextContaining(), Cypress always requires
should() with different assertion parameters3 like “contain.text“ that can be further
chained with other should() statements. Secondly, no async-await or expect method is
needed anymore, simplifying the source code required for testing.

3https://docs.cypress.io/guides/references/assertions

20

https://docs.cypress.io/guides/references/assertions


4 Deployment and Hosting

This chapter covers the steps performed to create an easy-to-deploy and secure way
of hosting Xaminer while also adding automation to all steps required for testing and
building the application using GitHub Actions.

4.1 Containerization

When talking about “containerization“, we are referring to creating an executable program
that can be run using Docker. Creating such programs, namely images, always follows
the same principles, with the exception that the building steps defined in the Dockerfile

are different based on the source code, application type, and programming language.

The basic steps for creating an image include the following, which are defined in a single
file called Dockerfile (Listing 4.1).

Line 1 define “base image“ which is usually chosen based on the programming language,
e.g., for Java, you would be choosing any OpenJDK image with the desired Java
version.

Line 2 COPY the source code into the image to later execute build commands.

Line 3 RUN build commands to build the actual application, e.g., a .jar for Java, inside
the image.

Line 4 defining the command for starting the application to tell Docker what command
it should use when starting the container to also execute the application,
e.g., java -jar xaminer.jar.

21



4 Deployment and Hosting

Build Steps

The so-called build step(s) are crucial as they define how the application must be built.
For Xaminer, Gradle is used for the build system, which means to create an executable
.jar file, a Gradle command is defined. In Listing 4.1, line 3, we can see that the gradle

bootJar command is run to build the application.

1 FROM gradle:8.8-jdk17 as builder

2 COPY /xaminer-backend/ /

3 RUN gradle bootJar

4 ENTRYPOINT ["java", "-jar", "/build/libs/xaminer-backend.jar"]

Listing 4.1: Basic Dockerfile

Depending on the application, multiple build steps could be required to build the appli-
cation, split up into different build commands. Those commands are always run inside
the image that is created, which means no source code, folder structure, or resources from
the host file system are modified but only the files inside the image that were copied
before. Each instruction in the Dockerfile translates to a layer in the final image, which
receives a unique hash that can be used for caching. If the instruction has not changed
since the last time the image was built, the cached layer will be used instead of running
the corresponding command.

With that knowledge, several optimizations can be performed to reduce the final size of
the image while also trying to maximize cached layers for improved build times of the
image, e.g., by combining multiple RUN lines into a single line.

4.2 Docker Compose

Docker Compose is a tool for defining and running multi-container Docker applications.
It allows users to configure the application’s services, networks, and volumes through a
single YAML file, typically named “docker-compose.yml“. With Docker Compose, one can
manage the lifecycle of the application with simple commands, such as starting, stopping,
and rebuilding services. This allows an Xaminer instance to be started with a single
command in a secure, platform-independent environment.

22



4 Deployment and Hosting

The docker-compose.yml (Listing 4.2) includes the backend application with database,
the frontend, and a reverse proxy that allows HTTP traffic to be forwarded into the Docker
network while also providing certificate management for HTTPS.

1 services:

2 caddy:

3 image: caddy:2.7-alpine

4 ports:

5 - 80:80

6 - 443:443

7 depends_on:

8 - frontend

9 - backend

10 volumes:

11 - ./docker/caddy/Caddyfile:/etc/caddy/Caddyfile

12

13 frontend:

14 image: ghcr.io/neonmika/xaminer/frontend:1.3.0

15

16 backend:

17 image: ghcr.io/neonmika/xaminer/backend:1.3.0

18 depends_on:

19 - postgres

20

21 postgres:

22 image: postgres:16.3

Listing 4.2: Xaminer docker-compose.yml (simplified)

The services section defines all the containers we want to execute when running docker-

compose up to start the application. Each service has different configurations, e.g., port
forwarding, mounting a volume from the host OS, or requiring another service to be
running before starting. For the Xaminer application itself (frontend & backend), we
can identify the GitHub Registry “ghcr.io“ that contains the images after automatically
building them using a GitHub Action (Section 4.3). If no registry, like ghcr.io, is present,
the default registry from Docker (https://hub.docker.com) is used.

23

ghcr.io
ghcr.io
https://hub.docker.com


4 Deployment and Hosting

4.2.1 Backend & Database

The backend application of Xaminer is the container containing the executable .jar file.
Of course, it requires a database to be running to store all data related to users, exams,
and submissions. Before being able to start the application, we require the database to be
running, which is indicated by the depends_on attribute. The database itself, in our case,
PostgreSQL, is also running inside the Docker network and is isolated from the host OS.
Additionally, the backend application is also isolated from the host OS, which means no
HTTP(S) traffic can reach the application with this configuration. To forward the traffic to
it, we will use a reverse proxy, which will be explained in Section 4.2.3.

4.2.2 Frontend

The frontend of Xaminer is the container containing our production-build Vue application
running inside a NGINX container. NGINX is the most commonly known and used
webserver, very lightweight, and secure. This also means that the frontend is now running
independently of the backend, removing the dependency on it for hosting. Similarly to the
backend, no traffic is being forwarded to the container itself. Instead, it is run completely
isolated from outside traffic, requiring the reverse proxy to forward traffic.

For building, the application is first built using Vite in “production“ mode to export HTML,
CSS, and JS files into the dist/ folder that is further copied into the NGINX container for
serving the content.

4.2.3 Reverse Proxy

A reverse proxy is, in general, a component that sits between client devices and backend
servers, forwarding client requests to the appropriate service and returning the server’s
response to the client. It handles inbound requests from the internet to a server or multiple
servers in a private network - in our case the Docker network. It enhances security, load
balancing, and performance by distributing client requests among multiple servers or
instances of an application, caching content, and masking the identity and structure of the
backend servers.

24



4 Deployment and Hosting

HTTPS

User

/api

HTTP

/*

Reverse Proxy

Backend

Frontend

Figure 4.1: Usage of a “Reverse Proxy“ for the new hosting setup.

The reverse proxy, using “Caddy“, is configured in a way that all traffic received is split
up into two paths (based on Figure 4.1):

• /api traffic that indicates the API path will automatically be forwarded to the back-
end.

• /* every other request will be forwarded to the frontend.

Further, the traffic received by the reverse proxy is always HTTPS which is decrypted
using TLS termination once traffic is forwarded to the corresponding application.

To run this setup, as defined in Listing 4.2 line 2-11, both port 80 (HTTP) and 443 (HTTPS)
need to be forwarded to the host OS so that traffic can be received by the proxy from the
internet. Of course, the proxy should also only be started if the backend and frontend
are running (dependency defined by depends_on). Lastly, the configuration for Caddy is
mounted from the host OS using the volumes attribute to mount the “Caddyfile“ located in
the repository, mounted and replaced inside the container on /etc/caddy/Caddyfile1

1https://caddyserver.com/docs/running#setup

25

https://caddyserver.com/docs/running#setup


4 Deployment and Hosting

4.3 Automated Builds

One important aspect of modern software development is, to have automation wherever
possible for building and testing applications. When using Docker, automating the process
of building images allows for faster software shipping without requiring developers to
care about “how to build“ such images. Additionally, we can guarantee a certain quality
of the application if automated tests verify the functionality before actually shipping a
new version.

4.3.1 GitHub Actions

GitHub Actions2 are a convenient, built-in automation tool for GitHub (where the Xaminer
repository is hosted) that seamlessly automates building and testing on every commit or
pull request. Integrating with a hosted registry for shipping Docker images, we can create
an automation pipeline that consists of multiple steps for creating a shippable version of
Xaminer. Figure 4.2 shows the pipeline, consisting of seven standalone jobs that might run
in parallel or require results of previous jobs, e.g., the “E2E Test“ is only executed once the
previous jobs “Frontend docker image“ and “Backend docker image“ could be executed
successfully.

Figure 4.2: Implementation of the GitHub Action workflow for Xaminer.

Currently, the conditions for automatically triggering such a pipeline are:

1. Pull requests - opening a pull request or adding new commits.

2. Branch - adding commits to the “main“ branch.

3. Tag - creating a tag for releasing a new version of Xaminer.

2https://docs.github.com/actions

26

https://docs.github.com/actions


4 Deployment and Hosting

Each of the seven jobs performs a dedicated action explained in the following list:

• Yarn cache - Downloads and creates a shareable cache consisting of all frontend
packages and Cypress for running the E2E tests, shared with three consecutive
jobs. This way, the dependencies are only downloaded once instead of three times
improving the speed of the pipeline.

• Check frontend codestyles - Checks for code stylings of all frontend files (.js, .ts,
.vue, .html) to maintain consistency, readability, and quality in the codebase

• Check backend codestyles - Checks for code styling of all backend files (.kt) for
the same reason as checking it in the frontend.

• Compile & test backend - Compiles the backend to run JUnit for executing all unit-
and integration tests using Gradle.

• Frontend docker image - Builds the frontend Docker image and saves it as an artifact,
which is shared with the “E2E Test“ job. Optionally, when creating a Git Tag, the
image is pushed to the GitHub registry.

• Backend docker image - Builds the backend Docker image and stores it the same
way as the “Frontend docker image“ job.

• E2E Test - Runs the Xaminer application to perform end-to-end tests using Cypress.

For example, Listing 4.3 shows how such a job in the pipeline is defined. The syntax for
creating a pipeline is done using YAML3 and is defined using the following structure:

Step 1 define a meaningful name, which will be shown in the overview.

Step 2 decide on which system the job should be executed. This can be either systems
hosted in the cloud by GitHub or self-hosted machines.

Step 3 (optionally) defines an array of jobs that must be successfully executed before exe-
cuting the job. In our case, we require the job for creating the frontend dependency
cache to download its artifacts.

Step 4 the actual steps that the job should execute, e.g., checking out the repository,
downloading the cache, etc.

3YAML is a human-readable data serialization language commonly used for configuration files

27



4 Deployment and Hosting

1 lint-frontend:

2 name: Check frontend codestyles

3 runs-on: ubuntu-latest

4 needs: [’init-frontend-cache’]

5 steps:

6 - name: Checkout

7 uses: actions/checkout@v4

8 - name: Download node_modules cache

9 uses: actions/cache/restore@v4

10 with:

11 key: node_modules-${{ hashFiles(’yarn.lock’) }}

12 path: |

13 xaminer-frontend/node_modules

14 ~/.cache

15 - name: Setup Node

16 uses: actions/setup-node@v4

17 with:

18 node-version-file: ’xaminer-frontend/.nvmrc’

19 - name: Lint

20 run: cd xaminer-frontend/ && yarn lint

Listing 4.3: GitHub Action job definition for “Check frontend codestyles“

The actual steps define a name and optionally a uses key for using pre-built workflows
to easily set up libraries and environments, such as installing and setting up the frontend
runtime Node.js. As we use some shared, cloud-hosted machines from GitHub, jobs are
completely stateless, meaning that all data (if not stored as an artifact) will be wiped
after a job ends. Upon job execution, we are also presented with a completely “empty“
machine without any installation of our required libraries. Therefore, having such pre-built
workflows for setting up the environment speeds up the development of such pipelines
drastically.

If no uses key is defined, we are presented with a plain shell to run any command. Line
22 of Listing 4.3 shows two commands, one changing to the xaminer-frontend/ folder to
run yarn lint to check the code stylings for potential violations.

28



4 Deployment and Hosting

Testing

One of the most important aspects of software is testing. When performing changes to
the software, it is expected that no existing functionality will be negatively impacted by
the change. To verify this, unit tests, integration tests, or end-to-end tests need to pass
successfully before being able to merge any change. Previous projects on Xaminer already
covered a wide variety of test cases for both backend and frontend. In the backend, mostly
unit tests and integration tests are available, providing coverage of all API endpoints
consumed by the frontend. The frontend, on the other hand, covers end-to-end flows,
meaning that a “real“ instance of the backend is running when performing tests.

These tests cover most supervisor and student journeys such as logging in to Xaminer,
creating exams, submitting results, and downloading the results.

Backend testing is performed using Gradle and an instance of the database that is started
before executing the tests.

Frontend testing is done using Cypress, with a running instance of the backend (includ-
ing the database). These tests are executed after successfully executing the backend tests
and building a Docker image.

Building

For building, we also differentiate between backend and frontend builds. Both jobs use
the same foundation for automated Docker image builds using Docker Buildx4 which is a
CLI for building images using BuildKit5, a concurrent and cache-efficient builder toolkit.

After building, images are pushed to a public registry on GitHub (ghcr.io), where insti-
tutes or system administrators can access them for running a Xaminer instance on their
server through the Docker Compose. Images are only pushed if a Git Tag can be associated
with the build to keep proper versioning. For single commits on the “main“ branch or
when opening pull requests, images are only copied to other jobs of the pipeline but will
not be uploaded to the registry.

4https://github.com/docker/buildx
5https://github.com/moby/buildkit

29

ghcr.io
https://github.com/docker/buildx
https://github.com/moby/buildkit


4 Deployment and Hosting

Artifacts

Artifacts, in this context, consolidate files and information related to a specific job in the
pipeline. Such artifacts can be shared between the independent jobs inside a pipeline, as
previously discussed, or can also be used to show some results of the tests as shown in
Figure 4.3.

Figure 4.3: Cypress job result of passed, failed, pending, or skipped tests and duration.

Some of these artifacts include:

Yarn & node_modules caches created by the “Yarn cache“ job, which stores all required
dependencies for all related frontend jobs (linting, testing, and building).

Docker caches for each build job to speed up the building process.

Docker images are uploaded as an artifact if no tag is created to share the built image
with other consecutive jobs.

Testing results and (optional) screenshots to identify why a certain test failed, includ-
ing logs for the specific failed run.

30



5 Bidirectional Communication

This chapter introduces mechanisms and standards in the browser for bidirectional com-
munication. The goal of this is, to build a generic foundation for other use cases to come.
As a proof-of-concept, the supervisors’ administration page will be extended for receiving
live updates of certain student actions, such as submitting the exam.

5.1 Technology Evaluation

Efficient communication between clients and servers is a key factor in system performance.
Request-response polling, where the client frequently sends requests to the server to
check for updates, can be resource-intensive and introduce delays. On the other hand,
bidirectional communication offers a more efficient solution, allowing both the client and
server to exchange data in real-time over a persistent connection. This method minimizes
latency and optimizes resource usage.

Xaminer has many use-cases for using such an efficient, bidirectional communication
channel to provide instant feedback to supervisors and students. To name one example,
supervisors currently have a simple overview of all students who attend the exam, indi-
cating if they have already joined the exam and if they have already submitted it. A good
quality-of-life improvement would be to provide real-time updates of such events to the
supervisor without requiring constant polling or reloading.

To evaluate which technology to use for bidirectional communication, it is important to
have a basic understanding of the requirements while also knowing what technologies are
available. In our case, the initial requirements would only need a one-way live update
mechanism to notify supervisors of live updates of the exam. On the other hand, we want
to allow a future-proof concept that also allows bidirectional communication, meaning
that on-way updates are not suitable for our proof-of-concept.

31



5 Bidirectional Communication

For our evaluation, three well-known concepts can be taken into consideration:

WebSockets provide a full-duplex communication channel over a single TCP connection,
allowing for real-time, two-way interaction between a client and a server [4]. Unlike
traditional HTTP requests, WebSockets enable servers to send data to clients proactively
without waiting for a client request, making them ideal for applications that require
instant data updates, such as chat applications. This protocol reduces latency and overhead
compared to polling methods, as it maintains a constant connection, thus ensuring efficient
and seamless communication [3].

Server Sent Events (SSE) is a technology that allows servers to push real-time updates
to clients over a single, long-lived HTTP connection. Unlike WebSockets, SSE only sup-
ports one-way communication from server to client, making it well-suited for applications
that need to display live data updates, such as live news updates. SSE is easy to imple-
ment and uses the standard HTTP protocol, providing a reliable way to push continuous
updates without requiring the client to request new data repeatedly [17].

Long Polling is a technique used to achieve real-time updates in web applications by
keeping an HTTP connection open until new data is available. When a client requests the
server, the server holds the connection open until it has new information to send. Once the
client receives the response, it immediately sends a new request, creating a near-continuous
loop of requests and responses. Although more resource-intensive than WebSockets and
SSE, Long Polling is a simple method to implement real-time communication and is
compatible with older browsers and network configurations that do not support more
advanced protocols [18].

As we can see, SSE is just a one-way WebSocket connection, which does not fulfill our
requirements. Long polling, on the other hand, would offer similar capabilities as Web-
Sockets but would be more resource-intensive, making it a non-ideal solution for us. This
leads to the conclusion that WebSockets are the most efficient, reliable way of handling
our bidirectional communication. To have maximum compatibility with older browsers as
well, we can make use of a library called Socket.IO that provides more robustness while
also improving connection establishment.

32



5 Bidirectional Communication

5.2 Socket.IO

Based on the evaluation, choosing Socket.IO1 as a library is an excellent solution as it
provides a robust and versatile approach for data transmission. It seamlessly integrates
WebSockets and falls back to other methods like Long Polling when necessary, ensuring
reliable connectivity across various browsers and network conditions [19]. This automatic
transport selection and fallback mechanism guarantees continuous and efficient commu-
nication without requiring manual adjustments. Its straightforward API further enhances
ease of use, making it an ideal choice for implementing real-time features such as live
chats, notifications, and collaborative tools in web applications.

5.2.1 Connection Lifecycle

The connection lifecycle in Socket.IO revolves around establishing and maintaining real-
time communication between clients and servers. It begins with a client initiating a
connection request to the server through HTTP. Upon receiving this request, Socket.IO
attempts to establish a WebSocket connection. If successful, a persistent connection is
maintained, enabling efficient bidirectional data exchange. During this phase, clients and
servers can emit and listen to events, facilitating real-time updates and interactions [19].

Socket.IO handles disconnections gracefully, automatically attempting to reconnect if the
connection is lost due to network issues or server downtime. It employs exponential
backoff strategies to minimize connection retries and optimize network usage. This life
cycle management ensures robust and reliable communication, crucial for applications
requiring continuous updates and responsiveness [19].

5.2.2 Namespaces

In Socket.IO, namespaces provide a way to segment and organize communication channels
within a single WebSocket connection (Figure 5.1). Each namespace acts like a separate
communication scope, allowing clients and servers to subscribe to specific channels of

1https://socket.io

33



5 Bidirectional Communication

events. This segmentation is useful for applications that require different types of real-
time interactions or wish to isolate functionality. For example, for Xaminer, we might use
namespaces to separate public exam chat rooms from private one-to-one conversations.
By offering this organizational structure, Socket.IO namespaces enhance scalability, main-
tainability, and security by controlling the flow and context of real-time data exchanges
within a single connection [20].

Client Server

Default

MyNamespace1

Default

MyNamespace1

single connection

Figure 5.1: Socket.IO Namespace architecture overview.

5.3 Use Cases

The implementation allows for various use cases, such as a notification system for the
supervisor if students joined the exam, if they submitted their results, or potentially a chat
functionality.

One important aspect of any use case is how users are authenticated determining if users
are allowed to join a certain namespace. We are differentiating between two concepts
of namespaces, mainly “public“ and “protected“ namespaces. Socket.IO does not take
care of this logic, but when joining multiple namespaces, it efficiently re-uses existing
connections only requiring a single connection.

Public namespaces can be joined without any authentication in the context of an exam.
This would include chat capabilities within the exam where all students can read and
write messages.

Protected namespaces can only be joined if certain conditions for authenticating are
fulfilled. This can be any custom mechanism to verify that a specific user is allowed to
join the namespace as sensitive data is exchanged, e.g., who submitted the exam.

34



5 Bidirectional Communication

1 fun initProtectedNamespace(examId: Long) {

2 val namespace = getNameSpace(examId)

3 server.addNamespace(namespace)

4

5 server.getNamespace(namespace)?.addConnectListener {

6 val privateKey = it.handshakeData

7 .urlParams["privateKey"]?.get(0)

8

9 if (

10 privateKey == null ||

11 examService.findByPrivateKey(privateKey) == null

12 ) {

13 it.disconnect()

14 }

15 }

16 }

Listing 5.1: Adding a protected namespace

Listing 5.1 should provide an overview of how such protected namespaces can be added
to the server. This method, specifically, initializes a protected namespace based on the
examId used for sending notifications to supervisors during an exam. For identification,
the privateKey from the URL parameters is read and checked for existence. Such a URL
containing the privateKey can only be retrieved by a supervisor, meaning that students
cannot join such namespaces without it. If no corresponding exam could be found, clients
are immediately disconnected, meaning that they are unable to receive any events from
the server.

Upon successfully connecting to the namespace, clients can receive and send data. As
a first proof of concept, the backend is the only emitting component in this scenario,
meaning that connected clients are only passively listening. To differentiate between
events, a unique name is required to implement listeners performing some business logic if
a certain event is encountered.

35



5 Bidirectional Communication

1 const socket = new io("/exam-supervisor-namespace", {

2 query: { privateKey: this.examPrivateKey }

3 })

4

5 socket.on("SUBMISSION", ({ matNr }) => {

6 this.notificationStore.show(`${matNr} has submitted`, 'success')

7 })

Listing 5.2: Socket.IO listener in client (simplified)

Listing 5.2 shows how clients can connect and listen to topics. The first step is to connect
to the supervisor namespace with a privateKey as authentication. If the connection has
succeeded, the client now listens for SUBMISSION events, including a handler that will
show a notification popup upon receiving the event. The event data is custom-defined,
similar to a REST API response. In our example, it contains an object holding the matNr of
the submitting student.

There is no limit on how many events a client can listen to, nor are there restrictions to
the data format an event can have. The first level of separation is the namespace one is
connecting to, and secondly, the event the client is interested in. There might be more
events sent on the namespace, but as long as the client is not listening to it, those are not
processed.

36



6 Question with Sub-questions

This chapter covers the quality-of-life-improvement for both students and lecturers by
introducing a new type of question that allows an exam to have questions with sub-
questions, e.g., 1a) 1b) 1c), especially focusing on the improvement to visual hierarchy of
these elements.

6.1 Motivation

In response to feedback from lecturers, a highly requested feature is the ability to support
complex questions with sub-questions, where multiple related questions share a com-
mon description and contribute to an aggregate score. Implementing this functionality
requires developing an intuitive editor for question creation and ensuring clear, structured
formatting during the examination process.

The most important aspect of this feature is to be able to use close to all existing application
logic and types of questions available, e.g., CODE_QUESTION (questions requiring source
code input, e.g., Java), SINGLE_CHOICE_QUESTION (questions that require selecting a single
response from a list of options), or MULTIPLE_CHOICE_QUESTION (questions that require
selecting multiple responses from a list of options.). Additionally, it must be built in a
way that adding new types of questions can easily be achieved without needing to adjust
the core concept of sub-questions. This means that the goal of the backend and frontend is
to make use of existing classes and components for implementation. Further, for grading,
all points should be automatically calculated for both students in the exam view and on
the printed submission for professors.

37



6 Question with Sub-questions

6.2 Implementation

The implementation for this new type of question mainly uses recursiveness in the backend
and frontend allowing not only “sub-questions“ but also “sub-sub-questions“, “sub-sub-
sub-questions“, etc. without any technical limitations. The only restriction will occur in
the frontend when adding more and more recursive sub-questions as the user interfaces
will be unusable at some point.

6.2.1 Recursiveness in the Backend

The backend introduces a new BlockKind which determines how a certain question
should be rendered in the frontend and defines how the data should be deserialized
based on the base class (Block.kt) and a corresponding sub-class, e.g., BlockKind =

SINGLE_CHOICE_QUESTION instantiates a ChoiceBlock.kt containing additional data for
the specified question type.

The newly introduced COMBO_QUESTION instantiates a ComboBlock.kt (Listing 6.1) contain-
ing a list of Blocks allowing a recursive add of all other blocks. For this, the Block entity
must be extended by the block_id to allow this recursive relation.

1 @Entity

2 class ComboBlock(

3 @OneToMany

4 @JoinColumn(name = "block_id")

5 var blocks: MutableList<Block> = mutableListOf(),

6 ) : Block(BlockKind.COMBO_QUESTION)

Listing 6.1: ComboBlock.kt for sub-questions

38



6 Question with Sub-questions

Through a @OneToMany relation, the framework automatically joins the column when se-
lecting data. This connection can be further inspected in the UML Diagram (Figure 6.1).

Block

kind: BlockKind

text: String

points: String

order: Integer

block_id: Integer

BaseEntity

id: Long

createdTimestamp: Instant

updatedTimestamp: Instant

BlockKind <enumeration>

TEXT

TEXT_QUESTION

CODE_QUESTION

IMAGE_QUESTION

SINGLE_CHOICE_QUESTION

MULTIPLE_CHOICE_QUESTION

COMBO_QUESTION
ComboBlock

blocks: List<Block> 1

*

Figure 6.1: Structure of the newly introduced ComboBlock for sub-questions.

6.2.2 Recursiveness in the Frontend

To render questions recursively, multiple changes were required to the existing logic as
it was only designed for one level of questions using the position (index) in the array
as a unique identifier. Additionally, various stylings were adjusted to create a visual
differentiation of sub-questions by applying additional spacings. Lastly, various issues
had to be resolved when recursively importing the components for questions as Vue, by
default, imports components on usage without “global“ component registration, causing
recursive loads of the same components even though they were already registered in a
different context.

When applying elements to the DOM of the webpage, they need to have a unique ID that
can be used to reference the question block for the results and apply the text editor. The
index of the question in the array provided a unique id before adding sub-questions, now
the actual id of the Block in the database is used. Upon creating an exam where no IDs
are available, the current timestamp is used as a temporary identifier as its uniqueness can
be trusted on a small scale.

39



6 Question with Sub-questions

For visualization, each question first renders a BlockVisualizationHeader, i.e., the
questions header containing the question’s description, and then decides based on the
BlockKind if it should render the question using the UniversalBlockVi-

sualization or, if BlockKind == COMBO_QUESTION it should recursively call itself with the
blocks contained in the question block (Figure 6.2).

QuestionVisualization

UniversalBlockVisualization

NO

COMBO_QUESTION?

BlockVisualizationHeader

YES

TextQuestionBlockVisualization

CodeQuestionBlockVisualization

...

Foreach: exam.blocks

Exam Blocks

Foreach: question.blocks

Figure 6.2: Component call graph for the recursive rendering of components in the frontend.

40



7 Question Search

This chapter covers the search functionality for questions when creating exams as a lecturer.
It allows one to search for any type of question in all existing exams, making it easy to
copy questions from past exams to the one currently being edited.

7.1 Motivation & Concept

Currently, lecturers encounter difficulties if questions from past exams want to be reused
due to the lack of a dedicated search and copy functionality. Without the ability to
search across all existing exams, finding and reusing questions becomes a manual, time-
consuming task as they have to be copied to the editing exam by selecting the text from the
old one and, depending on the question type, additional answers. Implementing a search
feature will greatly simplify this process, allowing lecturers to quickly locate relevant
questions by typing a simple search term, reducing the effort involved in question creation,
and improving the overall workflow of exam preparation.

Conceptually, the goal is to allow a search mechanism in the database table (Figure 7.1)
for a given search term (string) which can be utilized by the frontend for copying them
into the opened exam without modifying the existing question in the database.

41



7 Question Search

Block

kind: BlockKind

text: String

points: String

order: Integer

block_id

exam_id

BaseEntity

id: Long

createdTimestamp: Instant

updatedTimestamp: Instant

BlockKind <enumeration>

TEXT

TEXT_QUESTION

CODE_QUESTION

IMAGE_QUESTION

SINGLE_CHOICE_QUESTION

MULTIPLE_CHOICE_QUESTION

COMBO_QUESTIONComboBlock

blocks: List<Block> 1

*

ChoiceBlock

choices: String

CodeBlock

codeLanguage: String

Exam

name: String

start: Instant

end: Instant

timeZone: Integer

blocks: List<Block>
1

*

Figure 7.1: UML diagram of Exam & Block, as an exam consists of a Exam entity that is referencing
(joining) a second entity Block containing questions related to the exam, joined using
the exam id. To access the Block table for searching, we only need to define a Spring
repository, which allows us to query the table as needed.

Secondly, we need to define the criteria for searching the exam blocks. In addition to the
text attribute, the search considers various other fields depending on the type of question.
This can be summarized into the following criteria:

• All - search based on the text attribute, which correlates to the title and description
of a question.

• Single- & Multiple-Choice - search based on the choices, which is a list of possible
options to choose from.

• Code - based on the codeLanguage attribute for searching based on the programming
language of a code question.

• Combo - the newly introduced combo question is searched by the blocks attribute
referencing a list of questions (recursive).

42



7 Question Search

7.2 Implementation

For implementation, we are only required to build the correct SQL statement for fetching
the corresponding Blocks. This is done using a Specification to build a criteria, which
is similar to writing SQL. Writing such a Specification has many benefits in our use-case
compared to writing a custom SQL query inside a @Query() annotation:

• They provide a modular way to define query conditions, allowing one to create
smaller, reusable specifications that can be combined to create complex queries.

• Specifications are type-safe, meaning the query conditions are checked at compile
time. This reduces the likelihood of runtime errors due to syntax issues of incorrect
field references.

• Improved query performance through Hibernate’s1 query optimization especially
when dealing with complex relationships and lazy loading.

Listing 7.1 shows a simple example of how such a statement can be written, which is
automatically translated to an optimized query through Hibernate.

1 fun searchInText(pattern: String) = Specification<Block> {

2 root, _, builder ->

3 builder.like(

4 builder.lower(builder.trim((root.get("text")))),

5 pattern.like

6 )

7 }

Listing 7.1: Question search Specification (simple)

In comparison, Listing 7.2 shows the “translated“ SQL statement used for filtering the
same Block table.

1 SELECT * FROM block

2 WHERE lower(trim(BOTH FROM text)) LIKE ’%pattern%’

Listing 7.2: Question search translated to SQL (simple)

1Hibernate is an open-source object-relational mapping (ORM) framework for Java applications that simpli-
fies the interaction between object-oriented code and relational databases [21].

43



7 Question Search

All defined Specifications can be combined using an OR operator to create a single SQL
statement, which is further used for fetching all entries from the database. We want to let
the database handle all the filtering efficiently instead of loading all entries into memory
to perform filter operations. Nevertheless, one significant challenge arose when filtering
for the ComboQuestions, which also can be filtered.

7.2.1 Recursive SQL Join

Searching for string properties is very simple compared to looking up properties refer-
encing itself recursively as it has to be done for the newly introduced ComboQuestion.
Listing 7.3 should provide an overview of how this could be achieved using a sub-query
on the same type of table, joined by the ids of the Block.

1 fun searchInComboBlock(pattern: String)

2 = Specification<Block> { root, query, builder ->

3

4 val subQuery = query.subquery(Block::class.java)

5 val subRoot = subQuery.from(Block::class.java)

6 subRoot.join<Block, Block>("blocks")

7

8 subQuery.select(subRoot).where(

9 builder.equal(

10 subRoot.get<String>("id"),

11 root.get<String>("id")

12 ),

13 builder.or(

14 searchInText(pattern),

15 searchInChoices(pattern),

16 searchInCodeBlock(pattern)

17 )

18 )

19 builder.exists(subQuery)

20 }

Listing 7.3: Question search Specification (advanced)

44



7 Question Search

The purpose of this query is, to apply the same search predicates to blocks contained
in a ComboQuestions. For this, a subQuery is created to be applied to the joined subRoot,
allowing us to apply the predicates to not only the root (in this case, a ComboQuestions)
but also all contained blocks via the subRoot. If a Block in the subRoot matches, we add it
to the result as well as the ComboQuestion itself.

Listing 7.4 puts this specification into an SQL statement for better readability. It is impor-
tant to note that it only shows a snipped of the whole sub-query for the ComboQuestion.
The statement below is combined with a larger statement with several OR operators. In
addition to checking if the current block b1 meets the criteria, it is also checked if some
sub-block b2 potentially also meets the criteria. This is done by joining the same table on
a block b3 where the block_id (used for joining) equals the id of b2. In order to avoid a
loop, we cannot join the sub-block b2 on the block b1, therefore introducing b3.

1 SELECT * FROM block b1

2 -- sub-query for ComboQuestion

3 WHERE EXISTS(

4 SELECT * FROM block b2 JOIN block b3 ON b2.id=b3.block_id

5 -- includes the searches via pattern (text OR choice OR codeblock)

6 WHERE b2.id=b1.id AND ((...) OR (...) OR (...))

7 )

Listing 7.4: Question search translated to SQL (simple)

For example, when searching for the BlockKind = SINGLE_CHOICE_QUESTION, the result
will return two results.

Given the following blocks:

• Block A (BlockKind = TEXT)

• Block B (BlockKind = TEXT_QUESTION)

• Block C (BlockKind = COMBO_QUESTION)

– Block C1 (BlockKind = TEXT)

– Block C2 (BlockKind = SINGLE_CHOICE_QUESTION)

Result: Block C (including Block C1 & C2) and the single Block C2.

45



8 Preliminary Submission

This chapter introduces the changes made to Xaminer to store preliminary results of
students on the backend, in the database. Those can be automatically restored to the
student’s browser if needed. Further, supervisors can mark a preliminary submission as a
final submission if necessary.

8.1 Motivation & Status Quo

Xaminer allows students to submit their results only once during final submission, which
is confirmed two times before acting. This limitation means that storing any preliminary
results on the backend is not possible. The results are only stored locally in the student’s
browsers using the LocalStorage1 for persisting results for each question, e.g., storing only
the string for a code question.

Each time students modify any value in a text area by typing their answer or selecting
an answer via a radio button, this value is immediately persisted into this storage. Upon
refreshing the browser - and being “reactivated“ by the supervisor - the storage is checked
for the current exam ID to read the values into memory, to further prefill the question
answers of the exam.

Unfortunately, some students have experienced fatal browser crashes, completely wiping
or corrupting all local data, which means their answers filled out during the exam could
not be restored. In such cases, we want to assure that at least some state can be restored by
retrieving a state from the backend, which stores their preliminary results. These results
should be uploaded in the background using an interval without requiring any student
interaction and without performing an actual final submission.

1LocalStorage is a web storage mechanism that allows web applications to store data persistently in the
browser with no expiration date [22]

46



8 Preliminary Submission

8.2 Concept & Security Considerations

A crucial step to enhance students’ experience is addressing the current limitation that
permits only a single submission. This means that the backend should provide a new API
to store results the same way students would perform a final submission. Allowing the
storage of preliminary results in the backend will also enable supervisors to perform a
final submission in favor of the student on fatal browser crashes if the exam ends before
the student can rejoin and perform the final submission on their own.

Above all, though, the persistence of submissions and preliminary submissions must be
completely separated without rebuilding the submission logic from scratch. Additionally,
upon refreshing the browser we need to intelligently determine the latest result from
either the LocalStorage or the backend storage.

Figure 8.1 provides an overview of the mechanism of how the data is persisted in both the
browsers and the backend storage. Blue boxes indicate existing components or logic, while
green boxes indicate newly introduced areas. Each of the three steps will be explained in
the following sections.

Result submission to the backend is automatically done in the background using an
interval. Before sending the data to the server, the local state is processed and shaped into
a preliminary submission.

Result restoration on browser refresh, the local and server state must be fetched into
memory and compared before allowing the student to join the exam view. The comparison
of states is done using timestamps, always “preferring“ the newer answer if available. If
no data related to the exam and question can be found, the fallback value is used.

Supervisor submission for students allows for “final submissions“ without the inter-
action of a student. This is a final option for lecturers to use the last state submitted to the
backend for grading - this needs to be aligned accordingly for each student. This prevents
the loss of a submission if, for some reason, the browser had a fatal crash right before the
student performed a final submission.

47



8 Preliminary Submission

save preliminary submission
save local state

GET backend state

Backend

Diff between local
and backend

Exam Student View

keypress or click
on answer

retrieve local state

LocalStorage

Persist

Exam question

interval

Student

Supervisor

SubmitFinal submission

Create submission from
preliminary subsmission

Re-open exam local & server state
diff checker

Figure 8.1: Concept of preliminary submissions showing a student and supervisor perspective.

Of course, when storing a preliminary submission for a student we need to guarantee that
under no circumstances a different student can access the results of others through the
server. Before, only one submission was sent to the server, and there was no option to
ever retrieve it for the student. With this new functionality, we not only provide multiple
submits but also options to retrieve the information again.

Security mechanism for protection relies on the same concept as the old way for veri-
fying a student’s identity through a special code, which is only known to the students-
browser and the server. The code is a uniquely stored secret for each student joining the
exam, which can be loaded from the server only once. To fetch the preliminary submission,
the code must match upon sending the request. If the code does not match, an error is

48



8 Preliminary Submission

returned without the actual preliminary submission. The only way to retrieve this code is
if student A shares his unique exam link with student B, allowing student B to join the
exam, which is prohibited for obvious reasons.

8.3 Implementation

The implementation consists of three main parts. We are introducing the new API end-
point(s) for allowing to submit and fetch preliminary submissions, extending the existing
business logic for storing such results, and introducing the algorithm in the frontend for
identifying the most recent answer and correctly restoring the exam’s state.

Firstly, the new API is introduced for fetching (GET) a preliminary submission and for
sending (POST) the content of such a submission to the backend. Upon fetching, the result
needs to be uniquely determined using the examId and matriculation number in the path
of the API. For authentication, the code is used as previously discussed. If all checks
are successful, and a preliminary submission exists, the result is returned containing all
ExerciseAnswers.

Sending data to the backend works similarly, requiring the code for authentication and
a payload containing the identifiers examId and matNr together with an array of the
exerciseAnswers.

The resulting API endpoints and paths can, therefore, be defined as:

1 GET /api/preliminary-submission/{examId}/{matNr}?code=<code>

2 POST /api/preliminary-submission/submit?code=<code>

For storing, a new table PreliminarySubmission (Figure 8.2) is being introduced, requir-
ing one SQL join with the existing ExerciseAnswer table, which stores the actual answer
of a certain question. The table already exists for real submissions, meaning that the table
is extended by another column (preliminary_submission_id) for joining not to mix joins
from PreliminarySubmission with Submission.

49



8 Preliminary Submission

PreliminarySubmission

matNr: String

examId: String

examId: String

exerciseAnswer: List<ExerciseAnswer>

ExerciseAnswer

exerciseNr: Integer

blockKind: BlockKind

text: String

code: String

svg: String

selectedAnswer: String

preliminary_submission_id

submission_id

BaseEntity

id: Long

createdTimestamp: Instant

updatedTimestamp: Instant

1

Submission

matNr: String

examId: String

examId: String

firstName: String

lastName: String

exerciseAnswer: List<ExerciseAnswer>

has *

has

1

*

Figure 8.2: UML diagram of preliminary submissions showing the relation between the new table
and the existing ExerciseAnswer table. For comparison, the existing Submission table
is also shown, indicating that it also references the same ExerciseAnswer joined via
a different ID. For simplicity, the BlockKind enumeration is not shown in this UML
diagram as it was previously shown in Figure 6.1 and Figure 7.1

Table 8.1 shows a simplified version of the table in the database. Most importantly,
exercise answers are joined with the other table using the corresponding ID. In this case,
the question “What is Java“ stores the answer for a real submission (with id = 1) while
the two entries below relate to a preliminary submission (id = 2).

exerciseNr text submission_id preliminary_submission_id
1 What is Java 1 NULL
3 Headline NULL 2
4 Write a Kotlin program NULL 2

Table 8.1: ExerciseAnswer table columns (simplified)

50



8 Preliminary Submission

Secondly, the existing LocalStorage needs to be extended with a timestamp, indicating the
last time the answer for a specific question has been saved. This timestamp is saved for
each question individually, changing the schema of the storage from simple Strings to
JSON. The key, in the format of EXAM_ID@BLOCK_ID, required no further changes. Table 8.2
and Table 8.3, indicate examples for an exam with ID = 18 and ID = 24 comparing the
existing with the new schema.

Key Value
18@1 Java is a programming language
18@2 System.out.println("Hello, World");
24@6 fun isEven (number: Int) = number % 2 == 0

Table 8.2: Current LocalStorage schema

Key Value

18@1

{
"timestamp": 1722179976590,
"value": "Java is a programming language"
}

18@2

{
"timestamp": 1722179966120,
"value": "System.out.println("Hello, World");"
}

24@6

{
"timestamp": 1891799784801,
"value": "fun isEven (number: Int) = number % 2 == 0"
}

Table 8.3: New LocalStorage schema

Lastly, determining the most recent result upon reloading the browsers on the student’s
browser is the last crucial piece. The concept for this is relatively simple, as discussed in
the previous section. For simplicity, Figure 8.3 shows the flowchart of the algorithm used
to compare the local and server state, applying the most recent version for each question
based on the timestamp. It is worth mentioning that the server state is always checked
first to see if it exists. If it doesn’t, we rely purely on the local state to render the student’s
view. If it exists, we try to compare the timestamps to override the local state or completely
restore the local state if it cannot be found, e.g., a fatal browser crash that cleared all local
browser data.

51



8 Preliminary Submission

Load exam

Is server state found?

after processing
for each: question

find local statenext block
(no local state changes)

No Yes

compare local &
server timestamps

Is local state found? NoYes

next block
(no local state changes)

override local with
server state

server timestamp newer?No Yes

render student view
join

Student

Figure 8.3: Flowchart for determining the most recent answer for restoring the results. The local
state can always be set equally to the LocalStorage for persistence. For consistency
across the application logic, the state is ever only loaded into memory (JavaScript) if
really needed, e.g., when creating a preliminary or final submission, otherwise it is
always immedietly persisted into the storage.

52



9 Single PDF Export

This chapter covers both the concept and implementation of the single PDF export. This
feature lets the exam creator download all student submissions for a given exam, ready
for immediate printing.

9.1 Motivation & Concept

Currently, exam results are exported and downloaded as a .zip file, where each student’s
submission is stored in an individual PDF file. However, a key improvement would be
the ability to export all submissions into a single PDF file formatted for efficient double-
sided printing. Such an extension would ensure that each sheet of paper contains only
one student’s submission, enhancing usability and reducing administrative overhead as
currently, each submission PDF has to be printed separately, requiring several minutes of
work. Additionally, for grading and student exam reviews, it is essential to ensure that no
page ever contains submissions from more than one student. Lastly, when downloading
this PDF, it should be possible to allow multiple pages on a single page, e.g., two pages or
four pages per side.

Conceptually, the existing mechanism for generating the PDF for a single submission can
be re-used entirely. The main idea is to detect how many blank pages are required to
achieve the requirement of having always only a single submission on one (or multiple)
printed sides merged into a single PDF file. For reading the metadata and modifying PDF
files, a new library needs to be introduced, namely pdfbox1 that can read the number of
pages of the submission file as well as create new PDFs in-memory.

1https://pdfbox.apache.org

53

https://pdfbox.apache.org


9 Single PDF Export

Figure 9.1 shows the steps needed for generating a single PDF.

Export Single PDF Generate
Submission PDF

Append

No

Yes

Add Blank page(s)

Precondition: Exam exists + submissions exist (loaded from database into memory)

Pages == Desired Combined
Submission PDF

Foreach
submission:

Download
Single PDF

PDF 
(with desired pages)

0

1
2 3

Figure 9.1: Flowchart of the single PDF export process for combining PDFs.

Step 0 loads all the submissions for the exam into memory to be able to generate the
submission PDF. After generating the PDF (Step 1), we need to read the content of the file
to detect how many pages were generated to check how many blank pages need to be
added. For this, a simple modulo calculation can be performed:

Pempty = Prequested − (Psubmission mod Prequested)

where Pempty is the number of pages to add to the current submission PDF, based on the
Prequested that holds the value of how many pages are expected on a double-sided A4 sheet
(e.g., two, four, or eight pages) and Psubmission indicating the current amount of pages
generated based on the submission.

Lastly, once the submission PDF has the correct number of pages, we add it to the results
“Combined Submission PDF“ (Step 2), which will be provided as the downloadable PDF
file once all submissions are processed (Step 3).

9.2 Implementation

The implementation mainly consists of the mechanism to determine the current amount of
pages that have been generated and adding empty pages to a resulting, combined PDF.

54



9 Single PDF Export

To generate the PDF, the existing library called wkhtmltopdf is used that simply converts
HTML to PDF files. By design, it only generates files, meaning that it does not provide any
meta-information about the PDF itself, e.g., page count. Additionally, it cannot merge nor
modify PDF files which means it can only be used to transform the submission to a file.

Listing 9.1 shows a simplified version of the method used. PDFMergerUtility and
PDDocument() are imports of the pdfbox library that allow us to create the resulting
PDF in memory. To generate the PDFs based on the submission, the already available
convertToPdf() method is used. The resulting file is loaded into memory using the
Loader.loadPDF() to further determine the page count. Using the page count, we can
determine how many empty pages need to be added (the empty page is loaded into
memory before, which consists of a blank page) that is added to the submission PDF. The
resulting file is then appended to the combinedPDF returned for the download.

1 val combinedPdf = PDDocument()

2

3 for (submission in submissions) {

4 val pdf = convertToPdf(exam, submission)

5 val pdfFile = Loader.loadPDF(pdf)

6 val P_submission = pdfFile.pages.count

7

8 if (P_submission % P_requested == 0)

9 continue

10

11 val P_empty = P_requested - (P_submission % P_requested)

12 for (i in 1..P_empty) {

13 pdfFile.addPage(emptyPage)

14 }

15

16 PDFMergerUtility.appendDocument(combinedPdf, pdfFile)

17 }

18

19 return combinedPdf

Listing 9.1: Single PDF export (simplified)

55



10 Usage and Evaluation

This chapter covers how the new features and improvements can be used by lecturers and
developers. The first part covers developer-related sections, while the second part covers
the four quality-of-life improvements for lecturers.

10.1 Docker & Docker-Compose

Deploying and updating Xaminer on a server must be done using Docker and a Docker-
Compose file, which can be found in the root of the applications repository1.

Two variants of the compose file start the application(s) with the same configuration but
with different docker images. The local version (docker-compose.local.yml) runs the
build process on the local machine where the command is executed, while the non-local
version (docker-compose.yml) pulls the tested and built images from a remote registry
(recommended way of running Xaminer). For development purposes, one can use the
docker-compose.local.yml, but it is not the recommended way of running Xaminer on a
server for an institute.

For application configuration, e.g., which version of the application should be used
or database credentials, a configuration file in the project’s root named .env must be
created. This configuration file should never be distributed if credentials are included. The
.env.example in the repository can be used as a reference when creating the configuration
file for deploying an Xaminer application.

1https://github.com/NeonMika/xaminer

56

https://github.com/NeonMika/xaminer


10 Usage and Evaluation

1 FRONTEND_IMAGE=ghcr.io/neonmika/xaminer/frontend:1.3.0

2 BACKEND_IMAGE=ghcr.io/neonmika/xaminer/backend:1.3.0

3

4 POSTGRES_URL=jdbc:postgresql://postgres:5432/postgres

5 POSTGRES_USER=postgres

6 POSTGRES_PASSWORD=password

Listing 10.1: .env configuration file (simplified)

Listing 10.1 represents a simplified version of the most relevant configurations. FRONTEND_
IMAGE and BACKEND_IMAGE define the version and remote registry from where the images
need to be pulled. Additionally, database credentials and URLs are defined using this
file. If the database defined in the Docker Compose should be used, the hostname of the
container, “postgres“, must be chosen.

Lastly, to run the application, the following command can be used to start every defined
container of the compose file:

1 $ docker-compose [-f docker-compose.local.yml] up -d

Using their name as the last argument of the command can start individual components
of the compose file. This can also be used to restart or update individual containers.

1 $ docker-compose [-f docker-compose.local.yml] up -d frontend

2

3 $ docker-compose [-f docker-compose.local.yml] restart backend

Lastly, to completely stop the application for bigger maintenance, the Docker Compose
can also be used.

1 $ docker-compose [-f docker-compose.local.yml] down

Full reference to all available commands can be found via https://docs.docker.com/

reference/cli/docker/compose/

57

https://docs.docker.com/reference/cli/docker/compose/
https://docs.docker.com/reference/cli/docker/compose/


10 Usage and Evaluation

10.2 Questions with Sub-Questions

To create an exam section containing sub-questions, creators are only required to add the
new question type “Combo question“ as seen in Figure 10.1.

Figure 10.1: Option showcase for newly introduced Combo Question selection.

After adding the new section, a second selector inside the newly added combo question
(Figure 10.2) appears to add further sub-questions to it. As the implementation does not
limit any usage of other question types nor the depth of how many combo questions can
be inside another combo question, creators can freely add as many elements as desired.

Figure 10.2: Showcase of newly introduced “Add“ button for Combo Question.

Added sub-questions can be moved or deleted the same way as before. Deleting the
combo question itself will delete all questions contained within. As a small improvement
and to prevent accidental deletes of questions, a new confirmation dialog has been added
before removing the question.

58



10 Usage and Evaluation

10.3 Question Search

The question search has been added as a separate button next to adding an empty question
type as seen in Figure 10.3. As mentioned in the previous Section 10.2, each combo
question has its selector for adding questions, which means that it will also include its
question search button for adding existing tasks as sub-questions.

Figure 10.3: Location of the new button for the introduced Question Search.

Upon clicking the button, creators are presented with a modal containing a text input
used for searching (Figure 10.4). The default search term is empty, leading to all available
questions being loaded from the backend to choose from. Entering a specific search term
automatically triggers a search (or upon pressing enter) on the backend filtering for all
criteria mentioned in Chapter 7. If a desired question has been found, it can be added via
the “Add to Exam“ button, copying the question into the area where the question search
has been opened.

Figure 10.4: Overview of the modal and search input for adding questions through Question
Search.

59



10 Usage and Evaluation

10.4 Single PDF Export

For exporting all submissions at once to a single, printable PDF, a new button below the
existing download buttons (Figure 10.5) has been introduced. Upon clicking, a modal
opens with a set of configurations to choose from. Each radio button indicating a number
determines how many pages should be added to the A4 sheet, e.g., "2" prepares the PDF
to be printed double-sided with two pages on each page.

Figure 10.5: Button and dialog for exporting all submissions as a single PDF.

It is worth mentioning, that the duration for downloading the PDF might vary based on
how many students participated, as well as how many questions had to be answered.
With many students participating, the download might take a couple of minutes.

10.5 Bi-directional Communication

The bi-directional communication introduced in the Thesis opens up opportunities for
many features requiring live updates from the backend to clients or to generally broadcast
information to certain clients.

The first use-case implemented adds live updates for exam supervisors, informing them
if students join and submit the exam. No further action is required from supervisors as

60



10 Usage and Evaluation

all logic is handled in the background. Figure 10.6 indicates how such notification would
look.

Figure 10.6: Example notification of a student submission notification using bi-directional com-
munication.

To implement new use cases, both the backend and frontend can be easily extended with
custom logic to handle things such as authentication. Socket.IO will efficiently handle
multiple connections to the backend.

10.6 Developer Experience Improvements

Lastly, future development of Xaminer has improved a lot. By modernizing and intro-
ducing new technologies to the application stack, developers can create features more
efficiently and faster while also automating manual-intensive tasks such as testing and
building.

10.6.1 Frontend Tooling

Replacing Webpack with Vite.js drastically improves performance when it comes to build
times and CPU consumption. For testing, three consecutive runs were performed and are
listed in Table 10.1 for build time and Table 10.2 for CPU consumption.

The tests were conducted on a Apple MacBook Pro M2 (64GB) running MacOS Sonoma
14.5 with NodeJS 22.4.1.

61



10 Usage and Evaluation

Webpack (Dev) Vite (Dev) Webpack (Prod) Vite (Prod)
11.29s 0.13s 53.13s 6.82s
11.32s 0.12s 50.23s 6.90s
11.27s 0.13s 50.30s 6.86s
11.29s (avg.) 0.126s (avg.) 51.22s (avg.) 6.86s (avg.)

Table 10.1: Compilation times test results (lower better)

Webpack (Dev) Vite.js (Dev) Webpack (Prod) Vite.js (Prod)
237% 8% 438 208
243% 11% 436 208
249% 11% 441 185
243% (avg.) 10% (avg.) 438% (avg.) 200% (avg.)

Table 10.2: CPU consumption test results (lower better)

For comparison, Figure 10.7 provides an overview of how many resources could be saved
(in percent). The development build time shows a drastic improvement as it does not
pre-compile the whole project but only if requested, significantly reducing the cold start.

Figure 10.7: Compilation time & CPU consumption comparison of Webpack and Vite.js.

10.6.2 Automated Builds

With the addition of a GitHub Action automation pipeline, developers can ensure that
changes performed to Xaminer do not break any existing functionality as well as ship a
new version of the application with a single click.

62



10 Usage and Evaluation

Each time a pull request is opened, a pipeline is automatically triggered, running all
jobs without requiring any manual action (Figure 10.8). Upon successfully finishing all
jobs, including a job to check code styles, a job to run unit- & integration-tests in the
backend, and finally, a full end-to-end test suite performing programmatic clicks in the
user interface to test certain functionality, developers can merge their changes into the
main codebase.

Figure 10.8: Automatically triggered GitHub Action on a pull-request, which is in progress.

On average, a full run of the pipeline takes around 22 minutes if all jobs can be run
successfully and no consecutive job was skipped due to a previous one failing. If a job
fails, a glance at the summary can help the developer to identify the issue to resolve, as
seen in Figure 10.9. Additional information can be found by checking the logs of a job by
selecting it in the web interface.

63



10 Usage and Evaluation

Figure 10.9: Example of a failed GitHub Action with results and reasons for failure.

Creating a new version of Xaminer is also fully automated by leveraging GitHub Releases
(https://github.com/NeonMika/xaminer/releases/new, Figure 10.10), where the same
GitHub Action is run for performing several checks before building the application and
pushing it to a remote registry.

Figure 10.10: GitHub Release page for creating new versions of Xaminer.

64

https://github.com/NeonMika/xaminer/releases/new


11 Conclusion and Outlook

One primary focus for Xaminer’s future development is the continuous modernization
of its technology stack. The recent upgrade from Vue.js 2 to Vue.js 3 is a critical step in
keeping the platform’s frontend framework current, enhancing both performance and
security. To maintain a smooth and reliable user and developer experience, Xaminer
should be updated in the future to take advantage of the most recent developments in
software development.

In addition to technological updates, the platform’s architecture has been improved
to support more flexible and efficient deployment. The decoupling of frontend and
backend components and the adoption of Docker and CI pipelines with GitHub Actions
streamline the development and deployment process. This modularity not only simplifies
maintenance and updates but also enhances system reliability and scalability, allowing
Xaminer to better handle increased user demand and complex functionalities.

User experience enhancements remain a key priority, with recent updates introducing
features such as single-file PDF exports, preliminary exam submissions, and support
for questions with sub-questions. These improvements address specific user needs and
contribute to a more efficient and user-friendly platform. Future developments should con-
tinue to prioritize user-centric features, potentially exploring real-time chat functionalities
and enhanced proctoring tools.

To sum up, Xaminer’s improvements indicate a considerable advancement in the plat-
form’s evolution and guarantee that it will always be a useful resource for online exami-
nation. The focus on modernization, efficient deployment, and user experience has not
only improved the system’s functionality but also positioned it well for future growth.
Xaminer offers an effective and flexible solution for digital exams, making it well-suited to
meet the changing demands of the academic community as digital education grows.

65



List of Figures

2.1 Docker architecture & components overview. . . . . . . . . . . . . . . . . . 8
2.2 Xaminer high-level architecture overview. . . . . . . . . . . . . . . . . . . . 12
2.3 Current Xaminer hosting setup on a virtual machine. . . . . . . . . . . . . 13

3.1 Life-cylce of Webpack’s bundling mechanism. . . . . . . . . . . . . . . . . 15
3.2 Life-cycle of Vite’s bundling mechanism using Native ESM. . . . . . . . . 16
3.3 Page loading behavior before migrating to Vue 3. . . . . . . . . . . . . . . . 18
3.4 Page loading behavior after migration to Vue 3 using “vue-router“. . . . . 19

4.1 Usage of a “Reverse Proxy“ for the new hosting setup. . . . . . . . . . . . 25
4.2 Implementation of the GitHub Action workflow for Xaminer. . . . . . . . 26
4.3 Cypress job result of passed, failed, pending, or skipped tests and duration. 30

5.1 Socket.IO Namespace architecture overview. . . . . . . . . . . . . . . . . . 34

6.1 Structure of the newly introduced ComboBlock for sub-questions. . . . . . 39
6.2 Component call graph for the recursive rendering of components in the

frontend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1 UML diagram of Exam & Block, as an exam consists of a Exam entity that is
referencing (joining) a second entity Block containing questions related to
the exam, joined using the exam id. To access the Block table for searching,
we only need to define a Spring repository, which allows us to query the
table as needed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.1 Concept of preliminary submissions showing a student and supervisor
perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

66



List of Figures

8.2 UML diagram of preliminary submissions showing the relation between
the new table and the existing ExerciseAnswer table. For comparison,
the existing Submission table is also shown, indicating that it also refer-
ences the same ExerciseAnswer joined via a different ID. For simplicity,
the BlockKind enumeration is not shown in this UML diagram as it was
previously shown in Figure 6.1 and Figure 7.1 . . . . . . . . . . . . . . . . 50

8.3 Flowchart for determining the most recent answer for restoring the results.
The local state can always be set equally to the LocalStorage for persis-
tence. For consistency across the application logic, the state is ever only
loaded into memory (JavaScript) if really needed, e.g., when creating a pre-
liminary or final submission, otherwise it is always immedietly persisted
into the storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.1 Flowchart of the single PDF export process for combining PDFs. . . . . . . 54

10.1 Option showcase for newly introduced Combo Question selection. . . . . 58
10.2 Showcase of newly introduced “Add“ button for Combo Question. . . . . 58
10.3 Location of the new button for the introduced Question Search. . . . . . . 59
10.4 Overview of the modal and search input for adding questions through

Question Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.5 Button and dialog for exporting all submissions as a single PDF. . . . . . . 60
10.6 Example notification of a student submission notification using bi-directional

communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.7 Compilation time & CPU consumption comparison of Webpack and Vite.js. 62
10.8 Automatically triggered GitHub Action on a pull-request, which is in progress. 63
10.9 Example of a failed GitHub Action with results and reasons for failure. . . 64
10.10GitHub Release page for creating new versions of Xaminer. . . . . . . . . . 64

67



List of Tables

8.1 ExerciseAnswer table columns (simplified) . . . . . . . . . . . . . . . . . . 50
8.2 Current LocalStorage schema . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3 New LocalStorage schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.1 Compilation times test results (lower better) . . . . . . . . . . . . . . . . . 62
10.2 CPU consumption test results (lower better) . . . . . . . . . . . . . . . . . . 62

68



Listings

2.1 Example REST controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Old *.page.ts syntax (Webdriver.IO) . . . . . . . . . . . . . . . . . . . . . . 20
3.2 New *.page.ts syntax (Cypress) . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Old *.spec.ts syntax (Webdriver.IO) . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 New *.cy.ts syntax (Cypress) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Basic Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Xaminer docker-compose.yml (simplified) . . . . . . . . . . . . . . . . . . . 23
4.3 GitHub Action job definition for “Check frontend codestyles“ . . . . . . . 28

5.1 Adding a protected namespace . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Socket.IO listener in client (simplified) . . . . . . . . . . . . . . . . . . . . . 36

6.1 ComboBlock.kt for sub-questions . . . . . . . . . . . . . . . . . . . . . . . . 38

7.1 Question search Specification (simple) . . . . . . . . . . . . . . . . . . . . . 43
7.2 Question search translated to SQL (simple) . . . . . . . . . . . . . . . . . . 43
7.3 Question search Specification (advanced) . . . . . . . . . . . . . . . . . . . 44
7.4 Question search translated to SQL (simple) . . . . . . . . . . . . . . . . . . 45

9.1 Single PDF export (simplified) . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10.1 .env configuration file (simplified) . . . . . . . . . . . . . . . . . . . . . . . 57

69



Bibliography

[1] SPA (Single-page application). https://developer.mozilla.org/en- US/docs/
Glossary/SPA. Accessed: 2024-08-06 (cit. on p. 6).

[2] What is a RESTful API? https://aws.amazon.com/what-is/restful-api/. Ac-
cessed: 2024-08-05 (cit. on p. 7).

[3] The WebSocket API (WebSockets). https://developer.mozilla.org/en-US/docs/
Web/API/WebSockets_API. Accessed: 2024-08-05 (cit. on pp. 7, 32).

[4] WebSocket. https://www.ibm.com/docs/en/was/9.0.5?topic=applications-
websocket. Accessed: 2024-08-05 (cit. on pp. 7, 32).

[5] Docker overview Docker architecture. https://docs.docker.com/guides/docker-
overview/#docker-architecture. Accessed: 2024-07-01 (cit. on p. 8).

[6] About Git. https://git- scm.com/about/branching- and- merging. Accessed:
2024-08-04 (cit. on p. 9).

[7] Yarn Introduction. https://yarnpkg.com/getting-started. Accessed: 2024-07-03
(cit. on p. 10).

[8] Webpack Concepts. https://webpack.js.org/concepts. Accessed: 2024-07-03 (cit.
on p. 10).

[9] Vite.js Getting Started. https://vitejs.dev/guide. Accessed: 2024-07-03 (cit. on
p. 10).

[10] Why Webdriver.IO? https://webdriver.io/docs/why- webdriverio. Accessed:
2024-07-03 (cit. on p. 10).

[11] Why Cypress? https://docs.cypress.io/guides/overview/why-cypress. Ac-
cessed: 2024-07-03 (cit. on p. 10).

[12] ESLint. https://eslint.org. Accessed: 2024-07-06 (cit. on p. 10).

70

https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://aws.amazon.com/what-is/restful-api/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.ibm.com/docs/en/was/9.0.5?topic=applications-websocket
https://www.ibm.com/docs/en/was/9.0.5?topic=applications-websocket
https://docs.docker.com/guides/docker-overview/#docker-architecture
https://docs.docker.com/guides/docker-overview/#docker-architecture
https://git-scm.com/about/branching-and-merging
https://yarnpkg.com/getting-started
https://webpack.js.org/concepts
https://vitejs.dev/guide
https://webdriver.io/docs/why-webdriverio
https://docs.cypress.io/guides/overview/why-cypress
https://eslint.org


Bibliography

[13] Gradle User Manual. https://docs.gradle.org/current/userguide/userguide.
html. Accessed: 2024-07-06 (cit. on p. 10).

[14] JUnit5. https://junit.org/junit5. Accessed: 2024-07-06 (cit. on p. 11).

[15] Vue Tooling. https://vuejs.org/guide/scaling-up/tooling.html. Accessed:
2024-07-25 (cit. on p. 15).

[16] Vite.js Getting Started. https://vitejs.dev/guide/why.html#slow-server-start.
Accessed: 2024-07-25 (cit. on pp. 15, 16).

[17] Server-sent events. https://developer.mozilla.org/en- US/docs/Web/API/
Server-sent_events. Accessed: 2024-08-05 (cit. on p. 32).

[18] What is Long Polling? https://www.pubnub.com/guides/long-polling/. Accessed:
2024-08-05 (cit. on p. 32).

[19] Socket.IO - How it works. https://socket.io/docs/v4/how-it-works/. Accessed:
2024-08-05 (cit. on p. 33).

[20] Socket.IO - Namespaces. https://socket.io/docs/v4/namespaces/. Accessed:
2024-08-05 (cit. on p. 34).

[21] Hibernate ORM. https://hibernate.org/orm/. Accessed: 2024-09-29 (cit. on p. 43).

[22] Window: localStorage property. https://developer.mozilla.org/en-US/docs/Web/
API/Window/localStorage. Accessed: 2024-08-03 (cit. on p. 46).

71

https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/userguide.html
https://junit.org/junit5
https://vuejs.org/guide/scaling-up/tooling.html
https://vitejs.dev/guide/why.html#slow-server-start
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://www.pubnub.com/guides/long-polling/
https://socket.io/docs/v4/how-it-works/
https://socket.io/docs/v4/namespaces/
https://hibernate.org/orm/
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

	1 Introduction
	1.1 Outline

	2 Background
	2.1 Technoloy Stack
	2.1.1 Backend - Spring Boot & Kotlin
	2.1.2 Frontend - Vue & TypeScript
	2.1.3 Application Programming Interface - API

	2.2 Deployment and Development Tools
	2.2.1 Docker
	2.2.2 Version control (Git) & GitHub
	2.2.3 Frontend
	2.2.4 Backend

	2.3 Xaminer Overview
	2.3.1 Architecture
	2.3.2 Deployment & Hosting


	3 Modernize Frontend Stack
	3.1 Vue 3 Upgrade
	3.2 Bundling Tool
	3.3 Migration Path
	3.3.1 Dynamic Route Generation

	3.4 Testing Tool

	4 Deployment and Hosting
	4.1 Containerization
	4.2 Docker Compose
	4.2.1 Backend & Database
	4.2.2 Frontend
	4.2.3 Reverse Proxy

	4.3 Automated Builds
	4.3.1 GitHub Actions


	5 Bidirectional Communication
	5.1 Technology Evaluation
	5.2 Socket.IO
	5.2.1 Connection Lifecycle
	5.2.2 Namespaces

	5.3 Use Cases

	6 Question with Sub-questions
	6.1 Motivation
	6.2 Implementation
	6.2.1 Recursiveness in the Backend
	6.2.2 Recursiveness in the Frontend


	7 Question Search
	7.1 Motivation & Concept
	7.2 Implementation
	7.2.1 Recursive SQL Join


	8 Preliminary Submission
	8.1 Motivation & Status Quo
	8.2 Concept & Security Considerations
	8.3 Implementation

	9 Single PDF Export
	9.1 Motivation & Concept
	9.2 Implementation

	10 Usage and Evaluation
	10.1 Docker & Docker-Compose
	10.2 Questions with Sub-Questions
	10.3 Question Search
	10.4 Single PDF Export
	10.5 Bi-directional Communication
	10.6 Developer Experience Improvements
	10.6.1 Frontend Tooling
	10.6.2 Automated Builds


	11 Conclusion and Outlook

