
Submitted by
Jevgēnijs Protopopovs
Submitted at
Institute for System
Software
Supervisor
o.Univ.-Prof. Dr.
Hanspeter Mössenböck
Co-supervisor
Dipl.-Ing. Thomas
Schatzl
June 2023

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Throughput Barrier
Exploration for the
Garbage-First Collector

Master’s Thesis
to obtain the academic degree of

Diplom-Ingenieur
in the Master’s Program

Computer Science

Abstract

The write barrier used by the Garbage-First (G1) collector is known to negatively impact
application throughput. Detrimental effects of the barrier are attributed to its complexity
and have been well-known within the OpenJDK development community, with potential
impacts quantified in scientific research. This thesis designs two alternative throughput-
oriented barriers for G1 and develops necessary garbage collector adaptations. In addition,
a prototype of run time dynamic barrier switch is implemented. Proposed throughput-
oriented barriers are evaluated using a diverse benchmark suite: it is shown that sub-
stantial throughput improvements are achieved at the expense of moderate increases in
garbage collection pause times with new throughput-oriented barriers. Trade-offs pro-
vided by the new barriers are highly advantageous in certain application classes, although
their benefits are not universal due to exhibited pause time impacts. Dynamic barrier
switch enables additional flexibility in the context of balance between throughput and
pause times.

1

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Problem . 9
1.3 Proposed solution . 10
1.4 Related work . 10
1.5 Structure of the thesis . 12

2 Background 13
2.1 OpenJDK & Java Virtual Machine . 13
2.2 Garbage collection . 14

2.2.1 Generational & Incremental garbage collection 15
2.2.2 Remembered sets . 15
2.2.3 Card table . 16
2.2.4 Barriers . 16

2.3 Garbage-First collector . 17
2.3.1 Barriers . 20
2.3.2 Refinement . 23
2.3.3 Evacuation process . 24

2.4 Problem analysis . 26

3 Implementation 28
3.1 Throughput-oriented barriers . 28

3.1.1 Post-write barrier decomposition 29
3.1.2 “Raw Parallel” barrier . 30
3.1.3 “Long” barrier . 31
3.1.4 Post-write barrier implementation 32

3.2 Garbage-First collector adaptation . 35
3.2.1 Heap root scan . 35
3.2.2 Refinement . 36
3.2.3 Other adaptations . 38

3.3 Selected implementation variants . 39
3.4 Dynamically-switched barriers . 40

3.4.1 Barrier switch technique . 41
3.4.2 Garbage collector adjustments . 43
3.4.3 Barrier switching policy . 44

2

Contents

4 Evaluation 45
4.1 Methodology . 45

4.1.1 Measurement mechanism & scope 45
4.1.2 Configuration . 47
4.1.3 Statistically rigorous measurements 48

4.2 Benchmark suite . 49
4.3 Hardware & Software setup . 52
4.4 Analysis & Interpretation . 52

4.4.1 WriteBarrier microbenchmark . 52
4.4.2 Application-level throughput . 54
4.4.3 Pause time analysis . 58
4.4.4 Other aspects . 60

4.5 Dynamic switch heuristic . 61
4.5.1 Dynamic switch evaluation . 63

5 Conclusion 66
5.1 Summary . 66
5.2 Future work . 67

Bibliography 68

A Source code listings 74
A.1 G1 post-write barrier for x86_64 . 74
A.2 “Raw Parallel” barrier for x86_64 . 75
A.3 “Long” barrier for x86_64 . 75

B Throughput-oriented garbage collector configuration 76

C Benchmark suite throughput results 78

D Benchmark suite pause times 97

E Chunk table modification benchmark results 106

F Dynamically-switched barrier evaluation 109

3

List of Listings

1 Pseudocode of G1 post-write barrier . 21
2 Young generation check operation disabled for throughput barriers (inter-

preter) . 33
3 Pre-filtering conditions disabled for “Raw Parallel” barrier variant (inter-

preter) . 33
4 Pre-filtering conditions disabled for “Raw Parallel” barrier variant (C1

compiler) . 34
5 Pre-filtering condition disabled for “Raw Parallel” barrier variant (C2 com-

piler) . 34
6 Barrier elimination for “Raw Parallel” barrier variant (C2 compiler) . . . 35
7 Chunk table and dirty region list modification for a heap region 36
8 Chunk dirtying implementation for the post-write barrier (interpreter) . . 38
9 Direct update of remembered set for non-optional collection set regions . . 39
10 Deoptimization (discarding) all JIT-compiled code in HotSpot 42
11 Java method for barrier switch at run time 44

4

List of Figures

1 Garbage-First collector heap layout [50] 17
2 Garbage collection cycle overview [50] . 18
3 Post-write barrier x86_64 assembly code produced by C2 compiler 23
4 Conceptual scheme of concurrent refinement in G1 24

5 “Raw Parallel” barrier compared to the baseline for x86_64 architecture . 31
6 “Long” barrier compared to the baseline for x86_64 architecture 32

7 WriteBarrier microbenchmark results . 53
8 Overview of benchmark suite results . 55

9 CompilerSpeed benchmark results . 78
10 DaCapo benchmark results . 79
11 DaCapo large workload benchmark results 79
12 DaCapo huge workload benchmark results 80
13 DelayInducer benchmark results . 80
14 SPECjbb2005 benchmark results . 81
15 pjbb2005 benchmark results . 81
16 Rubykon benchmark results . 82
17 Optaplanner benchmark results . 83
18 Renaissance benchmark results . 84
19 (Part 1) SPECjvm2008 benchmark results 85
20 (Part 2) SPECjvm2008 benchmark results 86
21 BigRamTester performance decomposition 87

22 CompilerSpeed benchmark pause times . 97
23 DelayInducer benchmark pause times . 98
24 Rubykon benchmark pause times . 98
25 Optaplanner benchmark pause times . 99
26 BigRamTester benchmark pause times . 100
27 BigRamTester benchmark individual garbage collection pause times 100
28 BigRamTester benchmark heap root scan phase durations 101
29 BigRamTester benchmark mean garbage collection phase durations 101

30 WriteBarrier microbenchmark results for the barrier with chunk table mod-
ification . 106

31 BigRamTester benchmark results for the barrier with chunk table modifi-
cation . 107

32 Throughput results of benchmark suite for dynamically-switched barrier . 109

5

List of Figures

33 Startup performance results of BigRamTester for dynamically-switched
barrier . 110

34 WriteBarrier microbenchmark results for dynamically-switched barrier . . . 110
35 BigRamTester garbage collection pause time statistics for dynamically-

switched barrier . 111
36 BigRamTester garbage collection individual pause times for dynamically-

switched barrier . 111

6

List of Tables

1 Garbage collector variant comparison . 40

2 DaCapo benchmark setup . 50
3 Renaissance benchmark setup . 51

4 Throughput-oriented garbage collector configuration options 76
5 Throughput-oriented garbage collector configuration macros 76

6 Mean throughput of benchmark suite . 88
7 Throughput of benchmark suite with the baseline G1 90
8 Throughput of benchmark suite with the “Long” variant 92
9 Throughput of benchmark suite with the “Raw Parallel” variant 94
10 Throughput of benchmark suite with the Parallel Collector 96
11 Results of WriteBarrier microbenchmark 96

12 Optaplanner benchmark mutator and pause times 97
13 Pause times of benchmark suite with Baseline G1 103
14 Pause times of benchmark suite with the “Long” variant 104
15 Pause times of benchmark suite with the “Raw Parallel” variant 105
16 BigRamTester benchmark garbage collection phase durations 105

17 Throughput of WriteBarrier microbenchmark with the chunk dirtying barrier107
18 BigRamTester benchmark results for the chunk dirtying barrier 108

19 Mean throughput of benchmark suite with the dynamically-switched barrier112
20 Startup performance results of BigRamTester benchmark for dynamically-

switched barrier . 112
21 Throughput of WriteBarrier microbenchmark for dynamically-switched bar-

rier . 112
22 Pause times of BigRamTester benchmark with dynamically-switched barrier113

7

Chapter 1

Introduction

This chapter discusses the motivation, the problem statement and proposed approach of
this thesis, and provides a short overview of related work.

1.1 Motivation
Java is a widely used programming language, consistently appearing at high places in
programming language popularity ratings [72, 9]. The OpenJDK project being the official
reference implementation of Java Platform [10]. In accordance with Java Virtual Machine
(JVM) Specification [34], OpenJDK implements automatic dynamic memory management
via garbage collection. The Garbage-First (G1) collector, introduced by Detlefs et al. [14],
is the default garbage collection algorithm since the OpenJDK 9 release [25].

The Garbage-First collector is a mostly concurrent, stop-the-world, generational, and
incremental evacuating garbage collector, with a focus on keeping stop-the-world pause
time goals [50]. In order to achieve stated goals, G1 executes long-running tasks, such as
whole-heap liveness analysis and maintenance of data structures required for incremental
evacuation [28], concurrently to the running application.

The G1 collector, being the default collector of OpenJDK project, aims to provide a
balance, meeting pause-time goals and achieving high throughput simultaneously [14, 50].
At the same time, OpenJDK also features other garbage collectors targeting different ends
of throughput-latency spectrum, such as the Parallel Collector [54] – a garbage collector
that focuses on maximum throughput — or ZGC [31, 55] that aims at low latency and high
scalability by moving any lengthy operations out of stop-the-world pauses, thus achieving
sub-millisecond pause times.

For some applications running under the G1 collector throughput issues were repeat-
edly reported [65, 64, 20], showing up to 20% worse throughput compared to the Parallel
Collector. The write barrier [77] used by G1 to keep garbage collector state in-sync with
running application makes large contribution to this throughput difference. For instance,
Zhao et al. [76] show that a write barrier similar to the one used by G1 introduces an
overhead as high as 12%, whereas shorter and simpler barriers have only moderate over-
head of 2− 6%, as shown by Yang et al. [74]. For that reason, proposals [7, 8] have been
made to introduce alternative throughput-focused write barriers in G1.

For applications where G1 is capable to perform well within available pause time bud-
get, the current throughput-latency balance is not beneficial, as it prioritizes pause time
goals at the expense of throughput. Considering the extent of the throughput deficiency
when compared to the Parallel Collector, shifting the trade-off between throughput and

8

Chapter 1. Introduction

pause times appears feasible. Furthermore, in some applications there are distinct ex-
ecution phases with different optimal throughput-latency balances. Examples of such
software include Web applications and databases, where higher throughput is preferable
at start-up phase to achieve quicker transition into the operational phase, and shorter,
more predictable pause times are beneficial while serving incoming requests.

1.2 Problem
The Garbage-First collector uses a complex write barrier to track application activities
– modifications of object graph on the heap, which are expressed via reference store
operations performed by the running program. The write barrier has been present since
the introduction of G1 collector in [14], and had evolved within the scope of G1 itself
since then [45].

The write barrier is embedded into application code and involves interaction with
multiple G1 mechanisms. The barrier encompasses several conditional branches, mod-
ifications of global and thread-local data structures, memory synchronization and calls
into the G1 collector runtime. Such organization of the write barrier causes throughput
regressions in comparison to throughput-oriented collectors — its high complexity and
considerable amount of activities result in longer execution times, penalizing every refer-
ence modification on the heap. In addition to run time costs, the complex barrier induces
pressure during compilation, restricting the range of possible optimizations.

The complex design of the write barrier is the result of requirements imposed by G1
collector properties. Incremental garbage collection requires G1 to track and record cross-
references between different heap areas, forcing the barrier to participate in card table
and remembered set maintenance. Concurrent operation has G1 ensure that interaction
between application and collector threads is correct from a memory consistency perspec-
tive, adding memory barrier instructions. The write barrier also performs pre-filtering
of references to skip expensive steps of the barrier itself and reduce work done later at
collection time.

G1 relies upon guarantees provided by the write barrier, thus changes to the barrier
have to be accompanied with updates to the garbage collector. These changes need to
preserve its core properties, such as concurrent liveness analysis and incremental collec-
tions: in presence of alternative garbage collectors, major changes in throughput-pause
time balance are not desired.

While exclusive use of throughput-focused write barriers might be beneficial for some
workloads, there exists an already mentioned class of applications, where the optimal set
of trade-offs changes throughout the application run time. For such software neither cur-
rent, nor alternative write barriers might be fully satisfactory, therefore dynamic barrier
switch depending on application run time state becomes viable. Such technique creates
a new challenge of implementing a mechanism to seamlessly switch barriers and adjust
garbage collector state. The extent to which current architecture of HotSpot virtual
machine is capable to support dynamic barrier switch is unclear prior to implementa-
tion. Furthermore, dynamically switched barrier is expected to present a unique trade-off
between throughput and pause times.

9

Chapter 1. Introduction

1.3 Proposed solution
Discussion on potential changes to the G1 write barrier had already been started in the
OpenJDK development community [7, 8]. The main idea of the proposals is a drastic
simplification of the write barrier and corresponding adjustment of affected G1 collector
mechanisms: current barrier implementation provides certain guarantees, and changing
the barrier in isolation would break assumptions made in other parts of the garbage
collector. An important aspect of the barrier change proposals is preservation of G1
garbage collection cycle and its main properties, such as concurrent liveness analysis and
avoidance of full garbage collections — changes to the garbage collector need to be very
focused and limited in scope to avoid major shifts in G1 behavior.

This thesis follows the line of thought expressed in the mentioned proposals and
expands on it. Namely, after examining the write barrier, this thesis formulates two
throughput-oriented barrier variants of decreasing complexity by stripping the original
G1 write barrier of the most computationally-expensive operations. The first variant
adapts current G1 write barrier by removing concurrent remembered set maintenance,
but keeping the rest of the barrier intact. The second variant also removes pre-filtering,
further reducing remembered set maintenance portion of the barrier to a minimal card-
marking barrier, similar to the one used by the Parallel Collector [43]. Both barrier
variants still preserve parts that assist in concurrent liveness analysis, and adaptations of
the G1 collector are limited to changes in card table and remembered set maintenance,
which introduce extra work into garbage collection pause. This thesis discusses several
potential alternative garbage collector adaptations which differ in their degree of diver-
gence from current G1 behavior. Throughput write barrier variants and garbage collector
adaptations are validated for correctness with applicable tests from OpenJDK test suite.

A diverse set of benchmarks is composed to examine newly defined write barrier vari-
ants, their impact on application throughput and garbage collection pause times. This
benchmark suite includes both well-known JVM performance benchmarks and performance-
oriented workloads, which were previously used to demonstrate deficiencies in G1 through-
put. Benchmarks are primarily focused on measuring impact of barrier changes on
application-level behavior. Effects of new write barriers include higher application through-
put due to more lightweight barriers, as well as longer garbage collection pauses due to
extra work performed at pause time.

This thesis also proposes a prototype of dynamically switched barrier based on deop-
timization. The implemented policy includes both an API to let the application switch
barriers programmatically, as well as a heuristic which makes decisions to switch based
on anticipated pause time impact on the application. The dynamically switched barrier
is validated and evaluated using the same benchmarks and test suite.

1.4 Related work
This section presents a short overview of prior work related to garbage collector barrier
performance, and performance of G1 collector particularly.

Discussion on the impact of garbage collector barriers had started along with intro-
duction of generational and incremental garbage collection techniques. Such schemes may
perform collections on the subset of the whole heap, therefore identification of live objects
and cross-references is crucial for establishing correctness of these algorithms, and barriers
are used to ensure that. Zorn [77] performs an early analysis of different kinds of barriers,

10

Chapter 1. Introduction

including hardware- and OS-assisted barriers, and concludes that software-defined write
barrier overheads can be as low as 2− 6%; barrier impact is being analyzed in isolation.
Another early work detailing specifically on the impact of different write barriers was
conducted by Hosking et al. [23], who analyzed the performance costs in context of full
application run time. That study also confirms feasibility of software-defined write barrier
and shows that different barrier variants have impact on the application-level performance.
A card-marking barrier is introduced by Wilson et al. [73] and further optimized by Höl-
zle [22]. Although, these early works provide valuable historical insight on the garbage
collector barrier impact analysis, their utility in the context of this thesis is limited: these
studies had been conducted prior to public releases [56] of both Java language itself and
HotSpot VM, a highly optimizing JVM implementation used by OpenJDK project [41],
therefore their results may not be fully applicable to modern Java applications. Besides
that, the methodology used in these studies may not fully align with performance analysis
approaches that take into account specifics of JVM environment and are discussed later
in the section.

The Garbage-First collector had been introduced by Detlefs et al. [14]. The original
design described in the paper shows that certain compromise in terms of throughput
had been made in order to achieve soft real-time goals. However, the authors did not
provide detailed analysis of trade-offs and possible optimizations in that respect, leaving
write barrier improvements for future work. Furthermore, the G1 collector has constantly
evolved since it’s inception, so conclusions made in the original paper might need to be
revisited now. A recent attempt to evaluate different aspects of G1 had been made by
Zhao et al. [76]. In that paper the authors perform assessment of different G1 collector
mechanisms in isolation, and conclude that the impact of G1 write barrier might be as
high as 12%. Even though the results were based on re-construction of G1 design on top
of Jikes RVM [2] and do not use OpenJDK G1 implementation directly, the work still
provides valuable observations on potential costs of the G1 write barrier.

A considerable number of studies have investigated performance impact of garbage
collector barriers in isolation for Java. Blackburn et al. [5] show that the impact of a
reasonable generational write barrier is moderate – less than 2% on average and not more
than 6% in the worst case, yet the exact results are architecture-specific. A more recent
paper by Yang et al. [74] revisits and confirms these conclusions. The methodology used
by these studies, however, is not compatible with aims of this thesis – the authors perform
focused analysis of barrier impact in isolation, analyzed barriers do not resemble the write
barrier used by the G1 collector, and the impact on pause times and application-level
performance is ignored. Blackburn et al. [4] also discuss the impact of barrier inlining on
performance, showing that correct separation between the fast- and slow-paths is crucial
for both runtime and compilation performance. Such observation can be particularly
topical for complex write barriers, such as the one used by the G1 collector. Even though
the methodology used in these studies might not be directly applicable in the scope of
this thesis, their conclusions suggest that a simpler well thought out write barrier is very
moderate in terms of performance costs.

A discussion on other potential approaches of improving G1 collector throughput has
happened in the OpenJDK development community. One of the proposals [63] demon-
strates deficiencies in current region allocation algorithm and suggests potential improve-
ments in that regard. Another avenue of improving the throughput is rearranging certain
activities to be run concurrently to the mutator [67]. Stronger guarantees in object al-
location may enable barrier elision [66], which is also beneficial for throughput. Many
of proposed improvements are not mutually exclusive with the solution proposed in this

11

Chapter 1. Introduction

thesis, thus can be implemented alongside with it. Furthermore, an alternative approach
to the write barrier optimization has also been discussed [68] – the proposal preserves
collaboration with concurrent collector activities within the write barrier, but replaces
an expensive memory barrier instruction with a different synchronization technique, thus
producing shorter write barrier. By preserving the concurrent activity support, that
proposal differs from the solution attempted in this thesis, however it demonstrates the
diversity of viable throughput improvement ideas.

Finally, an extensive body of Java performance benchmarks has been developed over
the years. These include benchmarks developed by The Standard Performance Evalua-
tion Corporation (SPEC): SPECjbb2005 [11, 1] and SPECjvm2008 [12], as well as their
variants, such as pjbb2005 [3]. Other notable and widely used benchmarks are DaCapo
[6] and Renaissance [58]. Lengauer et al. [30] study benchmark selection methodology
in accordance with application characteristics. Georges et al. [18] define a statistically
rigorous methodology of performance evaluation. These benchmarks and measurement
methodologies delineate a set of best practices that are useful in the evaluation part of
this thesis.

1.5 Structure of the thesis
Chapter 2 contains background information on the important aspects of OpenJDK and
the Java Virtual Machine, Garbage Collection theory, as well as a detailed description of
relevant Garbage-First collector concepts and the analysis of the problem.

Chapter 3 presents several throughput-oriented barrier variants for G1, examines adap-
tations in G1 necessary for the barriers to work, discusses possible configurations of the
adapted G1 collector, and introduces a dynamically-switched barrier and challenges con-
cerning its implementation.

Chapter 4 defines a performance measurement methodology used for the evaluation
of changes, introduces a benchmarking suite, describes hardware setup used for bench-
marking, presents the benchmarking results and their interpretation. Finally, a heuristic
for a dynamically-switched barrier variant is devised and evaluated based on performed
analysis.

Finally, chapter 5 summarizes the results and concludes the thesis, discussing prospects
of future work on the topic.

12

Chapter 2

Background

This chapter presents essential concepts relevant in the context of this thesis. The chap-
ter begins with a brief description of OpenJDK and the Java Virtual Machine, which is
followed by an explanation of fundamental aspects of garbage collection and their imple-
mentation within the Garbage-First collector. Finally, a more detailed reformulation of
the thesis problem and its analysis is provided.

2.1 OpenJDK & Java Virtual Machine
The OpenJDK project provides an open-source reference implementation of the Java Plat-
form, Standard Edition [10], in accordance with the Java Virtual Machine Specification
[34] and the Java Language Specification [19]. The Java Virtual Machine Specification de-
fines an abstract computing machine, capable of executing bytecode in a portable manner.
The Java Virtual Machine has no direct dependency on the semantics of Java program-
ming language, and therefore can host other programming languages as well. The Java
Development Kit (JDK) developed by OpenJDK [40] is the reference implementation of
these specifications and includes components, such as HotSpot virtual machine, javac
compiler and Java Class Library.

The HotSpot virtual machine is a highly-optimizing cross-platform implementation
of Java Virtual Machine. It implements an interpreter and an adaptive compiler [52] to
deliver optimal performance of executed code. There are two Just-in-Time compilers [37]:

• C1 — a lightly-optimizing fast bytecode compiler. Implements basic optimization
and code generation techniques.

• C2 — a highly-optimizing bytecode compiler. Provides a wide range of sophisticated
optimizations and advanced code generation facilities.

The HotSpot virtual machine performs runtime analysis to identify performance-critical
code paths and compile these parts with an increasing level of optimization [38]. Infre-
quently used code is interpreted via the means of a template interpreter. The template
interpreter relies on a table of machine-specific assembly code fragments, which specify
implementations of each bytecode. Overall, HotSpot heavily depends on machine code
generation to implement both the template interpreter and the Just-in-Time compilers,
therefore its source tree is comprised of generic (shared) and platform-specific (cpu and
os) parts.

13

Chapter 2. Background

In accordance with the Java Virtual Machine specification, HotSpot implements au-
tomatic memory management of the Java application heap using garbage collection. The
specification requires automatic storage management with no explicit object deallocations,
however it does not impose any further constraints on the garbage collection techniques
used by the implementation. HotSpot defines a generic garbage collector interface [27,
44], enabling different algorithms of garbage collection that can co-exist within HotSpot
code base. Any available collector can be selected and configured by the end-user at
virtual machine start-up. As of JDK 20, HotSpot provides following garbage collectors
[42]:

• Serial Collector — single-threaded garbage collector, targeted for single processor
machines and applications with small data sets.

• Parallel Collector (also called the Throughput Collector) — multi-threaded genera-
tional collector, targeted for multiprocessor systems and applications with medium
and large data sets.

• Garbage-First Collector — a scalable mostly concurrent collector, targeted at a wide
range of configurations, designed to meet pause time goals and provide high through-
put simultaneously. The default garbage collector.

• Z Garbage Collector — scalable concurrent garbage collector focused on low latency.
Designed to sacrifice throughput in exchange for a few millisecond long collection
pauses.

• Shenandoah — a concurrent garbage collector focused on consistent, heap size inde-
pendent pause times [17].

• Epsilon — a passive garbage collector that does not implement any memory recla-
mation. Shuts down the Java Virtual Machine in case of heap exhaustion. Targets
lowest possible latency overhead [70].

2.2 Garbage collection
Garbage collection is an approach to automatic dynamic memory management that in-
volves automatic discovery and reclamation of memory that is no longer in use by a pro-
gram. Runtime systems with garbage collection feature a semi-independent component
— the garbage collector — that possesses global knowledge about dynamically allocated
objects and their relationships, and is capable of unreachable object identification and
reclamation. The heap all garbage collectors in HotSpot operate on is a contiguous range
of memory where objects are allocated by the running program. The objects form an ob-
ject graph by creating references between objects. With respect to the garbage collector,
the running program is called mutator. In the context of garbage collection in HotSpot,
relevant activities of the mutator are object allocation and changes to object references.
These changes may be applied to the reference fields contained in the objects on the heap,
as well as reference fields contained in other locations — thread stacks, static variables,
etc. Object reachability analysis (tracing) is performed with respect to particular refer-
ence fields, the roots. The garbage collector typically has exclusive rights to deallocate
objects, thus eliminating such problem classes as dangling pointers, use-after-free and
double-free issues [26]. As a memory management technique, garbage collection has been
first introduced by McCarthy [35].

14

Chapter 2. Background

Throughout time multitude of garbage collection algorithms were introduced and im-
plemented. Based on a comprehensive study of known approaches performed by Jones
et al. [26], a brief description of concepts and their implications, relevant within the scope
of this thesis, is provided below:

2.2.1 Generational & Incremental garbage collection
Based on the weak generational hypothesis which states that most objects survive only
for a short period of time, generational garbage collectors segregate heap into distinct
areas called generations [32]. Objects are placed within and promoted between genera-
tions based on their age — number of garbage collections the object survived. Garbage
collections of the young generation are performed independently, thus yielding the most
benefit from reclaiming shortly-lived objects, whereas whole heap collections are infre-
quent. However, separate collections of different generations introduce a need to keep
track of inter-generational references in order to perform object reachability analysis cor-
rectly, therefore imposing certain bookkeeping overhead.

Generational garbage collectors are a subclass of incremental collectors. With the
incremental collection approach, the heap is partitioned into a set of distinct regions, and
only a subset of all heap regions are collected at once. Exact heap layout and principles of
selecting the heap region subset for each collection (the collection set) might follow gener-
ational hypothesis (as for generational collectors) or some other considerations, depending
on the collector implementation.

2.2.2 Remembered sets
In general, any reference that references an object outside of its own heap region is of
interest for incremental garbage collectors. When collecting an increment, the garbage
collector requires knowledge of all references into that increment. Full heap tracing to
discover them is unfeasible in such type of collectors, therefore these “interesting” reference
locations from heap regions outside of the collection set need to get treated as heap roots
— locations where liveness analysis starts from — even if the containing object might
be unreachable itself. Thus, locations of “interesting” references created by the mutator
between garbage collections need to get recorded.

Remembered sets are data structures used to record these references of “interest”
for the garbage collector. Remembered sets hold reference source locations — typically
objects or object fields — with varying granularity. In order to identify references into the
collection increment, the garbage collector only needs to inspect locations stored in the
remembered sets. Remembered sets are frequently implemented using hash tables and
sequential store buffers. The sequential store buffer may act as front-end for hash tables,
thus batching expensive hash table update operations. Furthermore, in multi-threaded
environments thread-local remembered set data structures eliminate synchronization and
contention on global data structures.

The main benefit of remembered set approach is precision and reduction of overhead
during garbage collection. Garbage collector needs to do little scanning beyond extraction
of references from remembered sets: a remembered reference often is directly treated as a
heap root. The main drawback is a dynamic nature of remembered set data structures. If
sequential store buffer gets full, it needs to be processed in order to guarantee enough space
for incoming references, thus performance of remembered sets depends on modification
frequency.

15

Chapter 2. Background

Implementations of remembered sets vary greatly in terms of underlying data struc-
tures, granularity and trade-offs. For more details refer to the respective sections of [26].

2.2.3 Card table
The card table is a coarse representation of the whole heap where each card corresponds to
a distinct relatively small area (usually not larger than 512 bytes) on the heap. The value
of a card indicates whether respective heap area may contain “interesting” references.
Heap areas that may contain such references are subsequently scanned by the garbage
collector. A card that indicates need of scanning is commonly called dirty. The mutator
is responsible for card marking as part of reference field update. HotSpot represents the
card table as a fixed array of bytes.

The main benefit of card marking approach is simplicity and efficiency of dirtying a
card: calculation of the card address and modification of the card table consists only of a
few machine instructions with no branching. Furthermore, the card table is a fixed data
structure which cannot overflow and its behavior is independent of modification frequency.
The main drawback of the card table is imprecision and collection time overhead. For
each dirty card, the garbage collector needs to scan the whole corresponding range of
the heap. Moreover, in multiprocessor systems unconditional card marking schemes are
known to introduce cache contention [15], potentially degrading the throughput.

The card marking approach was introduced by Sobalvarro [71] and Wilson et al. [73].
Possible optimizations to card marking scheme were discussed by Hölzle [22].

Another optimization to avoid full card table scans during the garbage collection pause
are two-level card tables. Higher level cards represent ranges of cards from the lower levels,
dirty values indicate whether there are dirty cards in the respective range.

2.2.4 Barriers
Barriers are part of the garbage collector runtime interface which defines interaction be-
tween the mutator and the collector. A barrier is a fragment of memory management
code that is embedded within the mutator code and executed whenever an operation re-
quires coordination between mutator and garbage collector. For example, in incremental
garbage collection algorithms the mutator typically needs to identify references that cross
heap region boundaries, so a barrier is executed whenever an operation involving heap
references occurs in the running program. Concurrent garbage collectors — those that
perform certain garbage collection stages, including object graph tracing and object evac-
uation, concurrently to the running mutator — also use barriers to establish consistency
between mutator and collector activities

Barriers are classified with respect to the type of the operation on the object reference
into read and write barriers. The latter are particularly important in the context of
this thesis. These write barriers track mutator modifications to the object graph on the
heap. Whenever a reference field in a heap object gets updated by the mutator, the
write barrier inspects involved references, identifies the “interesting” ones and updates
the garbage collector with that information. For example the card table and remembered
sets need to be updated to hold identified references. This way, on each incremental
collection the garbage collector is able to identify the changes introduced to the heap by
the mutator and apply that knowledge to correctly find reachable objects. Write barriers
often include pre-filtering conditions, and barrier code is split into fast and slow paths
with respect to those. The split between fast and slow path, as well as decisions on

16

Chapter 2. Background

inlining respective code fragments depend on anticipated frequency of different reference
classes and performance impact of the barrier.

Design of a write barrier depends on the garbage collection algorithm, involved data
structures and expected frequency of reference writes. Different forms of barriers, as well
as other reference identification mechanisms, are discussed by Zorn [77] and Hosking et al.
[23]. Blackburn et al. [5] and Yang et al. [74] study the impact of read and write barriers.
Blackburn et al. [4] demonstrates the effects of barrier inlining decisions. The locality of
different barriers is studied by Hellyer et al. [21]. Finally, Jones et al. [26] puts barriers
into a greater perspective of garbage collection.

2.3 Garbage-First collector
The Garbage-First [14] collector is a generational, incremental, stop-the-world, mostly
concurrent evacuating garbage collector, designed to reach both high throughput and
short collection pauses at the same time. G1 operates on uniformly-sized regions of
the heap, applying a set of heuristics to guide its behavior. The collector carries out
evacuation during stop-the-world pauses. Whole-heap activities, where amount of work
is proportional to the heap size, are performed mostly concurrently to the mutator. A
summary of G1 design is presented below based on analysis of the collector implementation
provided in OpenJDK 20 [40] and respective documentation [50]. The collector has been
in active development since its inception, therefore the description in the original paper
does not reflect its current state.

Figure 1: Garbage-First collector heap layout [50]

The Garbage-First collector splits the heap into a set of equally-sized regions, where
each region is a distinct continuous area of heap memory whose size is power of two. Figure
1 demonstrates an example heap layout, organized into uniformly-sized regions, where
active heap regions are shown with a dark background color. The G1 collector follows
the generational hypothesis by dividing heap regions into young and old generations,
which is reflected by the type of a region: young generation (marked with smaller darker

17

Chapter 2. Background

rectangles on the figure) consists of regions of eden and survivor types (marked with S on
the figure), whereas old generation consists of old, archive regions (containing immutable
content, marked as archive) and humongous regions. Humongous regions are intended to
store particularly large objects, spanning multiple heap regions.

Allocation of objects happens on a per-region basis, and, with the exception of humon-
gous objects, new objects are allocated in the eden regions. During subsequent garbage
collections objects from eden are evacuated into to survivor regions. Objects that stay
alive long enough are promoted into the old generation. Region placement in the heap is
not contiguous with respect to the region type. In addition to the type, each region has
multitude of other attributes. G1 is an evacuating garbage collector, therefore it copies
live objects to reclaim space.

Figure 2: Garbage collection cycle overview [50]

G1 performs collections incrementally by selecting a subset of regions for each collec-
tion (the collection set). Regardless of the collection type, young generation regions are
always included into the collection set. The inclusion of old generation regions depends
on the collection type, and the set of collected old regions are determined heuristically.
Furthermore, G1 might also form an optional collection set whose evacuation depends on
the available pause time budget. Consecutive incremental collection pauses interleaved
with periods of the mutator activity make up a garbage collection cycle, which is depicted
on the figure 2 and consists of two phases:

• Young-only phase encompasses garbage collections that operate exclusively on the
young generation regions, thus incrementally promoting surviving objects into the
old generation. After the old generation is filled up to a particular threshold, the
G1 starts preparing for the next phase by initiating concurrent marking, which also
introduces several special pauses for concurrent start, remark and cleanup phases.

• Once concurrent marking finishes, G1 might transit into the space reclamation phase.
During that phase G1 carries out mixed collections, where collection set also includes

18

Chapter 2. Background

old generation regions. Once enough space has been reclaimed, G1 transitions back
into the young-only phase, thus closing the cycle.

G1 is also capable of doing full collections, which perform object reachability analysis
and evacuation on the whole heap during a single stop-the-world pause. Full collections
might be triggered programmatically by the running application, as well as occur when
incremental collection cycle fails to reclaim enough space for normal operation. The latter
case is considered to be a sign of inadequate garbage collector setup.

Object reachability analysis is performed concurrently to the running mutator using
a snapshot-at-the-beginning (SATB) [75] concurrent marking algorithm. The algorithm
identifies objects which were unreachable at the beginning of the marking. Newly allo-
cated objects are considered alive in the context of on-going concurrent marking. In order
to preserve this SATB invariant, the mutator needs to save references to heap objects it
overwrites when concurrent marking occurs. G1 uses a write barrier and per-thread mark-
ing buffers for that purpose. Despite being mostly concurrent process, marking includes a
few short pauses that are used to initialize marking structures, complete the marking pro-
cess and prepare for the space reclamation phase of garbage collection cycle respectively.
As a result of concurrent marking, the collector obtains information on object reachability
and heap region occupancy, and uses it to select old generation region candidates for col-
lection and rebuilding remembered sets. Regions containing only garbage are reclaimed
as part of the process. Schatzl [62] provides a detailed description of concurrent marking.

As an incremental, evacuating garbage collector, tracking inter-region references is
crucial for correct operation. G1 determines live objects within the regions in the collec-
tion set without re-doing full heap analysis on every collection. This requires tracking
and update of all references across the heap pointing to objects it copies during the evac-
uation. G1 stores complete and up-to-date information on the cross-region references on
a per-region basis in the remembered sets and the card table data structures. Both data
structures have granularity of a card, which represents a 512 byte large area of the heap.
Each remembered set contains cards that indicate potential locations of references into
the corresponding region. The remembered set data structure is based on a hash table
that stores per-region card sets and a list of embedded references from compiled code.
The card table covers the whole heap and is used as an intermediate remembered set
store [61]:

• During mutator execution, as part of the write barrier — creation of cross-region
references by the mutator is marked by dirtying corresponding cards on the card table
and enqueueing the cards for further processing to be sorted into relevant remembered
sets. The process of scanning a newly dirtied card and updating remembered sets is
called refinement, and is normally performed concurrently to the mutator. A detailed
description of these mechanisms is available in sections 2.3.1 and 2.3.2.

• As part of evacuation pause — remembered sets of collection set regions, along with
other sources of dirty cards, are merged back onto the card table, thus obtaining a
unified, de-duplicated remembered set for the collection set regions. Locations that
correspond to dirty cards are subsequently scanned in order to identify actual cross-
region references. In order to avoid full card table scan at pause time, G1 uses a
multi-level card table. Detailed description of this process is available in the section
2.3.3.

G1 extends the amount of possible values of cards on the card table compared to tradi-
tional use: besides dirty and clean cards, it defines also “young gen.” cards — those that

19

Chapter 2. Background

represent memory ranges contained in the young generation regions, as well as “already
scanned” cards during garbage collection — those that have already been processed. Ad-
ditional card values help in reducing the number of card table modifications at mutator
time and card scans during collections.

G1 design and implementation take specifics of multi-threaded execution environment
into account. Write barriers use thread-local data structures in order to batch notifications
to the garbage collector, avoiding contention on global data structures. Furthermore, due
to portions of garbage collector running concurrently to the mutator, memory barrier
instructions are used to ensure consistency. During garbage collection pause, G1 utilizes
available resources by using multiple parallel worker threads to perform certain tasks.

Throughout different stages of garbage collection, G1 measures and records various
kinds of runtime statistics, including lengths of different collection stages, allocation and
card dirtying rates, and others. These statistics are used to estimate costs of future
activities and adjust the behavior accordingly. Different G1 aspects, such as collection set
selection, young generation sizing, concurrent marking start, are guided by the heuristics
in order to achieve predictable behavior.

The Garbage-First collector also includes verification mechanisms that, once enabled
through the command line flags, introduce pre- and post-collection checks that inspect
current garbage collector state, detecting inconsistencies in broken invariants. The verifi-
cation is targeted at the garbage collector developers, enabling early detection of issues.

2.3.1 Barriers
The Garbage-First collector uses a write barrier to record mutator changes to the object
graph on the heap. The write barrier is implemented for the HotSpot interpreter, C1
and C2 JIT compilers separately, thus the actually executed barrier code depends on the
optimization level, however all write barrier implementations share the same logic. The
write barrier is executed for all reference write operations, and as part of pre-generated
code fragments (stubs) for array copying, checked casts and some others. The optimizing
compiler is able to omit the write barrier completely or partially in certain cases.

The write barrier of G1 collector is structured with respect to the reference write
operation into two independent parts, serving different purposes:

• Pre-write barrier — is executed prior to the reference write and is used to record
the previous value of the write target field. The pre-write barrier maintains the
snapshot-at-the-beginning invariant of conditional marking. It conditionally filters
“interesting” references — non-null pointers when conditional marking is on-going
— and records those into per-thread conditional marking buffer. In cases, when
the buffer is full, the pre-write barrier invokes the runtime to perform processing.
The pre-write barrier is out of scope for this thesis, therefore no further details are
provided.

• Post-write barrier — is executed after the reference write and is used to record loca-
tions of newly introduced cross-region references. The post-write barrier maintains
remembered sets. Current implementation of post-write barrier portion encompasses
several checks, interaction with the card table and dirty card queues. The rest of
this section discusses post-write barrier implementation in detail.

1 final CardTableBase = /* Offset between heap start and card table start */;
2 final RegionLogSize, CardLogSize = /* Logarithms(2) of heap region and card size */;

20

Chapter 2. Background

3 enum Card {
4 Dirty,
5 Young
6 }
7

8 public static void postWrite(Location field, Reference newValue) {
9 // 1. Check whether reference crosses region boundaries

10 if ((field ^ newValue) >> RegionLogSize == 0)
11 return;
12

13 // 2. Check whether new value is not null
14 if (newValue == null)
15 return;
16

17 // 3. Calculate card address
18 CardAddress card = CardTableBase + (field >> CardLogSize);
19

20 // 4. Check whether the store region is not young
21 if (card.load() == Card.Young)
22 return;
23

24 // 5. Memory barrier to ensure access consistency
25 MemoryBarrier.storeLoad();
26

27 // 6. Check whether the card is not already dirty
28 if (card.load() != Card.Dirty)
29 return;
30

31 // 7. Dirty the card
32 card.store(Card.Dirty);
33

34 // 8. Enqueue the card for refinement
35 DirtyCardQueue queue = ThreadLocalData.dirtyCardQueue();
36 if (!queue.tryEnqueue(card))
37 G1Runtime.enqueueDirtyCard(card);
38 }

Listing 1: Pseudocode of G1 post-write barrier

Listing 1 shows pseudocode for the post-write barrier used in JDK 20 [45, 46, 47]
algorithm. It is structured as follows:

1. Cross-region store check — the newly introduced reference must cross region bound-
aries in order to be “interesting” for the garbage collector. As heap region size is
guaranteed to be power of two, addresses of objects from the same region always
have a common prefix, unique for each region, and differ only by an offset from
the region base address. The implementation in G1 optimizes this check by using
exclusive-OR operation to combine referenced object and store location into a single
value and using bit shift to remove the offset part of the address, thus producing zero
if objects are located within the same region. In such case, the reference store is not
“interesting” and the rest of the barrier can be skipped.

2. Null pointer check — stores of null pointers are not “interesting” for the garbage
collector, as they do not introduce cross-region references. The respective check is
trivial and G1 includes it as the second condition for the barrier.

21

Chapter 2. Background

3. Card address calculation — the post-write barrier uses card table as an intermediate
storage for identified locations of “interesting” references. The card number is calcu-
lated by bit shifting the store target field address. The resulting value, however, is
not a correct card address, as it assumes the beginning of process memory space as
card table base. The code adds a pre-computed offset to the bit shift result in order
to obtain valid card address within the card table.

4. Young generation check — young generation regions are always included into the
collection set, therefore all references located in the young generation will be scanned
regardless of remembered set contents. Thus references originating from the young
generation regions are not “interesting” to garbage collector and can be skipped by
the barrier. Young generation cards are specially marked on the card table.

5. Memory barrier — the concurrent nature of refinement requires synchronization be-
tween mutator and refinement threads. The write barrier includes a store-load mem-
ory barrier to ensure that effects of the reference store operation are visible to other
threads prior [29] to conditional card dirtying. Failure to establish correct memory
operation order can lead to a situation when current card value is loaded before the
reference store operation. If the card is being refined at the same time, it might
get cleared and refined prior to the effect of reference store becomes visible, which
leads to incompleteness of the card table state and violates correctness of the garbage
collector.

6. Dirty card check — cards that are already marked dirty require no further actions
for the barrier, because they are already pending for refinement. In that case, the
rest of the barrier can be skipped.

7. Card dirtying — card value on the card table is being modified in order to indicate
that the respective memory range contains “interesting” references. At this point,
all checks have already been done and irrelevant references were filtered out.

8. Card enqueue for refinement — dirty cards from the card table need to get processed
by concurrent refinement mechanism in order to maintain remembered sets. The
detailed description of refinement is given in the section 2.3.2. The write barrier uses
per-thread dirty card queue (sequential store buffer) to record newly dirtied cards. In
case the buffer is full, the garbage collector runtime is invoked to process the buffer,
and possibly perform self-refinement.

As a result of the post-write barrier, “interesting” reference stores are filtered from
the rest, marked on the card table and enqueued for remembered set maintenance. The
post-write barrier has significantly evolved since the original version was introduced by
Detlefs et al. [14]: the original version only included fast-path checks and invoked a
runtime subroutine to perform actual card table and dirty card queue (“remembered set
log”) modification, whereas current version includes most of work into the barrier itself,
introduces extra checks and relies on the runtime code only in case of dirty card queue
overflow.

The exact code of the post-write barrier depends on the CPU architecture and code
optimization level. The template interpreter and runtime stubs implement described
barrier algorithm in a straightforward manner [45]. The C1 compiler splits the barrier
into fast-path — cross-region and null pointer checks — and slow path [46]. The C2
compiler uses versatile SSA representation to implement barrier [47], and exact form of

22

Chapter 2. Background

barrier, use of machine instructions and inlining decisions are made by the optimizing
compiler. Figure 3 depicts the post-write barrier assembly code generated for x86_64
architecture by the C2 compiler; an assembly listing is available in the appendix A.1.
The code is decomposed into fragments that correspond to algorithm steps, fragments are
delimited on the figure, showing complexity of each step. Barrier fragments are interleaved
with other code, thus splitting it into inline fast-path and out-of-line slow-path parts.

Figure 3: Post-write barrier x86_64 assembly code produced by C2 compiler

2.3.2 Refinement
Refinement is a mechanism of remembered set maintenance employed by the Garbage-
First collector. The task of refinement is examining dirty cards from the card table,
identifying cross-region reference locations and updating the remembered sets of target
regions. Refinement is normally performed concurrently to the mutator, however self-
refinement is also possible. Figure 4 demonstrates a high-level scheme of concurrent
refinement operation. The process starts with the post-write barrier dirtying a card (step
(1) on the figure).

The mechanism relies on Dirty Card Queue Set (DCQS) [48] to store pending card
addresses, accumulating those in buffers and maintaining a list of buffers ready for refine-
ment. Buffers are populated on per-thread basis by the post-write barrier (step (2) on
the figure). Once a buffer fills up, the post-write barrier invokes the runtime subroutine,
which attaches the buffer to DCQS and allocates a buffer for new writes by the barrier.
If number of cards pending refinement rises above certain threshold after the buffer was

23

Chapter 2. Background

Figure 4: Conceptual scheme of concurrent refinement in G1

attached, the mutator refines the buffer itself (self-refinement).
For concurrent refinement G1 maintains a set of parallel threads. The number of

active refinement threads is scaled automatically within a pre-configured range. Threads
attempt periodic dequeue of card buffers from DCQS. If a buffer is successfully obtained,
refinement of the buffer is invoked by the respective thread.

Refinement of a card buffer starts with identifying cards that need refinement and
clearing values of these cards. A certain number of cards might not need the refinement;
these cards include those that were already refined by other threads, as well as cards con-
tained in a hot card cache — G1 maintains a cache of frequently dirtied cards and avoids
refinement of those. Cards can be added to or evicted from hot card cache throughout the
refinement process. The rest of the cards in a buffer are refined (step (3)) by scanning
respective heap ranges and identifying locations of “interesting” references. If a region
targeted by such reference is tracked (i.e. it is planned for evacuation), the reference is
added to respective remembered set (step (4)). Mutator self-refinement follows the same
logic, with the difference that refinement is performed in the context of mutator thread.

As a result of the refinement process, dirty cards produced by the mutator are exam-
ined and relevant remembered sets are updated. This minimizes the amount of necessary
heap root identification work during evacuation.

2.3.3 Evacuation process
The Garbage-First collector relies on stop-the-world pauses to perform live object evac-
uation and space reclamation. Evacuation is performed by copying live objects from
collection set regions to other regions on the heap, with all references to copied object
being updated. Evacuating an object might also involve its promotion: based on the age
of the object, it may be copied from the young generation region to the old generation.
Objects that have not yet reached the age threshold are copied to survivor regions. G1
reclaims the region once all live objects have been evacuated. G1 does not perform evac-
uation for humongous objects. Due to the design of G1 collector, a stop-the-world pause
is necessary to ensure atomicity of changes on the heap from the mutator viewpoint.

The evacuation process in G1 consists of several sequential stages, and involves sub-
stantial amount of bookkeeping activities that record the garbage collector behavior.

24

Chapter 2. Background

Recorded statistics are used to both influence heuristic-driven behavior of G1, as well
as to provide observability to profiling tools. The evacuation algorithm is the same for
both young-only and mixed garbage collections [49], whereas the implementation of full
garbage collections is different and is out of scope of this thesis.

Pre-evacuation stage consists of several preparation activities that include flushes of per-
thread data structures to produce a consistent global view, calculation of collection set
with respect to current pause time goals, preparation of the allocator to initialize allocation
regions as evacuation destination. After the pre-evacuation stage finishes, G1 sets up data
structures holding information for parallel evacuation threads and proceeds to the initial
collection set evacuation.

Evacuation of the initial collection set encompasses several sequential steps:

1. Heap root merge — gathers dirty cards from collection set remembered sets, hot card
cache, dirty card queue buffers and merges these cards onto the card table. As a
result, all locations potentially storing references to live objects within the collection
set are recorded on the card table, thus turning it into a unified remembered set for
collection set regions. Furthermore, the merge process implicitly de-duplicates cards
found in different sources.
During heap root merge for subsequent scan purposes, G1 augments the card table
with an additional level. The second level of the card table — chunk table — marks
chunks, represented as boolean values. Each chunk represents a distinct fixed-size
range of cards on the card table. Whenever any card from the range gets dirtied, the
respective chunk gets marked. G1 also maintains a dirty region list which includes
regions whose respective chunks were marked. Both chunk table and dirty region list
are updated during the heap root merge stage. Thus G1 is able to avoid full card
table processing later.
The ability to identify complete set of cards for merging onto the card table is, how-
ever, dependent on guarantees provided by the write barrier and refinement mech-
anisms of G1. The post-write barrier ensures that all relevant modifications of the
heap get marked on the card table, and dirty cards are added to the queues. The
refinement mechanism ensures that dirty cards produced by the post-write barrier
get scanned and added either to remembered sets, or to the hot card cache. There-
fore, changes to these mechanisms have direct effect on the heap root merge, which
is particularly important in the context of this thesis.

2. Heap root scan — identifies references pointing to reachable objects within collection
set regions. The process starts with traversal of virtual machine roots and evacuation
of directly referenced objects. Then heap root scan iterates the card table populated
during heap root merge phase, scans dirty cards and identifies actual locations of
cross-region references. Locations of references that point into the collection set
regions are saved into task queues, whereas remaining cross-region references get
preserved for future collections using the redirtying mechanism. Finally, code roots
contained in collection set region structure are also traversed. As a result of this
phase, the complete set of references to live objects within the collection set regions
is obtained.

3. Evacuation — iterates task queues built during the root scan phase and performs the

25

Chapter 2. Background

copying of live objects to other regions. Evacuated objects are scanned to identify
other live objects within collection set regions, which are also subsequently evacuated.

Evacuation of the optional collection set follows the evacuation of the initial collection set
and is based on the same algorithm with several adjustments. This stage is performed
only in case the pre-evacuation phase determined optional collection set regions and there
is pause time budget left until the budge is exhausted. Notable evacuation algorithm
adjustments are following:

• Heap root merge only takes into account remembered sets of optional collection set
regions. Dirty cards from card buffers, hot card cache, humongous region candidates
have already been processed as part of initial collection set evacuation.

• Heap root scan — virtual machine roots have already been processed during the
initial collection set evacuation, so for optional collection set only merged dirty cards
scan and collection set regions processing happens.

Post-evacuation tasks include numerous activities necessary to finalize changes done dur-
ing the evacuation pause, reclaim memory and process gathered statistics. In the context
of this thesis, following post-evacuation tasks are particularly relevant:

• Card table cleanup — the card table is being cleaned from dirty cards which were
processed throughout the evacuation. The cleanup is based on the dirty region list
produced during heap root merge phase.

• Redirtying — locations of cross-region references that were found or newly intro-
duced during evacuation need to get preserved in order to ensure correctness of
subsequent incremental evacuations. During evacuation these references are saved
within a Redirty Cards Queue Set (RDCQS). During the post-evacuation stage cards
in the RDCQS are dirtied on the card table, and buffers of cards from that data
structure are merged into the refinement dirty card queue. These cards can, there-
fore, be processed by refinement mechanism during mutator time or during heap root
merge stage of the next garbage collection.

2.4 Problem analysis
Detailed description of background information provided in this chapter enables a more
precise and complete reformulation of problem. The throughput of the G1 collector de-
pends on multitude of factors, including the design of the write barrier and guarantees
it provides to other parts of the garbage collector. This thesis focuses on improving the
throughput by exploring alternative post-write barriers and their implications on G1.

The post-write barrier, described in section 2.3.1, is conceptually complex. This com-
plexity is necessary to fulfill assumptions made during evacuation and refinement (card
marking & dirty card enqueue), filter out non-“interesting” references (conditional checks),
and interact with concurrent refinement threads (memory barrier instruction), therefore
it cannot be optimized out in general. Only in specific cases, when the compiler can
deduce certain properties of reference store operation, the barrier can be eliminated, par-
tially or completely. For instance, the C2 compiler provides special handling for the
Object.clone() method with reduced number of conditionals and without a memory

26

Chapter 2. Background

barrier. Furthermore, the barrier can also be eliminated if the respective allocation also
can.

Prior research on write barriers has demonstrated that barriers equivalent to the one
used by G1, may cost as much as 12% in terms of throughput [76]. At the same time,
simpler write barrier variants reduce that number to 2−6% [5, 74]. Furthermore, decisions
on separation of fast- and slow-paths of the barrier are known to impact both runtime
and compilation performance [4]. Figure 3 demonstrates decomposition of the x86_64
assembly code produced by the optimizing C2 compiler. The code fragment consists of 33
assembly instructions, which are split into two fragments — inline fast-path conditional
checks and out-of-line card marking and dirty card enqueue. With exception to previously
mentioned cases when the barrier can be eliminated, the post-write barrier portion has
to be included along with every reference store operation. While the optimizing C2
compiler [47] is capable of more informed, profile-based decisions in code generation to
optimize performance, the barrier code produced by C1 [46], template interpreter and code
stubs [45] is mapped to machine instructions in a straightforward manner. The impact of
complex post-write barrier can manifest directly in extra throughput costs for mutator, as
well as create CPU instruction cache pressure and overhead for JIT compiler. Precise costs
of the post-write barrier are dependent on heap activity profile of the running application.
Applications with higher proportion of reference writes that modify old generation objects
and cross regions can be expected to execute slow-path of the post-write barrier frequently.

Within current G1 collector design, the costs associated with the complex barrier are
justified by guarantees it establishes for other parts of the collector. Incremental heap
size-agnostic evacuation is enabled by concurrent refinement which is, in turn, reliant on
write barrier enqueueing dirty cards into DCQS. Concurrent refinement itself relies on
the write barrier that includes memory barrier instruction. Filtering out same region
references, null references and references to young generation reduce load on the refine-
ment mechanism. The original design of G1 [14] states that trading certain amount of
throughput for predictable pause times is deemed acceptable.

Therefore, changes introduced into the post-write barrier to achieve higher mutator
throughput create important implications for the rest of G1. Reduction of costly post-
write barrier steps would incur a shift of respective work into the evacuation pause.
Moreover, changes to the card enqueueing procedure might draw concurrent refinement
obsolete, whereas dropping the young generation card check would remove the need to
maintain respective marking on the card table. Thus, throughput improvements achieved
by updates to the post-write barrier need to be, at minimum, accompanied by changes
to refinement mechanism and heap root merge phase of evacuation, potentially shifting
the balance between throughput and pause time goals. Both throughput and pause time
need to get evaluated in order to get more objective conclusions on alternative post-write
barrier effects.

Another aim of this thesis is the implementation of a dynamically switched barrier
variant. In addition to aforementioned challenges, barrier switch at runtime introduces
extra ramifications for both G1 collector and HotSpot virtual machine. G1 shall be able to
adjust collector behavior based on current barrier, maintain consistency of its data struc-
tures upon switch, collect and process needed statistics in order to use relevant heuristics
for the switch. HotSpot shall offer mechanisms to switch barriers in JIT-compiled code
and template interpreter consistently and atomically. As the extent to which barrier
switch is possible within JDK 20 code base is unknown prior to actual implementation
attempt, obtained results will lead to additional conclusions of HotSpot versatility in that
respect.

27

Chapter 3

Implementation

This chapter describes the design and implementation of throughput-oriented changes in
the Garbage-First collector. The chapter begins with analysis and derivation of throughput-
oriented post-write barrier variants, then describes necessary adaptations of G1 collector.
Afterwards, viable implementation variants, combining throughput-oriented barriers with
the collector adaptations, are presented. Finally, a detailed description of barrier dynamic
switching challenges, implementation and limitations is provided.

All changes to the OpenJDK project described in this chapter are available at [59].

3.1 Throughput-oriented barriers
The main goal of this thesis is the exploration of alternative throughput-oriented write
barriers for G1. The primary approach is optimization of the current post-write barrier
used by the G1 collector. The description provided in section 2.3.1 reveals significant
complexity. That complexity is innate in the current G1 collector design, thus mechanical
optimization is not possible — in fact, certain techniques are already used to reduce
the number of instructions in machine code. Thus as part of this throughput-focused
optimization the steps executed in the post-write barrier have to be reconsidered.

Proposals for a throughput-oriented redesign of the post-write barrier have already
been made within the OpenJDK development community [7, 8]. The core idea of the dis-
cussion is stripping the most computationally-expensive steps from the post-write barrier
completely, producing a simpler barrier with less special cases and in-place processing.
The general approach taken in the scope of this thesis is the same — substantial min-
imization of the post-write barrier. Alternative visions that concentrate on optimizing
specific post-write barrier parts, such as [68], preserve the overall post-write barrier al-
gorithm and structure. The background (2.4) section of this thesis shows that shorter
minimalist barriers have lower throughput impact than the one used by G1 at the mo-
ment. Therefore, a substantial redesign of the post-write barrier has been selected over
alternative, limited optimization approaches.

Examples of barrier implementations provided in this chapter are targeted towards the
x86_64 instruction set architecture. The implementation effort is also primarily focused
on that architecture. Nevertheless, proposed changes shall be portable to other CPU
architectures supported by HotSpot as well. Throughout this chapter the normal G1
post-write barrier used as of JDK 20 is referred to as a “baseline”.

28

Chapter 3. Implementation

3.1.1 Post-write barrier decomposition
The post-write barrier algorithm steps listed in the section 2.3.1 can be grouped into parts
as following:

• Pre-filtering conditions — a set of pre-conditions for the references that filter out
those that are not “interesting” for further processing. G1 includes 4 such condi-
tions, which are placed at the beginning of the post-write barrier. These conditions
both reduce the amount of work performed during refinement and evacuation, as well
as avoid frequent executions of the barrier slow path.
At the same time, the conditions also have potential to harm throughput: in mod-
ern processors branch mispredictions are known to incur significant performance
penalty [16]. Besides that, machine code for the conditions also creates additional
instruction cache pressure. Code generated for x86_64 architecture depicted on the
figure 3 shows 8 instructions (22 bytes) related to the pre-filtering conditions placed
onto the fast-path. The possible impact of pre-filtering conditions on the post-write
barrier throughput is not immediately obvious, and so is their benefit during evacua-
tion. Removal of these conditions has a potential of improving the post-write barrier
throughput without compromising the evacuation correctness and completeness.

• Card marking — the core of the post-write barrier that calculates and dirties a card
that corresponds to reference store location. Within the current G1 design, the card
table is an essential data structure, acting as an intermediate store for dirty cards
during mutator time and as a remembered set of the collection set regions during
evacuation, therefore card marking is a fundamental part of the post-write barrier.
The card marking approach is known to have moderate throughput costs [5, 74].
Furthermore, the card marking algorithm conceptually provides constant algorithmic
complexity regardless of reference store frequency. At the same time, on multipro-
cessor systems unconditional card marking is known to introduce cache contention
[15]. For x86_64, unconditional card marking consists of 4 machine instructions (20
bytes).

• Refinement — parts of the barrier related to collaboration with concurrent refine-
ment threads and dirty card queue maintenance. This group includes memory barrier
instructions, management of the sequential store buffer and the call into the G1 run-
time. Potential throughput problems include non-deterministic complexity of the
dirty card enqueue operation, performance penalty due to the store-load barrier,
pressure on the instruction cache and additional JIT compilation time complexity.
For x86_64, this group consists of 17 instructions (69 bytes), and is by far the largest
part of the post-write barrier. Partial elimination of these operations is problematic,
because the group itself is tightly cohesive and will not be able to serve its purpose
partially.
For instance, removal of dirty card enqueue operations in isolation will draw the
memory barrier useless, whereas isolated removal of the memory barrier is not pos-
sible due to concurrent and self-refinement; complete disablement of refinement is
possible, however, by itself it will have minuscule impact on the post-write barrier
and degrade heap root merge pause times. This part of the barrier, therefore, is the
main candidate for complete removal.

Based on the analysis above, all throughput-oriented post-write barrier variants need to
include card marking as an essential part, might include certain pre-filtering conditions,

29

Chapter 3. Implementation

and refinement-related operations will be omitted in all barrier variants.

3.1.2 “Raw Parallel” barrier
The purpose of the first post-write barrier approach is being as minimal as possible within
the barrier decomposition analysis provided above, removing everything that is not strictly
necessary. The implementation uses the codename “Raw Parallel” for this barrier variant,
because it closely resembles the barrier used by the Parallel Collector [43].

The only mandatory element of the post-write barrier is card marking operation, which
is unconditional and consists of 3 steps: card index calculation via bit shift, card address
calculation by offsetting the index to the beginning of the card table, and dirtying the
card. This variant omits other parts of the current post-write barrier — pre-filtering
conditions and refinement — completely. The resulting barrier is much shorter and can
be inlined by JIT compiler in entirety.

While this simplification of the post-write barrier is promising in terms of throughput
gains, basic unconditional card marking barrier also presents some additional challenges
and requires extra attention towards correctness. Besides generic adaptations to G1 col-
lector described in the section 3.2, following aspects are important:

• As a mitigation for cache contention on multiprocessor systems (section 2.2.3) a
conditional check of card dirtiness is reintroduced back into the barrier for such
systems. Presence of the reintroduced check is enabled using a command line flag
of the JVM. Thus, the end-user is able to make the card marking conditional is if it
is deemed beneficial for target architecture. This approach matches behavior of the
Parallel Collector that uses UseCondCardMark for the same purpose.

• The proposed version of the barrier lacks any memory synchronization primitives,
so there is no specific globally visible order of heap and card table modifications by
the mutator. This approach is correct as long as there is no refinement happening
concurrently to the mutator (memory barrier instruction description in the section
2.3.1). For the “Raw Parallel” barrier to work, it is essential to either disable the
refinement completely, or adjust it so that it does not clean scanned cards. An
alternative is reintroducing the memory barrier instruction back into the post-write
barrier, which is unfeasible due to throughput goals of the changes.

Figure 5 demonstrates a possible implementation of the “Raw Parallel” barrier for
the x86_64 architecture and compares it to the baseline G1 post-write barrier. Four in-
structions that belong to unconditional card marking barrier are highlighted with darker
background, whereas two instructions that implement dirty card check condition are high-
lighted in light gray — these are included only if +UseCondCardMark option is passed to
JVM.

30

Chapter 3. Implementation

Figure 5: “Raw Parallel” barrier compared to the baseline for x86_64 architecture

3.1.3 “Long” barrier
The second variant of the throughput-oriented barrier builds upon the “Raw Parallel”
barrier, augmenting it with pre-filtering conditions. As noted in section 3.1.1, the impact
of pre-filters on barrier throughput is unknown, therefore investigation of such barrier
variant is valuable. This barrier variant has the codename “Long” as it extends over the
minimal “Raw Parallel” barrier. Pre-filtering conditions need to be examined separately
with respect to their usefulness in reducing amount of work done at heap root merge and
scan phases of the evacuation.

• The cross-region reference check is valuable because only a fraction of references pro-
duced by the mutator cross region boundaries and only those need to be considered
by the collector. Placing the cross-region reference check at the beginning of the
barrier eliminates the need to process such references further.

• Null pointer check is also preserved due to the same reasons.

• The young generation check has been originally introduced [68] to avoid executing
the expensive memory barrier instruction all the time. With the memory barrier
removed entirely from the throughput-oriented write barriers, this condition can be
omitted.

• Dirty card check is useful as it reduces cache contention by filtering out modifications
to the same card, therefore it is included in this barrier.

Based on the analysis above, the “Long” barrier variant consists of 3 pre-filtering
conditions and the card marking operation, but still excludes the memory barrier and

31

Chapter 3. Implementation

Figure 6: “Long” barrier compared to the baseline for x86_64 architecture

refinement. Due to the missing memory barrier, this variant is also prone to memory
operation ordering issues described in the section 3.1.2. Figure 6 shows a possible imple-
mentation of “Long” barrier for the x86_64 architecture, comparing it to the baseline G1
post-write barrier. Despite including extra checks, the “Long” barrier is nonetheless 2.75
times shorter than the baseline barrier, consisting of 12 machine instructions (45 bytes).

3.1.4 Post-write barrier implementation
This section provides details on the implementation of throughput barrier variants. The
implementation needs to be done for the template interpreter, C1 and C2 compilers sep-
arately. Due to the fact that the newly derived barrier variants are strict subsets of
the baseline G1 barrier, conditional disablement of respective operations within the bar-
rier code is sufficient for the most part. Nevertheless, several important details of the
implementation process need to be mentioned.

The general approach to the implementation relies on using conditional compilation via
C++ preprocessor to disable post-write barrier parts that do not belong to either of
throughput barrier variants. A set of C++ macros is defined to distinguish between
configurations. Barrier parts that vary between variants (pre-filtering conditions) are
controlled using normal C++ if statements. In order to avoid overhead of newly intro-
duced conditional branches, conditions rely on HotSpot develop flags — command line
flags that can be configured at runtime only for debug builds, but in release (optimized)

32

Chapter 3. Implementation

builds have pre-configured constant values. Therefore, newly introduced branches can be
optimized out by C++ compiler based on compile-time configuration and do not bring
any overhead. As a consequence, no runtime configuration is possible and each barrier
variant requires own JVM build, yet all variants including baseline can co-exist within
the same code base.

The interpreter implementation [45] of the G1 write barrier relies on the MacroAssembler
class, whose methods, in general, correspond to target CPU instruction set architecture
opcodes. It uses simple linear code flow, which is controlled by jump instructions. Thus,
the implementation of barrier changes for the interpreter is trivial — the assembly code
of barrier variants is analyzed and deconstructed in a manner similar to the one shown
on figures 5 and 6, and unneeded operations are removed in accordance with general
approach described above. Listing 2 shows an example of disabling post-write barrier
part that is not present in any of the throughput barrier variants. Listing 3 shows a
part of barrier (pre-filtering conditions) that is omitted for “Raw Parallel” variant, but
included otherwise. Array reference write stubs are updated in identical manner.

1 #ifdef DISABLE_TP_REMSET_INVESTIGATION
2 __ cmpb(Address(card_addr, 0), G1CardTable::g1_young_card_val());
3 __ jcc(Assembler::equal, done);
4

5 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
6 #endif

Listing 2: Young generation check operation disabled for throughput barriers (interpreter)

1 TP_REMSET_INVESTIGATION_ONLY(if (!G1TpRemsetInvestigationRawParallelBarrier)) {
2 // Does store cross heap regions?
3

4 __ movptr(tmp, store_addr);
5 __ xorptr(tmp, new_val);
6 __ shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
7 __ jcc(Assembler::equal, done);
8

9 // crosses regions, storing NULL?
10

11 __ cmpptr(new_val, NULL_WORD);
12 __ jcc(Assembler::equal, done);
13 }

Listing 3: Pre-filtering conditions disabled for “Raw Parallel” barrier variant (interpreter)

The C1 compiler implementation of the G1 write barrier uses an approach similar to the
interpreter. C1 code splits the post-write barrier in two parts: fast- and slow-path, where
slow-path is located within the same code unit as interpreter code and uses a mechanism
derived from MacroAssembler for code generation. The fast-path [46] is implemented
separately using LIRGenerator, which offers a higher level intermediate representation
(IR) of code. Despite being on a different abstraction level, control flow implementation
for the post-write barrier fast-path is still based on jump and branch primitives, thus the
throughput-oriented barrier changes follow the same logic as with the interpreter. Listing
4 shows disabled pre-filtering conditions for “Raw Parallel” barrier variant.

33

Chapter 3. Implementation

1 TP_REMSET_INVESTIGATION_ONLY(if (!G1TpRemsetInvestigationRawParallelBarrier)) {
2 LIR_Opr xor_res = gen->new_pointer_register();
3 LIR_Opr xor_shift_res = gen->new_pointer_register();
4 if (TwoOperandLIRForm) {
5 __ move(addr, xor_res);
6 __ logical_xor(xor_res, new_val, xor_res);
7 __ move(xor_res, xor_shift_res);
8 __ unsigned_shift_right(/* ... */);
9 } else {

10 /* ... */
11 }
12

13 __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
14 }

Listing 4: Pre-filtering conditions disabled for “Raw Parallel” barrier variant (C1 com-
piler)

The C2 compiler utilizes a sophisticated sea-of-nodes intermediate representation, which
separates data and control flows and does not define explicit scheduling of instructions.
This makes omitting barrier parts easier, because only nodes that explicitly belong to the
control flow graph need to be disabled — the optimizer is capable of eliminating unused
data flow elements automatically. Listing 5 shows how cross-region reference pre-filtering
condition is eliminated for the “Raw Parallel” barrier variant: only the if condition node
is explicitly disabled, whereas its parameter nodes stay unchanged (compare to the listing
3 which exhibits linear code flow).

1 Node* cast = __ CastPX(__ ctrl(), adr);
2 Node* xor_res = __ URShiftX (__ XorX(cast, __ CastPX(__ ctrl(), val)), __

ConI(HeapRegion::LogOfHRGrainBytes));↪→

3

4 TP_REMSET_INVESTIGATION_ONLY(if (!G1TpRemsetInvestigationRawParallelBarrier)) __
if_then(xor_res, BoolTest::ne, zeroX, likely);↪→

5 /* ... */
6 TP_REMSET_INVESTIGATION_ONLY(if (!G1TpRemsetInvestigationRawParallelBarrier)) __

end_if();↪→

Listing 5: Pre-filtering condition disabled for “Raw Parallel” barrier variant (C2 compiler)

Nonetheless, the C2 compiler introduces different challenge for the throughput barrier
implementation. The write barrier implementation for the C2 compiler has to provide a
method for barrier elimination in the IR graph. The method used for baseline G1 barrier
elimination exploits the fact that the baseline post-write barrier contains a top-level con-
dition which wraps the rest of the barrier. The elimination routine simply replaces the
condition input with constant false and relies on the optimizer removing barrier nodes
because they would never execute. This approach works for the “Long” barrier as well,
however it breaks for the unconditional “Raw Parallel” barrier variant. Instead, the imple-
mentation for the “Raw Parallel” traverses barrier nodes and the operation that produces
the side-effect — card marking — is replaced. This enables the optimizer to eliminate
the rest of the barrier as it has no externally visible effects. Listing 6 demonstrates the
gist of this approach.

34

Chapter 3. Implementation

1 if (G1TpRemsetInvestigationRawParallelBarrier) {
2 Node *shift = node->unique_out();
3 Node *addp = shift->unique_out();
4 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
5 Node *mem = addp->last_out(j);
6 macro->replace_node(mem, mem->in(MemNode::Memory));
7 }
8 /* ... */
9 }

Listing 6: Barrier elimination for “Raw Parallel” barrier variant (C2 compiler)

Barrier runtime changes are not strictly required for throughput-oriented barrier variants,
because no new runtime calls are introduced by the barrier. However, due to the fact that
throughput barriers omit calls of dirty card enqueue, corresponding runtime routines are
augmented with asserts to ensure that the routines are never invoked. HotSpot defines
the ShouldNotCallThis macro for this purpose.

Resulting code generated by C2 compiler for “Raw Parallel” and “Long” barriers is pro-
vided in appendices A.2 and A.3 respectively. In both cases, the write barrier is short
enough to be generated as a linear sequence of machine code (i.e. without splitting it
into fast- and slow-path fragments) by the optimizing compiler. Furthermore, for “Raw
Parallel” barrier the C2 compiler is often able to generate shorter card marking code by
using an extra register as an indirection base — this is a consequence of lower register
pressure induced by the minimal barrier.

3.2 Garbage-First collector adaptation
Use of throughput-oriented barriers proposed in section 3.1 necessitates updates in the G1
collector to make it function correctly. The G1 collector heap root scan phase and dirty
card refinement (section 2.3.3) are affected by the throughput-oriented barriers. This
section provides a detailed description and rationale of the changes.

The general approach to implementation of collector changes is the same as with
barriers. The same set of C++ macros is used to distinguish between the baseline G1
behavior and throughput adaptations. All changes co-exist within the same code base
with no additional runtime overhead, but every configuration is static and requires a
separate JVM build.

3.2.1 Heap root scan
The heap root merge phase of the baseline G1 evacuation process relies on the assumption
that a complete set of root locations is contained within the remembered sets, dirty card
queues and hot card cache. Cards contained within these data structures are dirtied on
the card table and respective chunks are marked on the chunk table. The heap root scan
phase relies on chunk table markings to selectively scan the card table (section 2.3.3).
The baseline G1 post-write barrier is responsible for updating the dirty card queues and
cooperating with the concurrent refinement to maintain the remembered sets (section
2.3.1).

35

Chapter 3. Implementation

The “Long” and “Raw Parallel” barriers omit any interaction between the mutator
and remembered set maintenance mechanisms. The throughput-oriented barrier variants
still keep root locations on the card table, however the remembered set, dirty card queues
and chunk table are not updated anymore. Therefore, G1 needs to scan all cards of non-
collection set regions to determine a complete set of root locations. The implementation
reuses existing card table scan mechanism by dirtying the whole chunk table in advance,
thus enforcing a full card table scan.

Listing 7 shows code that is necessary to ensure card table scan for a specific region.
G1 implements work parallelization, and code from listing 7 is being a part of worker
task closure, which is executed for different regions in parallel as part of heap root merge
phase of evacuation.

1 if (hr->in_collection_set() || !hr->is_old_or_humongous_or_archive()) {
2 return;
3 }
4

5 _scan_state->add_dirty_region(hr->hrm_index());
6 size_t const first_card_idx = _ct->index_for(hr->bottom());
7 _scan_state->set_chunk_range_dirty(first_card_idx, HeapRegion::CardsPerRegion);

Listing 7: Chunk table and dirty region list modification for a heap region

Implemented full card table scan approach has an advantage of conceptual simplicity:
instead of re-implementing the heap root scan phase, the implementation expands existing
mechanisms and requires minimal changes to the code base. Furthermore, it also fixes
card table clearing — it also uses dirty region list to identify card table fragments to
clear. At the same time, full card table scan has an important consequence of shifting G1
throughput and pause time trade-off by increasing the duration of heap root scan phase.

3.2.2 Refinement
The concurrent refinement mechanism of G1 collector requires considerable adaptation
in order to work with throughput barriers. The new barrier variants do not cooperate
with concurrent refinement threads and do not perform self-refinement, so the majority
of cards — the ones dirtied by the mutator — cannot be refined. Although refinement
is still partially possible for dirty cards produced during evacuation, its logic needs to be
reworked in order to avoid conflicts with the barrier. Potential solutions of that issue
include scope limiting of adapted concurrent refinement, doing refinement during garbage
collection pause or disabling the refinement completely.

Concurrent refinement interaction with throughput barriers creates store operation
reordering problem which can result in missing card table markings. In the baseline G1
post-write barrier, the reordering issue has been solved by using a memory barrier in-
struction (section 2.3.1). Both throughput write barrier variants lack the memory barrier
and are prone to the issue, however specific details of memory ordering problems differ:

• For “Long” barrier variant, the issue appears when card value load for dirtiness check
is reordered prior to the reference store operation. In such case the mutator might
load the value while the card is still unrefined and dirty, while reference write effect
appears after the refinement happened. The barrier will not dirty the card then,
thus the card table marking will be missing.

36

Chapter 3. Implementation

• For “Raw Parallel” barrier variant, if the effect of card dirtying appears prior to
reference write, the concurrent refinement thread might clear and scan the card
without encountering newly updated reference, also leading to the same problem1.

Therefore, concurrent refinement needs to be significantly adapted in order to get used
along with throughput barriers. There are several adaptation approaches:

• Partial concurrent refinement can be done via introduction of a special “refine con-
currently” card marking for cards redirtied after evacuation. The dirty card queue
is populated as part of post-evacuation process with the “refine concurrently” cards
and processed by concurrent refinement threads. Concurrent refinement only needs
to consider cards with that marking, while actually dirty cards produced by the
mutator are ignored by the concurrent refinement and will be scanned during the
collection pause. Furthermore, refinement does not clear cards prior to scanning,
so it cannot conflict with the barrier. Cards that were not refined before the next
garbage collection get dirtied at heap root merge phase based on dirty card queue
contents. This adaptation ensures that the concurrent refinement never conflicts
with the barrier: even in case of store reordering the card will never get cleared
during mutator time, and cards that were modified by the mutator are not refined
concurrently. Moreover, the special marking for redirtied cards ensure that there is
no double processing during heap root scan for cards that were refined — such cards
are not considered dirty and are not scanned, unless they appear in collection set
region remembered sets and were not dirtied by the mutator.

• Post-evacuation refinement refines cards produced during the evacuation phase as
post-evacuation task. The main disadvantage of this approach is degradation of pause
times with no apparent benefit for throughput. The number of cards pending for
refinement cannot be easily estimated, so it also harms predictability of the garbage
collection pause. Furthermore, cards refined after evacuation and dirtied during
subsequent mutator time get scanned once again in the root scan phase of the next
garbage collection, in addition to refinement in this phase.

• Disabling refinement implies that all dirty cards regardless of their origin stay on
the card table until the next garbage collection, when they get scanned. The role
of remembered sets in heap root merge phase is reduced, as they only include in-
formation on heap roots identified during remembered set rebuild after concurrent
marking finishes with no later updates. Implementation of this approach is trivial
within current G1 architecture: the number of concurrent refinement threads is set
to zero, and the redirtying post-evacuation task is updated to skip adding cards to
dirty card queues.
This approach further shifts the balance between throughput and collection pause
time: refinement does not use any processing resources, yet more cards need to
get scanned during the root scan phase. Compared to post-evacuation refinement,
disabled refinement is not prone to double-scanning cards — card table naturally
de-duplicates writes to the same card, so no card is scanned more than once between
two evacuations.

1Some architectures including Intel x86_64 ensure that store operations are seen in program order
[24], so the issue may not appear in practice.

37

Chapter 3. Implementation

3.2.3 Other adaptations
While full card table scan and refinement changes described in the previous sections are
strictly necessary in order to use throughput barriers with G1, there are also several
optional minor modifications which are enabled by the new post-write barriers.

Special young generation marking on the card table can be omitted, as neither of barrier
variants includes the corresponding check. In fact, cards that correspond to young gen-
eration regions need no marking at all, because the young generation is always a part of
collection set regardless of garbage collection type. However, card dirtiness checks are
included into both the “Long” barrier algorithm and some of G1 collector routines, thus
marking all young generation cards as dirty would lead to lower number of card table
modifications.

Memory barriers that ensure synchronization between the concurrent refinement and the
rest of G1 collector are present not only within the baseline post-write barrier, but also in
several other places in the garbage collector. With the refinement adaptations described
in the section 3.2.2, these barriers can be removed as well because modified refinement
variants require no particular memory operation ordering.

Chunk table modification as part of the post-write barrier removes the requirement of
doing full card table scan. Instead of dirtying the whole chunk table during heap root
merge phase as described in the section 3.2.1, dirty chunks can be marked by the mutator
in the same manner as dirty cards. Therefore, during the root scan phase of evacuation
only those parts of card table that actually contain dirty cards will get scanned. The
primary advantage of this adaptation is reduction of root scan phase time, thus mitigating
collection pause time impact of throughput barrier variants. However, adding chunk table
marking as part of the post-write barrier is expected to harm mutator throughput, and due
to the fact that chunk table is very dense representation of the whole heap, can lead to high
amount of false sharing as described in [15]. Listing 8 shows an implementation of chunk
dirtying for the interpreter barrier code. The implementation uses the same approach as
with card dirtying, but has different bit shift value and base address, corresponding to
the chunk table.

1 if (G1TpRemsetInvestigationDirtyChunkAtBarrier) {
2 G1RemSet* rem_set = G1BarrierSet::rem_set();
3 uint8_t const chunk_shift = rem_set->region_scan_chunk_table_shift();
4 intptr_t const chunk_table_base = rem_set->region_scan_chunk_table_base();
5

6 __ pop(card_addr);
7 __ shrptr(card_addr, chunk_shift);
8 __ movptr(cardtable, chunk_table_base);
9 __ addptr(card_addr, cardtable);

10 __ movb(Address(card_addr, 0), true);
11 __ jmp(done);
12 }

Listing 8: Chunk dirtying implementation for the post-write barrier (interpreter)

Use of chunk dirtying has negatively impacted the overall throughput, thus it is not
considered further. Chapter 4 includes a brief analysis of the chunk dirtying impact on
mutator throughput.

38

Chapter 3. Implementation

Direct remembered set update avoids redirtying and refining cards produced during the
evacuation phase by immediately putting “interesting” references into the corresponding
remembered sets. This approach allows a limited degree of remembered set maintenance,
while greatly reducing the need for refinement at the same time. Listing 9 shows a simpli-
fied version of code that implements this optimization as part of “interesting” reference
identification during the evacuation.

1 if (G1TpRemsetInvestigationDirectUpdate && !region_attr.is_optional()) {
2 HeapRegion* const hr = _g1h->heap_region_containing(o);
3 hr->rem_set()->add_reference(p, _worker_id);
4 }

Listing 9: Direct update of remembered set for non-optional collection set regions

Despite the appeal of this optimization, it is not dependent on the throughput barrier
and also applicable to the baseline G1. This thesis focuses solely on throughput optimiza-
tions that stem from the alternative write barriers, therefore, this optimization is out of
scope.

3.3 Selected implementation variants
Sections 3.1 and 3.2 describe different variants of throughput barriers and G1 collec-
tor adaptations, opening up a number of possible throughput-oriented garbage collector
configurations.

A throughput-oriented collector configuration can be freely combined from the follow-
ing aspects:

• Post-write barrier variants — “Raw Parallel” and “Long” throughput barriers have
been designed in the scope of this thesis. Both barrier variants require the same
changes of G1 collector, and thus are functionally equivalent and interchangeable,
but provide different trade-offs with respect to mutator throughput.

• Refinement adaptations — partial concurrent and disabled refinement are viable op-
tions, both having different impact on throughput-pause time balance, yet being
functionally equivalent and interchangeable. Disabled refinement frees up process-
ing resources dedicated towards refinement during mutator time at the expense of
doing scanning at pause time, whereas adapted concurrent refinement partially pre-
serves existing G1 trade-offs. Thus, partial concurrent refinement and disabled re-
finement are included into different garbage collector variants. At the same time,
post-evacuation refinement is prone to double scanning cards at pause time with no
apparent benefit in throughput, bringing no conceptual improvement over alternative
approaches — this variant is considered unfeasible.

• Chunk dirtying is applicable to any combination of barriers and refinement adapta-
tions, doubling the number of possible configurations. It is expected to affect both
throughput and pause times.

Thus, there are 23 = 8 possible configurations of throughput-oriented G1 collector. In
order to perform comprehensible benchmarking and analysis of the change impact, only
a subset of these configurations has to be chosen. Selection of configurations is based on
combined degree of divergence from the baseline G1 behavior for each configuration:

39

Chapter 3. Implementation

• “Long” variant — G1 configuration that combines “Long” barrier with partial con-
current refinement. This configuration only moderately diverges from the baseline
G1, dropping the refinement of cards dirtied by the mutator.

• “Raw Parallel” variant — G1 configuration that combines “Raw Parallel” barrier
with disabled refinement, diverging from the baseline more substantially than the
“Long” variant. This variant not only drops the refinement completely, but also
utilizes minimal card marking post-write barrier, resembling the Parallel Collector
in that respect.

Chunk dirtying is not directly related to throughput improvements, so it is not included
into either configuration variant. However, a combination of “Raw Parallel” variant and
chunk dirtying is used for a limited number of benchmarks to characterize the impact of
chunk dirtying in isolation.

It shall be reiterated that changes in collector variants are focused solely on accom-
modating new barriers, and in all other respects the behavior is still the same as for the
baseline G1. Table 1 summarizes “Long” and “Raw Parallel” variants and compares them
to the original G1. Appendix B provides details on configuration of OpenJDK builds with
throughput-oriented garbage collector.

Features Original G1 “Long” “Raw Parallel”
Card marking in the barrier ✓ ✓ ✓
Pre-filtering in the barrier ✓ ✓
Refinement support in the barrier ✓
Chunk dirtying in the barrier
Self-refinement ✓
Concurrent refinement ✓ Partial1
Post-evacuation refinement
Full card table scan ✓ ✓
1 Partial concurrent refinement as described in the section 3.2.2

Table 1: Garbage collector variant comparison

3.4 Dynamically-switched barriers
Throughput-oriented G1 collector variants designed in the previous sections have a sig-
nificant limitation — their configurations are static and cannot be switched either at
runtime, or at startup, instead requiring a rebuild of OpenJDK with different compi-
lation flags. Such approach is beneficial for throughput barrier evaluation, because it
enables co-existence of different throughput-oriented barriers and adaptations within the
same code base, isolating their runtime overhead at the same time. However, this scheme
requires having separate builds of OpenJDK, which is impractical, especially if none of
the G1 variant is deemed particularly suitable for a specific workload. In such cases an
ability to dynamically switch between the baseline and throughput-oriented G1 might be
beneficial. This section provides a detailed overview of a prototypical implementation
that can dynamically switch barriers, and describes associated challenges and limitations
of current HotSpot architecture.

The implementation of dynamic barrier switch involves combining different post-write
barriers and their respective garbage collector adaptations in such a way that specific con-

40

Chapter 3. Implementation

figuration can be selected at runtime. Even though dynamic barrier switch can potentially
involve more than two barriers, the discussed implementation focuses on switching be-
tween only two variants — the baseline and “Raw Parallel” post-write barriers. From an
implementation perspective, switching between multiple types would be conceptually the
same, however it incurs additional runtime complexity and overhead in the form of ex-
tra conditional branches incorporating barrier-specific garbage collector adaptations. The
“Raw Parallel” variant has been chosen for this experiment because it is most different
from the baseline G1 in terms of anticipated throughput. With dynamic barrier switching
available, G1 effectively gains two modes of operation: baseline and throughput-oriented.

There are two parts to the implementation of dynamic barrier switching: first, refac-
toring the existing code to allow two barrier implementations in the same virtual machine
build, and second, implementing the actual runtime barrier switch mechanism. The refac-
toring part is, in fact, trivial and consists of converting throughput barrier-related C++
preprocessor macros and conditions into if conditions. Barrier variants and collector
adaptations that are not part of selected throughput-oriented configuration are elimi-
nated, while develop-type flags are merged and converted into a single global boolean
variable that controls whether throughput-oriented collector mode is enabled. The initial
value of the flag is controlled by the JVM configuration at startup. The refactoring does
not pose any challenges, because “Raw Parallel” variant barrier and collector adaptations,
when disabled, do not conflict with baseline G1 mechanisms and vice versa.

In order to avoid conflicts with the mutator and ensure the ability to adjust the garbage
collector state, barrier switch can only happen at safepoint when application threads are
paused. The rest of this section focuses on the second part of the implementation

3.4.1 Barrier switch technique
In the HotSpot virtual machine, barrier code generation is independently implemented for
the interpreter, and the C1 and C2 compilers. HotSpot generates the whole interpreter
machine code and stubs (e.g. arraycopy routines) at virtual machine initialization time,
while both C1 and C2 compilers generate code on method level concurrently to the running
application. All compiled code embeds the write barriers. When barriers are switched,
already generated machine code has to be updated or replaced. This poses the main
obstacle in the barrier switching implementation. There are several potential approaches
to the implementation of barrier switch:

1. The simplest approach to integration of baseline and “Raw Parallel” barriers is com-
bining them into a single barrier and using a global flag to select barrier variant at
run time. While this approach has the benefit of avoiding recompilation at barrier
switch, it also introduces an extra top-level conditional branch and, as a conse-
quence, throughput penalty for both baseline and “Raw Parallel” barriers, which
persists throughout the virtual machine run regardless of barrier switch frequency.
Given the primary goal of this thesis, such solution is not considered optimal.

2. Another way of barrier switch involves patching barriers in compiled code. While this
approach avoids continuous runtime costs, it is highly non-trivial for implementation
— all barrier occurrences in compiled code need to be identified and overwritten.
This is complicated by the fact that the exact form of the barrier (i.e. register
allocation, inline parts) might differ depending on the context. Outright complexity
of this approach makes it unfeasible in presence of other options.

41

Chapter 3. Implementation

3. In terms of continuous overhead and implementation complexity, the most adequate
option is full recompilation on the barrier switch. Using the existing HotSpot mech-
anisms, previously compiled code can be easily discarded, and it will be later re-
compiled with a new barrier. Even though considerable costs of recompilation can
be expected, the penalty is only incurred at point when the barrier switch happens:
recompiled code efficiently integrates different barrier variant, inducing no runtime
penalty once the recompilation is done.

The balance of implementation simplicity and prevention of continuous throughput penalty
makes the last option — full recompilation — the most practical in the scope of this thesis.

1 CodeCache::mark_all_nmethods_for_deoptimization();
2 Deoptimization::deoptimize_all_marked();

Listing 10: Deoptimization (discarding) all JIT-compiled code in HotSpot

Listing 10 demonstrates deoptimization of all previously compiled code, which discards
all previously compiled code and is executed when the barrier switch happens.

While conceptually simple, this approach requires more adjustments than that in
order to make it function correctly within HotSpot. The primary obstacle is the fact that
HotSpot JIT-compilation threads are running concurrently even when mutator threads are
paused at a safepoint and garbage collection is on-going. This produces a race condition:
if some method is being compiled at the same time as barrier switching is induced, the
compilation will not be aborted automatically, and as a result it may contain the previous
version of the barrier or even a mix of different barriers. Baseline and throughput barriers
provide different set of guarantees to the collector, so such a mix of barriers will lead to
incorrect behavior when the collector expects stronger guarantees (baseline mode) than
the barrier provides (throughput mode). The thesis introduces a special atomic barrier
epoch counter for every compilation. This counter is incremented on every barrier switch,
thus making barrier switch easy to detect. The JIT compilers save the value of the
counter at the beginning of the method compilation, use the saved value to determine
current barrier mode throughout the compilation, and compare the epochs at the end. If
the epoch values differ, barrier switching has occurred in meantime and compiled code is
discarded.

Furthermore, full deoptimization of barrier switching code is only possible for code
produced by the JIT-compilers. Machine code generated for the template interpreter and
code stubs is not affected by deoptimization and not recompiled. Within the current
architecture of HotSpot, these parts of code cannot be switched or altered after the
initialization stage. Changes that would enable switch between different barrier versions
require considerable redesign — the template interpreter and stubs need to be decoupled
from the global state, and several alternative versions of interpreter and stubs need to
be instantiated in order to switch them dynamically. Such deep refactoring is beyond
the scope of this thesis. That problem is mitigated by one-sided compatibility between
baseline and throughput barriers: the baseline barrier provides stronger guarantees to
the collector because its algorithm subsumes the “Raw Parallel” barrier, thus it can be
used even when the collector is in throughput mode (however, the opposite is not true).
Therefore, if the template interpreter and stub code is initially compiled for baseline
G1, partial barrier switching is still possible for JIT-compiled code, and the collector is
guaranteed to work correctly. If the virtual machine were started with the G1 collector in
throughput mode, dynamic barrier switch would not be possible, because the interpreter

42

Chapter 3. Implementation

initially compiled with “Raw Parallel” barrier variant does not satisfy requirements of the
baseline G1.

This described issue of partial barrier switching is the main limitation of the current
implementation. The impact of using the baseline post-write barrier for interpreted code
is alleviated by the fact that HotSpot compiles frequently used methods, so the major-
ity of commonly executed code can benefit from the throughput barrier. At the same
time, combined with the performance penalty of deoptimization, such implementation is
expected to perform worse than statically-configured “Raw Parallel” barrier.

3.4.2 Garbage collector adjustments
Due to differences between baseline G1 and throughput mode behavior, special adapta-
tions are necessary in the G1 collector to support the barrier switch. Primary divergence
between collector variants is handling of the card table. While baseline G1 uses the card
table as an intermediate store for dirty cards and accompanies it with dirty card queues
and refinement, in throughput mode the card table is considered to be the essential lo-
cation of dirty cards, and the remembered set maintenance is limited to the concurrent
marking process. Moreover, G1 uses special young generation card marking on the card
table, which is omitted by “Raw Parallel” variant.

In order to overcome the discrepancy, a card table fixup procedure needs to be in-
troduced as part of barrier switching. At the time of switching, the cards of the young
generation need to be re-marked accordingly. In addition, a special flag is introduced to
force full card table scan at the next evacuation in case of switch from throughput barrier
to baseline. Full card table scan is done only once after the switch and is necessary to
identify all dirty cards on the table that are missing from dirty card queues, as “Raw
Parallel” barrier does not update those.

With that fixup procedure in place, the G1 collector is capable of correctly handling
dynamic barrier switching. However, for optimal performance, another aspect of the
switch which needs to be considered, that is concurrent refinement. While shutdown of
refinement threads on switch to throughput mode is possible, it is not the most favorable
approach due to partial nature of barrier switching. With no concurrent refinement avail-
able, interpreted code running the baseline post-write barrier would be forced to perform
in-place refinement which would additionally degrade its performance. At the same time,
concurrent refinement as used with the baseline barriers is not fully compatible with the
“Raw Parallel” barrier. Due to combination of baseline and throughput barriers present in
the running application, concurrent refinement adaptation described in the section 3.2.2
is not possible — it conflicts with the baseline post-write barrier.

In order to establish compatibility between the “Raw Parallel” barrier and concurrent
refinement, the barrier needs to ensure strict store operation order. For that purpose, card
marking operation needs to be preceded by store-store barrier, or equivalently assigned
release semantics. On the Intel x86_64 architecture — the primary implementation target
in the scope of this thesis — such adaptation has no extra costs, because the architecture
already guarantees that effects of store operations appear in program order [24]. Thus,
in this particular case, the presence of store-store barrier addition is entirely theoretical
and shall not affect the performance compared to the statically-configured “Raw Parallel”
variant. On weakly-ordered processor architectures, such as ARM, store operation order
is not defined and the memory barrier may impose additional penalty [33].

The changes described above are necessary only if virtual machine had been started
with G1 in baseline mode and barrier switching is enabled. If G1 is initialized in through-

43

Chapter 3. Implementation

put mode, it is unable to switch into baseline behavior, thus none of the adaptations are
necessary.

3.4.3 Barrier switching policy
The description of dynamic barrier switching implementation in previous sections provides
details on the implementation of the switching mechanism, however it omits policies on
when the barrier switching shall happen. There are several available options of initiating
the switching, which include virtual machine configuration flags, an automatic heuristic
and a programmatic interface.

A command line flag (G1ThroughputBarrier) is used to specify the initial mode of G1
operation and barrier switch policy. The flag is an integral enumeration with three per-
mitted values:

0. G1 starts in baseline mode and automatic barrier switch is not enabled. Program-
matic barrier switch is possible.

1. G1 starts in baseline mode and automatic barrier switch is enabled; programmatic
switch is permitted.

2. G1 starts in throughput mode and neither automatic, nor programmatic barrier
switch is possible.

The programmatic interface is provided to control current mode and automatic mode
switch from running application. The interface consists of a single function, declared as
shown in listing 11. A programmatic switch is only possible when the virtual machine
was started with G1 in baseline mode.

1 public class Runtime {
2 /* ... */
3 public native void gcThroughputBarrier(boolean enable, boolean freeze);
4 /* ... */
5 }

Listing 11: Java method for barrier switch at run time

Parameters of gcThroughputBarrier have following semantics:

• enable — controls whether the throughput barrier needs to be enabled at the mo-
ment of call.

• freeze — controls whether automatic heuristic-guided switch of the barrier mode is
permitted in future.

Automatic switching of the barrier is guided by a heuristic. Over time, G1 collects various
statistical data that is used to predict and plan future collector behavior. The same
mechanism is used to estimate pause time impact of the “Raw Parallel” barrier, thus
assessing feasibility of throughput barrier for specific application runtime profile, and
take a decision on switch, which happens at the end of collection pause. Section 4.5
provides details on heuristic rationale, design and evaluation.

44

Chapter 4

Evaluation

This chapter defines the performance measurement methodology used to evaluate the
throughput-focused garbage collector variants, introduces the benchmark suite and de-
scribes hardware and software setup for evaluation. Afterwards, it presents evaluation
results and their analysis and interpretation. Finally, based on the analysis results, a
heuristic for dynamic barrier switch is devised and also evaluated.

Validation
Prior to evaluation of the throughput-oriented collector changes from a throughput and
pause time impact perspective, the changes have been validated using the HotSpot test
suite to ensure correctness of the new garbage collector behavior. Relevant test groups
from the HotSpot test suite are tier1_gc_1, GCBasher, as well as compiler/arraycopy.
These tests were executed with pre- and post-garbage collection verification enabled in
both release and debug build variants — debug builds contain additional assertions that
assist in finding broken invariants. No issues were found in the throughput-oriented
changes during the validation process.

4.1 Methodology
Consistent evaluation methodology is of paramount importance for meaningful bench-
mark measurements and their interpretation. This section discusses known approaches of
rigorous throughput evaluation in the context of write barriers and Java Virtual Machine,
and defines a methodology which is the most applicable with respect to the goals of this
thesis. Methodology of measurements consists of several aspects.

4.1.1 Measurement mechanism & scope
The first important aspect of measurement methodology is a mechanism and scope of
measurements. This aspect defines, how and for which part of the system measurements
are performed.

Mechanisms of write barrier evaluation used in existing research vary widely depending
on study aims and purpose specifics. Zorn [77] estimates CPU costs of various barrier
variants in isolation and applies a trace-driven approach to determine the number of
events of interest to calculate the total impact. While such approach is valid to assess
costs of barriers alone, it is not applicable within the scope of this thesis: write barrier

45

Chapter 4. Evaluation

variants proposed in the chapter 3 are expected to have a diverse impact on garbage
collector throughput and latency on multiple stages — effects on possible optimizations
at JIT compilation time, mutator throughput at run time, changes in garbage collector
pause times — and trace-based estimation is not a good fit to estimate these effects.
The methodology of Hosking et al. [23] is also not fully applicable within the scope of
this thesis. Authors of that paper perform instrumentation of the execution environment
to obtain measurement results, and combine it with “record and replay”-driven sessions.
While such approach is more suitable to evaluate broader scope of impact of barrier
changes, it still contradicts the goals and motivation of this thesis. In particular, the
main motivation for this thesis is improvement of G1 throughput on application level
while keeping the overall throughput-pause time balance. Instrumentation of the virtual
machine is undesirable in such case as it introduces overhead on its own, distorting the
application-level measurements. Furthermore, given the scope of anticipated impact of
barrier changes, precise “record and replay” of system events might not be the most exact
approach from practical viewpoint — changes in mutator throughput might affect its
behavior and interaction with the garbage collector, which in turn also affects allocations,
heap state, and garbage collector decisions. Such restrictiveness is “unfair” towards the
throughput-oriented garbage collector variants, because it impedes G1 ability to drive
itself heuristically to achieve optimal behavior. The measurement methodology employed
by Blackburn et al. [5] and Yang et al. [74] is also problematic for the same reasons: it
involves patches to the virtual machine to obtain metrics of interest, which would not
be used in normal in production scenarios, as well as imposes restrictions on adaptive
compilation to ensure determinism.

The methodology used in this thesis has to reflect application-level throughput impact
of the write barrier changes, combining both effects on throughput of the mutator and
changes in garbage collection pause times, so that the influence on real-world software
can be estimated based on these results. Analysis of any particular aspect of garbage
collector behavior in isolation shall be performed based on existing JVM observability
mechanisms instead of instrumentation to avoid extra overhead which would skew the
results. In addition, determinism of measurements shall be established on benchmark
suite and environment level — fixed benchmark and dependency versions using the same
execution environment for all measurements and repeating tests for statistical significance.
Additional efforts to ensure reproducibility via restricting JIT compilation or using trace-
based approaches are unfeasible.

In practice, the approach used within this thesis is based on measuring the run time of
a benchmark as a whole (on operating system process level) and calculating throughput
based on the run time. If a particular benchmark explicitly produces some throughput
score, that score is preferred and regarded as more precise than the process-level run time
measurement — benchmarks are capable of filtering preparation and warm-up activities
out when producing the score. Logging levels of the Java Virtual Machine are configured to
produce detailed logs of garbage collection activities, and details for pause time evaluation
are extracted from the logs. No instrumentation is implemented and no restrictions of
virtual machine behavior are applied. While this approach is simpler than the ones used
in aforementioned studies, it produces results closer to the real-world usage scenarios of
the G1 collector without inducing excess overhead and covers a wide range of the write
barrier effects.

46

Chapter 4. Evaluation

4.1.2 Configuration
The second important aspect of a measurement methodology is configuration of the
garbage collector, Java Virtual Machine, operating system and hardware. It is crucial
to ensure identical configuration for all benchmarking rounds to obtain comparable mea-
surement results. Furthermore, incorrect configuration of the garbage collector is known
to lead to suboptimal performance.

One of critical parameters in garbage collector configuration is heap sizing. The study
conducted by Lengauer et al. [30] characterizes behavior of some of popular JVM per-
formance benchmark suites. The authors of that paper determine live heap size for each
benchmark by trial and error searching for the lowest maximum heap size with which
the benchmark executes successfully (without OutOfMemoryError exceptions), and use
that live size as a baseline to determine realistic heap size. However, such an approach
is not optimal for the G1 collector. Results presented in that paper show that for some
benchmarks G1 performs full garbage collections, which, normally, it shall not resort to.
Configurations of G1 where full collections occur are considered inadequate, and the doc-
umentation for G1 [50] has a dedicated section with recommendations on avoiding full
garbage collections. Therefore, while taking the minimal live heap size as a baseline for
the realistic heap size is possible, it does not represent “healthy” G1 configurations.

Instead, for each benchmark the minimum heap size which does not introduce full
garbage collections for G1 is taken as a baseline for realistic heap size, which is then
moderately scaled up (presence of full collections is probabilistic with respect to the
heap size). At the same time, excessively increasing heap size, if a benchmark is not
capable to utilize that, is also harmful: it unrealistically decreases load on the garbage
collector, potentially up to the point where very few garbage collections happen and
the young generation regions are large enough to hold most of the heap throughout the
benchmark run time. Such conditions are particularly unfit for write barrier evaluation
— concentration of objects within the young generation favors barrier fast-paths and does
not expose shortcomings of the barrier.

Other important aspects of the G1 collector configuration that are explicitly set for
benchmarks within the scope of this thesis include:

• Minimum heap size is set to be equal to the maximum heap size, thus producing
fixed-size heaps. This minimizes the impact of heap resizing [50] during benchmark
runs, thus facilitating quick convergence to steady state of the garbage collector.

• Use of large memory pages by JVM reduces the impact of virtual memory manage-
ment on program performance by maximizing the area of memory mappings held by
the hardware Translation-Lookaside Buffer [51].

• Pre-touch of heap memory pages at virtual machine startup forces operating system
to allocate all comitted virtual memory, thus minimizing the impact of the virtual
memory subsystem implementation on the benchmark performance [50].

• Debug-level asynchronous logging into a file is enabled without log rotation. This
way, a consistent detailed trace of the garbage collector activities is obtained without
introducing overhead of blocking log operations [53].

The rest of virtual machine configuration options remain default. With respect to the op-
erating system configuration, memory paging shall be disabled: use of secondary storage

47

Chapter 4. Evaluation

(page file or swap partition) is detrimental for memory access latency, creating unpre-
dictable delays. Consequently, the hardware setup shall have a sufficient amount of main
memory. In addition, large memory page support must be enabled within the operating
system. From a hardware configuration perspective, use of a fixed CPU frequency is desir-
able in order to avoid arbitrary effects of processor frequency scaling on the throughput.

4.1.3 Statistically rigorous measurements
Statistically rigorous approach to measurement organization and data analysis is the final
aspect of benchmarking methodology. Failure to apply a consistent approach grounded in
statistics can lead to misinterpretation of measurement data and wrong conclusions. This
section summarizes the application of the methodology defined by Georges et al. [18] in
the context of this thesis.

Measurement errors are classified into systematic and random. Systematic errors stem
from mistakes in experiments and procedures. Sections 4.1.1 and 4.1.2 define measurement
mechanism and configuration aimed at minimizing the probability of biases and systematic
errors. Random errors are non-deterministic and unbiased, and their effects are minimized
by applying the following statistical model.

For each throughput benchmark, multiple measurements are taken and their results
are used to calculate a mean value and a confidence interval. Due to the fact that number
of samples taken for each benchmark is small (less than 30), Student’s t-distribution is
used to calculate the confidence interval. Thus, formulas used for statistical analysis of
the throughput benchmark measurements are the following:

• Mean value:
x =

∑n
i=1 xi

n

where xi is i-th measurement result and n is the total number of measurements.

• Standard deviation:

s =

√∑n
i=1(xi − x)2

n− 1

• Confidence interval:
c1,2 = x± t1−α/2;n−1

s√
n

where tα;n is the value of Student’s distribution with α confidence level and n degrees
of freedom. For purposes of this thesis, 95% confidence level is considered sufficient.

Comparison of benchmark results for different barrier variants is performed by examin-
ing the calculated confidence intervals: if two confidence intervals overlap, the difference
between variants is not statistically significant, otherwise mean values are used for com-
parison.

Procedure for repeated measurements should take into account the nature of a bench-
mark. Application start-up performance measurement shall involve multiple independent
virtual machine invocations, because throughput of start-up phase is substantially affected
by initialization activities, class loading, JIT compilation. Performance of long running
applications is less affected by the virtual machine initialization costs, thus benchmarks
quantifying steady state throughput shall perform several measurement rounds within
the same virtual machine invocation, including a set of warm-up rounds. Still, multiple

48

Chapter 4. Evaluation

repeated virtual machine invocations are necessary for steady state benchmarks in order
to eliminate non-deterministic effects of execution environment. Geometric mean is used
to calculate an aggregated result of multiple benchmark runs.

Pause time analysis has specifics which need to be mentioned separately. Georges et al.
[18] focus their methodology on the performance quantification. However, for purposes
of this thesis, determining pause time impact of write barrier variants is also important.
Notable difference between the throughput and garbage collection pause times measure-
ments is that a benchmark run produces only a single throughput measurement result,
whereas number of garbage collection pauses is typically substantial even for short run-
ning benchmarks. Therefore, instead of making assumptions about underlying statistical
distribution based on a handful of measurements, as it is done for throughput, the large
enough statistical population of pause time samples is analyzed directly. As mentioned
in the section 4.1.1, pause times should be obtained from garbage collection logs without
any special modifications of the virtual machine, thus the same set of benchmark runs
can be used to acquire both throughput and pause time measurement results.

4.2 Benchmark suite
This section describes the benchmark suite used for the throughput write barrier evalu-
ation, including setup and JVM flags of individual benchmarks. Benchmark setup and
execution is automated via runner scripts available at [60]. In accordance with section
4.1.2, all benchmarks are executed with the following JVM flags (referred as the default
in this section): -XX:+UseLargePages -XX:+AlwaysPreTouch -Xms2G -Xmx2G — 2 GB
heaps were determined to be suitable for most cases, however several benchmarks use very
specific heap sizes, overriding the defaults. The list below describes individual benchmarks
and their setup.

1. WriteBarrier microbenchmark [57] is a part of HotSpot microbenchmark suite. The
microbenchmark focuses on the write barrier throughput, and thus it is particularly
interesting in the scope of this thesis. It is executed using Java Microbenchmark
Harness (JMH) [39]. No extra configuration is performed, the throughput is measured
and reported by the harness.

2. CompilerSpeed [65] is a benchmark that measures the throughput of javac compiler
running in multiple threads in terms of compilations per second. The benchmark is
executed with the default JVM flags, in three configurations: running for 15, 60 and
180 seconds. In all configurations the benchmark uses the same number of threads
which corresponds to the number of physical CPU cores available on the machine.
The benchmark is managing warm-up rounds automatically and starts measurement
after the warm-up phase. This benchmark are particularly interesting, because the
throughput differences of baseline G1 compared to Parallel GC are prominent in this
benchmark [65].

3. DelayInducer [20] is a microbenchmark that measures application run time needed
for intensive modifications of Java ArrayList. The throughput is calculated as a
reciprocal of the benchmark run time. This microbenchmark overrides the default
heap size, using 3 GB heap (-Xms3G -Xmx3G JVM flags). DelayInducer does not
perform warm-up rounds. This benchmark exercises reference modifications in the
old generation, stressing the slow paths of the barrier.

49

Chapter 4. Evaluation

4. DaCapo [6] is a well-known benchmark suite used to characterize JVM performance.
The benchmark suite is comprised of multiple benchmarks. Several benchmarks are
available with different workload sizes. Due to diversity of benchmarks from DaCapo
suite, individual setup is used for each benchmark; heap sizes (table 2) are calculated
using the methodology described in the section 4.1.2. DaCapo suite uses own test
harness, which also manages the number of benchmark repetitions and warm-up
rounds.

Benchmark Heap size (MB) Notes
batik 1100 Default workload size,

DaCapo version
git+309e1fa

biojava 600
eclipse 650
fop 100
graphchi 288
jython 150
luindex 25
lusearch 30
sunflow 120
xalan 50
zxing 250
h2 3200 Large workload, DaCapo

version 9.12-MR1-bach
avrora 50 Huge workload,

DaCapo version
9.12-MR1-bach

pmd 1500
sunflow 500

Table 2: DaCapo benchmark setup

5. Renaissance [58] is another well-known benchmark suite widely used to benchmark
JVM. Similarly to DaCapo, Renaissance also consists of multiple independent bench-
marks and includes own test harness, which manages benchmark execution. Due to
diversity of the benchmark suite, specific heap sizes are used for different benchmarks
of the suite (table 3) — heap sizes are calculated based on the methodology described
in the section 4.1.2.

6. SPECjbb2005 [11] is a benchmark emulating a three-tier client/server system. Scal-
ing unit of SPECjbb2005 benchmark is a warehouse, which corresponds to a sin-
gle thread of execution. The benchmark runs transactions (workload) with a pre-
configured number of warehouses and reports the throughput. For purposes of this
thesis 1, 2, 4, 6, 8, 12 and 16 warehouses are used.

7. pjbb2005 [3] is a fixed-workload variant of SPECjbb2005 benchmark. For purposes
of this thesis, 5 000 000 transaction workload is used with the same numbers of
warehouses as in SPECjbb2005.

8. SPECjvm2008 [12] is a benchmark suite which consists of several throughput-focused
applications. The benchmark suite includes both startup and steady state bench-
marks, and automatically runs a warm-up round for the latter group. The throughput
is reported as a number of operations per unit of time. This thesis uses a heap size

50

Chapter 4. Evaluation

Benchmark Heap size (MB)
page-rank 1900
future-genetic 100
akka-uct 900
movie-lens 750
scala-doku 100
chi-square 500
fj-kmeans 500
finagle-http 100
reactors 1200
dec-tree 500
naive-bayes 3000
als 600
par-mnemonics 200
scala-kmeans 70
philosophers 60
log-regression 725
gauss-mix 500
mnemonics 160
dotty 150
finagle-chirper 250

Table 3: Renaissance benchmark setup

of 2688 MB heap to run all benchmarks from this suite. Several benchmarks are
excluded from runs due to their incompatibility with JDK 20.

9. Optaplanner [13] is an open source AI constraint solver, which includes an exten-
sive benchmarking suite. The benchmarking suite has been used to demonstrate
throughput differences between JDK versions and garbage collectors. This thesis
uses Optaplanner version 8.10.0.Final, with all dependencies included for repro-
ducibility. The benchmark produces a throughput measurement in form of a score.

10. Rubykon [64] is a Go-Engine written in Ruby, that provides a performance bench-
mark suite. Compared to the Parallel Collector, G1 shows throughput deficiencies
[64] in this benchmark. The benchmark includes a warm-up round and produces
throughput measurements in terms of the number of operations per unit of time.
The recommended 1500 MB Java heap size is used with this benchmark.

11. BigRamTester [69] simulates an in-memory database cache with a Least-Recently-
Used (LRU) item replacement strategy. The benchmark has distinct start-up and
operational phases, and can flexibly scale the workload with respect to the number of
operations (transactions) and heap size. This thesis uses a modified fixed-workload
variant of the benchmark to measure start-up and full benchmark throughput. The
throughput is calculated in terms of transactions per second. All runs use 18 GB
heap, 15 or 16 GB reserved space, and 500 000 000 transactions.

51

Chapter 4. Evaluation

4.3 Hardware & Software setup
All benchmark runs are done with the identical hardware and operating system setup,
using the same procedure. After each run of the benchmark suite a reboot is performed
to reset the environmental state. The system is dedicated for benchmarking, no unrelated
activities are running alongside.

Hardware used for benchmark runs is a Dell XPS 15 9570 laptop. The laptop is equipped
with Intel Core™ i7-8750H CPU with base frequency 2.20 GHz, having 6 physical and
12 virtual cores, 32768 MB of DDR4 2667 MHz RAM and SK Hynix PC401 1 TB NVMe
drive. The laptop is continuously connected to the power supply and has a steady con-
nection to a wireless network, which is used for management and maintenance.

The laptop does not have multiple CPU sockets, therefore the UseCondCardMark flag is
disabled during benchmarking for the “Raw Parallel” G1 collector variant and the Parallel
Collector.

Software installed on the laptop is based on Debian Linux 11, last updated on February
14, 2023. The system is installed in a minimal variant without the graphical user interface.
Noteworthy package versions are Linux kernel 5.10, GCC 10.2.1 (system compiler), Glibc
2.31. OpenJDK 19.0.1 is installed from an external source and used as the boot JDK
[36]. Other OpenJDK build dependencies are installed as required by [36]. The operating
system is configured to allocate 12288 2 MB huge pages (24 GB in total) on boot for use
in HotSpot. The system has no swap space. Furthermore, the CPU is configured to run in
2.20 GHz fixed-frequency mode to avoid indeterminism introduced by frequency scaling.

The benchmarking cycle includes building all benchmarked OpenJDK variants, exe-
cuting the benchmark suite, and collecting benchmark results and log files. All OpenJDK
builds are made using the system C++ compiler with no special compilation flags, except
those flags that were introduced within the scope of this thesis (table 4).

4.4 Analysis & Interpretation
This section presents benchmark results, and provides analysis and interpretation of the
throughput and pause time effects of throughput-oriented G1 variants. The benchmark
suite has been executed five times for each collector variant. The results are aggregated
using the method described in section 4.1.3. Results for four garbage collector variants are
presented: the baseline G1 and the Parallel Collector, provided by OpenJDK 20 build 27
(Git commit d562d3fcbe2), as well as the “Long” and “Raw Parallel” variants described
earlier. All throughput charts show statistically aggregated measurements normalized
with respect to the result of baseline G1. Therefore baseline G1 results are always equal
to 1 and marked with a thick horizontal line. The x axis on the charts shows individual
benchmarks and their groups, whereas the y axis represents the improvement over the
baseline G1 performance.

4.4.1 WriteBarrier microbenchmark
Figure 7 shows the write barrier microbenchmark results, including individual microbench-
mark measurements and the mean. It can be seen that both throughput-oriented G1
variants improve over the baseline G1, although the Parallel Collector still outperforms

52

Chapter 4. Evaluation

either G1 variant. The improvements are consistent — no degradations appear, and only
in a single microbenchmark throughput of the baseline G1 and the “Long” variant are
the same. Numeric results of the microbenchmark performance are available in table 11.

Figure 7: WriteBarrier microbenchmark results

Performance of the throughput write barrier variants in the WriteBarrier microbench-
mark is particularly interesting, because this benchmark focuses specifically on the impact
of write barriers. Gains produced by the “Raw Parallel” variant are substantial and range
between 24% and 100% over the baseline G1, mean throughput gain is 65%. Performance
improvement of the “Long” variant is lower with maximum gain over baseline G1 being
58% and mean improvement of 31%. Performance gains produced by the throughput-
oriented G1 variants in this microbenchmark can also be treated as a soft upper bound
for application-level throughput improvement. For most other workloads the through-
put increase produced by alternative write barriers will be partially offset by the costs
of garbage collector adaptations. Nevertheless, as shown in the section 4.4.2, certain
benchmarks are exceptionally favorable for specific G1 collector configurations, and the
total throughput improvement for those surpasses the microbenchmark. In general, this
pattern in throughput differences can be observed also in application-level benchmarks,
although at a different scale.

Scale of throughput improvements varies across specific WriteBarrier microbenchmark
measurements. For the “Raw Parallel” variant and Parallel Collector, the most significant
improvements are derived in the null-filled array benchmarks: each array microbenchmark
consists of a single loop with a short body, which benefits from the lack of conditional
branches and shorter machine code of these write barrier variants. The “Long” barrier
demonstrates throughput improvements only in the long variant of the null-filled array
microbenchmark, whereas during short runs its behavior is effectively the same as the
baseline G1 — their fast-path sections are the same. Nonetheless, the “Long” barrier
throughput improves in the “real” array benchmarks: due to presence of non-null refer-
ences, the complete write barrier has to be executed several times, and the write barrier
of the “Long” variant is considerably shorter than the baseline G1 barrier. In the field
modification microbenchmark the performance gains of both “Long” and “Raw Parallel”
barrier are more moderate. This microbenchmark is very short, with only 4 reference

53

Chapter 4. Evaluation

assignments per single run.
These results show that the short unconditional write barrier such as the “Raw Par-

allel” barrier (section 3.1.2) is able to provide ample throughput gains. Adding extra
pre-filtering conditions to it leads to less optimal performance. The “Long” write barrier
variant (section 3.1.3) contains 3 pre-filtering conditions on top of the minimal card mark-
ing barrier, and its performance gain is already twice lower on average. At the same time,
the “Long” variant results reveal that activities dedicated to the concurrent remembered
set maintenance can take up to 25% of the barrier run time.

Simultaneously, it is evident that optimizations implemented in the throughput-oriented
G1 collector variants are not sufficient to reach performance of the Parallel Collector. In
the WriteBarrier microbenchmark, the Parallel Collector consistently performs better than
any of G1 variants, and mean performance difference between it and the baseline G1 is
109%. Despite the fact that the post-write barrier portion of the “Raw Parallel” variant
is identical to the write barrier of the Parallel Collector, the latter still performs almost
27% better. This difference can be attributed to pre-write barrier of the G1 collector that
is preserved in both throughput barrier variants. Result of a special OpenJDK build with
the pre-write barrier removed support this conclusion, showing identical performance of
the “Raw Parallel” G1 variant and the Parallel Collector in the microbenchmark.

4.4.2 Application-level throughput
Figure 8 (table 6) shows throughput benchmark results for the rest of the benchmark
suite. Overall, the improvement produced by the throughput-oriented G1 variants is
evident in application-level throughput too, albeit to a smaller scale. The “Raw Paral-
lel” variant performs significantly better than “Long”, and prominent gains are produced
for the CompilerSpeed, DelayInducer, Optaplanner, Rubykon and BigRamTester bench-
marks. Furthermore, the throughput-oriented variants do not produce significant per-
formance degradations in any of individual benchmarks. However, in many benchmarks
the Parallel Collector still performs better than any G1 variant. Appendix C provides
detailed throughput charts of the benchmark suite. Detailed results of benchmark suite
performance are available in tables 7 (baseline G1), 8 (“Long” variant), 9 (“Raw Parallel”
variant) and 10 (Parallel Collector).

CompilerSpeed benchmark results show that the “Raw Parallel” collector variant outper-
forms all alternatives, producing mean improvement of 7.8% over the baseline G1, while
performance of the “Long” variant is not significantly different from the baseline. Mean
throughput of the Parallel Collector is only slightly (1.9%) better than the baseline. De-
tailed inspection of results of specific CompilerSpeed configurations (figure 9) reveals that
the baseline G1 and “Long” variant relative performance is consistent and changes very
little regardless of benchmark run length. The “Raw Parallel” variant shows limited de-
crease of throughput in longer runs, going from 9.9% improvement over the baseline for
15 second runs to 6.5% for 180 second runs. However it still performs significantly better
than other G1 variants. The Parallel Collector performs 6.9% better than the baseline G1
in short 15 second run, but during longer runs its throughput drops below the baseline
level. The main reason for that are longer garbage collection pause times of the Parallel
Collector. Total pause time of benchmarked G1 variants is 6.7−7% of the benchmark run
time, whereas for the Parallel Collector this number is 18.4%, which negates any positive
impact of the write barrier on application-level throughput. The results of Compiler-
Speed benchmark demonstrate that, while minimal unconditional card marking barrier

54

Chapter 4. Evaluation

Figure 8: Overview of benchmark suite results

is beneficial for throughput and produces meaningful gains, other aspects of the garbage
collector behavior may negate these gains in the long run.

DaCapo benchmark shows little to no differences between the baseline G1 and its throughput-
oriented variants in overwhelming majority of individual benchmarks (figures 10, 11 and
12). In addition, in some cases high variance of benchmark results produces wide confi-
dence intervals that overlap with any potential realistic gains, thus making the observed
differences statistically meaningless. The Parallel Collector exhibits slightly different
throughput results. In two benchmarks (lusearch, xalan) the Parallel Collector performs
significantly worse than any of G1 variants — the reasons for that include differences
between G1 and the Parallel Collector young generation sizing policy. These two bench-
marks distort mean results for the whole benchmark suite. However, in most other cases
differences between G1 and the Parallel Collector are minor, showing little difference be-
tween garbage collectors. Thus, the DaCapo benchmark suite is not sensitive enough to

55

Chapter 4. Evaluation

the barrier changes.

DelayInducer benchmark results show (figure 13) outstanding gains produced by the throughput-
oriented G1 variants: The “Long” and “Raw Parallel” variants outperform the baseline
G1 by 81% and 82% respectively, also surpassing the Parallel Collector, whose throughput
is 31% above the baseline. These throughput improvements are not only higher than for
any other benchmark, they exceed the mean throughput-oriented barrier variant perfor-
mance in the WriteBarrier microbenchmark. The reason for this improvement is due to
the benchmark itself: it intensively modifies contents of large Java ArrayList objects that
contain non-repeating long-living Integer objects. Such behavior leads to the heap mod-
ifications pattern where most modified references are between the old generation objects,
thus invoking the execution of G1 post-write barrier slow-path (refinement operations in
the baseline G1). These conditions are particularly unfavorable for the baseline G1 write
barrier, but benefit the more lightweight “Long” and “Raw Parallel” barriers. At the
same time, impact of the write barrier is not the only component of observed throughput
gains, otherwise the Parallel Collector should have performed at least as well as the “Raw
Parallel” variant. Inspection of the garbage collection pauses showed that the pause times
of the Parallel Collector are much longer on average than those of G1, which diminishes
the difference in application-level throughput.

SPECjbb2005 benchmark shows mild differences between different G1 variants and the
Parallel Collector. Overall, throughput gains increase the simpler the barrier is: there is
no statistically significant improvement over the baseline G1 for the “Long” variant, 2.1%
for the “Raw Parallel”, and 4.5% for the Parallel Collector. Throughput differences in
individual SPECjbb2005 configurations (figure 14) do not show a significant dependence
on number of warehouses in the configuration. Overall, while the pattern of throughput
results conforms with the initial expectations, scale of changes is minor.

Optaplanner benchmark results show considerable gains in mean throughput, whose pat-
tern matches prior expectations: The “Long” variant performs 4.3% better than the
baseline G1, the “Raw Parallel” variant improves over the baseline by 10.7%, while the
Parallel Collector results are 17.1% better than the baseline. Breakdown of individual
Optaplanner benchmark throughput results (figure 17) shows the same pattern for most
individual benchmarks, although with some differences in scale of improvements. Only
in two cases there are no statistically significant differences between G1 variants. The
results of Optaplanner benchmark are particularly interesting in the scope of this the-
sis, because this benchmark has been previously used to demonstrate [13] deficiencies
in G1 throughput. Obtained benchmark results show that throughput-oriented collector
variants partially mitigate this issue.

pjbb2005 benchmark produces results that are similar to SPECjbb2005, which is the ex-
pected behavior — pjbb2005 is a fixed-workload variant of SPECjbb2005 benchmark.
Individual pjbb2005 configurations (figure 15) show that low-warehouse runs do not pro-
duce meaningful measurement results due to lower overall load — number of transactions
(workload) is fixed per warehouse, whereas the results of other runs are close to those of
SPECjbb2005 within confidence intervals.

Renaissance benchmark shows moderate mean throughput gains for the throughput-oriented
G1 variants, which are however somewhat lower than the results of the Parallel Collec-

56

Chapter 4. Evaluation

tor. Renaissance is a diverse benchmark suite, individual benchmark results (figure 18)
are more interesting. In many benchmarks there is no statistically significant difference
between G1 collector variants, sometimes due substantial variance. In two cases, con-
trary to the expectations, the “Long” variant outperforms “Raw Parallel”. Throughput
gains produced by the Parallel Collector are more consistent. Similarly to DaCapo, the
Renaissance benchmark suite does not reveal significant differences between G1 variants,
which means that for most benchmarks in the suite the write barrier costs are minimal.
Possible reasons of that include object concentration in young generation regions, which
favors the write barrier fast-path, and thus does not reveal full costs of the baseline G1
write barrier.

Rubykon benchmark results demonstrate substantial throughput improvements produced
by the throughput-oriented G1 collector variants. In particular, the “Raw Parallel” vari-
ant performs 16.9% better than the baseline G1, getting close to the Parallel Collector
performance (20.6% over the baseline). Gains produced by the “Long” variant are more
modest — 6.4% over the baseline. The results are consistent and have very little variabil-
ity (figure 16). Rubykon is one of the benchmarks where baseline G1 throughput issues
were observed before [64], and obtained results demonstrate that throughput-oriented
collector variants are capable to largely mitigate the problem.

SPECjvm2008 benchmark shows little to no difference between differed G1 collector vari-
ants and the Parallel Collector. The SPECjvm2008 is a benchmark suite which consists
of multiple independent workloads. Results of individual benchmarks (figures 19 and 20)
show that in the majority of cases there is no statistically significant difference between
any G1 variant and the Parallel Collector. The variability of results sometimes is large
enough to make any realistic performance gains statistically meaningless. Overall, the
SPECjvm2008 benchmark suite also does not demonstrate enough sensitivity to write
barrier changes.

BigRamTester benchmark demonstrates moderate throughput gains produced by the throughput-
oriented G1 collector variants, 4.1% and 6.7% over the baseline G1 for the “Long” and
“Raw Parallel” variants respectively. These results are far surpassed by the Parallel Col-
lector, which performs 52.6% better that the baseline. Such divergence is not caused
solely by the write barrier impact on throughput, as shown by BigRamTester perfor-
mance decomposition into mutator throughput and garbage collector pause time on the
figure 21. The mutator throughput changes, which are directly influenced by the write
barrier, follow the expected pattern: the “Long” variant results are 11% better than the
baseline G1, the “Raw Parallel” variant performs 18.9% better than the baseline, and
difference between the Parallel Collector and the baseline G1 is 28%. However, despite
clear improvements in mutator throughput, the garbage collection pause times distort the
application-level results.

The BigRamTester benchmark is especially advantageous for the Parallel Collector,
whose garbage collector pause times in total are only 1

4
of the baseline G1 pause times.

For throughput-oriented G1 variants the pause times are expectedly longer, comparing
to the baseline G1, being 14.9% and 24.4% longer for the “Long” and “Raw Parallel”
variants respectively. Therefore, application-level throughput of the benchmark is pro-
portionally higher than mutator-only throughput for the Parallel Collector and lower for
the throughput-oriented G1 variants.

57

Chapter 4. Evaluation

Overall, the application-level throughput results produced by the “Long” and “Raw
Parallel” variants show significant improvements, especially, in throughput-oriented work-
loads. Previously reported throughput issues with Optaplanner, Rubykon, CompilerSpeed
benchmarks are largely mitigated by the throughput-oriented G1 variants. At the same
time, DaCapo, Renaissance and SPECjvm2008 — well-known JVM benchmark suites —
did not show any meaningful differences between different G1 variants. Furthermore, as
evidenced by BigRamTester results, the impact of changes in the write barrier may also
be offset by pause time effects of the garbage collection adaptations, thus diminishing
possible gains. Nevertheless, throughput-oriented collector variants still often unable to
reach performance of the Parallel Collector. Section 4.4.3 discusses the impact of changes
on the garbage collection pause time in more details.

4.4.3 Pause time analysis
Garbage collection pause time impact of the G1 collector adaptations is important to char-
acterize in order to understand trade-offs offered by the new throughput-oriented collector
variants. Longer pause times are expected primarily due to the fact that throughput-
oriented G1 variants perform full card table scan. Longer garbage collection pauses in-
crease the latency of application responses to incoming requests, which is crucial in certain
classes of workloads. In addition, as demonstrated in section 4.4.2, substantial differences
in the garbage collection pause times are also a factor of application-level throughput
changes. This section focuses on the benchmarks which demonstrated noticeable differ-
ences in throughput. Comparison is being done among the baseline G1, “Long” and
“Raw Parallel” collector variants — the Parallel Collector is omitted as its algorithm and
garbage collection pause structure are too different from G1 to be meaningfully correlated
with it.

Results are obtained from the same set of benchmark runs which were used for through-
put analysis, therefore their evaluation presented below directly corresponds to through-
put results in the section 4.4.2. For each benchmark, garbage collection pause information
is extracted from G1 logs, pauses related to concurrent marking cycle are filtered out as ir-
relevant in the context of this thesis, and the rest are presented as a box-and-whisker plot;
whisker part is calculated based on interquartile range (IQR) as 1.5∗IQR = 1.5∗(Q3−Q1).
The plots present actual pause times and also include maximum and minimum pause time
values. The x axis on all plots represents individual benchmarks or benchmark groups,
the y axis shows garbage collection pause times in milliseconds. Corresponding pause
time values are available in tables 13, 14 and 15.

CompilerSpeed benchmark has been executed in three configurations: for 15, 60 and 180
seconds. Figure 22 presents measured garbage collection pause times for the bench-
mark. Median pause times exhibit at most few millisecond (≈ 2.6%) difference among
garbage collector variants. The overall distribution of pause times is also slightly wider
for throughput-oriented G1 variants, which means that there is marginally more variance
in garbage collection pauses of “Long” and “Raw Parallel” variants. In CompilerSpeed
benchmark, the maximum pause time values are inconsistent across runs, and thus are
not taken into account.

DelayInducer benchmark produces garbage collection pause time distribution with larger
variance for the throughput-oriented collector variants. For “Long” and “Raw Parallel”
variants the upper bound of the distribution is respectively 4 and 8 milliseconds higher

58

Chapter 4. Evaluation

than for the baseline G1. At the same time, distribution lower bounds for the throughput-
oriented collector variants are much lower than for the baseline G1, which also slightly (2
milliseconds) lowers the median value. This behavior is the result of massive differences
in throughput between the baseline G1 and throughput-oriented variants, which leads
to considerably shorter application run times and lower number of performed garbage
collections — the outlier values have more influence on the resulting distribution. Overall,
the practical impact of throughput-oriented barriers on garbage collection pauses is very
limited.

Optaplanner benchmark consists of multiple individual workloads. Garbage collection
pause time behavior exhibited by these workloads can be classified into two groups as
demonstrated in figure 25. Most of workloads belong to the group I: despite present
relative differences in the median and overall pause time distribution, absolute change in
pause times is not larger than 0.5 millisecond, so in practice the impact of throughput-
oriented barriers is marginal. Two of Optaplanner benchmarks belong to the group II:
due to much longer garbage collections, relative differences between G1 variants are less
prominent than in the group I. Pause time distribution upper bounds in the group II are 5
milliseconds higher for the throughput-oriented collector variants. The outlier maximum
values are also 10 − 15 milliseconds higher, thus the practical impact of throughput-
oriented collector variants on group II benchmarks is modest.

Table 12 summarizes the impact of throughput-oriented G1 variants on the absolute
and relative durations of mutator and pause time throughout the Optaplanner bench-
mark run. In absolute terms, the differences between G1 variants are very minor due to
the fact that Optaplanner benchmark run include preparation and warm-up activities.
Relatively, the throughput-oriented barriers increase the fraction of pause time only by
0.03− 0.05% of the total application pause time. Considering the substantial throughput
improvements demonstrated in the section 4.4.2, pause time impact of the throughput
barriers in Optaplanner benchmark is negligible.

Rubykon benchmark also shows very limited impact of throughput-oriented collector vari-
ants. Median garbage collection pause times of “Long” and “Raw Parallel” variants are
0.5 milliseconds longer than the median of the baseline G1. The upper bound of overall
distribution of pause times is also 2− 2.5 milliseconds higher. The maximum pause times
are show high variance across Rubykon runs with no statistical significance. Even though
the relative impact (< 6% difference in the median values) of throughput-oriented collec-
tor variants is clearly visible on the plot, its absolute scale is low due to short garbage
collection pauses.

BigRamTester benchmark produces significantly different results (figure 26), compared to
the previously described benchmarks. Even for the baseline G1, median pause time is
substantial — 480 milliseconds, and overall pause time distribution spans between 475
and 490 milliseconds. Results produced by the throughput-oriented collector variants are
not only higher, their distributions (except outliers) do not intersect with the baseline G1
pause times, and thus they are statistically different. The “Long” variant produces pause
times between 505 and 555 milliseconds, with a median value below 520 milliseconds,
whereas for the “Raw Parallel” barrier the pause time distribution is between 545 and
595 milliseconds and the median above 555 milliseconds – considerably higher than the
alternatives. Considering the fact that pause times add up throughout the application

59

Chapter 4. Evaluation

run, such differences not only affect the individual operation latencies, but also diminish
the application-level throughput, as has been demonstrated in section 4.4.2.

The BigRamTester benchmark also demonstrates different aspects of throughput-
oriented barrier impact on collector pause times. Figure 27 shows individual garbage
collection pause times of a single run of the BigRamTester benchmark. The x axis repre-
sents the benchmark run time, while the y axis shows pause time lengths in milliseconds.
The plot shows that most pause times are clustered by G1 collector variant and their
duration within a cluster is roughly equal. The differences in pause time lengths between
the clusters are direct consequence of full card table scan and refinement changes in the
throughput-oriented collector variants. However, the “Long” and “Raw Parallel” variants
also produce sequences of outliers, whose pause times are much higher. Experimenta-
tion with BigRamTester workload and heap size revealed that such outliers are a sign
of particularly high load on the garbage collector, although they are not full garbage
collections yet. The reason for increased load on the collector compared to the baseline
G1 is an indirect effect of the throughput write barrier — improved throughput of the
mutator creates extra strain on the garbage collector. Overall, the pause time impact of
throughput-oriented collector variants on BigRamTester benchmark is particularly inter-
esting, because this benchmark flexibly scales with heap size. 18 GB heap was used in
measurements, which is much larger than heaps used for other benchmarks. Therefore,
results of BigRamTester are more applicable to real-world workloads with large heaps.

Detailed DaCapo, Renaissance, SPECjbb2005, pjbb2005 and SPECjvm2008 bench-
mark pause time analysis have been omitted from the above description for conciseness.
Tables 13, 14 and 15 summarize pause time behavior for these benchmarks. The tables
present mean, median, outlier, upper and lower bounds (based on IQR), and total sum
of the pause time distribution for the baseline G1, “Long” and “Raw Parallel” variants,
respectively. The results follow the overall trend and show rather moderate impact of
throughput-oriented write barriers in the majority of cases. No abnormal behavior has
been observed. In fact, the only benchmark where garbage collection pause times signifi-
cantly differed among different G1 variants is BigRamTester.

Figure 29 (table 16) breaks down the impact of the changes on garbage collection
phases of BigRamTester benchmark. Pause time is dominated by the heap root scan and
object copy phases. The longest phase of the garbage collection — object copy phase
— shows only a minor increase in length for the throughput-oriented collector variants.
Much more substantial increase in duration happens in the heap root scan phase, which
is the main contributor into longer garbage collection pause times in “Long” and “Raw
Parallel” collector variants. In addition, figure 28 shows heap root scan durations for
individual garbage collections. Observed behavior closely follows the garbage collection
pause time plot (figure 27), confirming the conclusion that throughput-oriented collector
variants impact the garbage collection pause times primarily by increasing heap root scan
phase duration. The increase is directly proportional to the number of scanned cards.

4.4.4 Other aspects
Chunk table modification as part of the write barrier is an attempt to mitigate the degra-
dation of garbage collection pause times, particularly the heap root scan phase, at the
expense of a larger write barrier (section 3.2.3). This approach has not been selected for
thorough evaluation, because it does not improve the write barrier throughput, which is
the main goal of this thesis. Nevertheless, a brief investigation of it has been performed

60

Chapter 4. Evaluation

to characterize its impact on throughput-pause time trade-off. Figure 30 (table 17) from
appendix E shows WriteBarrier microbenchmark results for the “Raw Parallel” variant
with and without chunk table modification. It performs substantially worse than the nor-
mal “Raw Parallel” barrier in all measurements, and in one case it even performs slightly
worse than baseline G1. Even though its mean throughput is still better than the base-
line, the throughput improvement is only 29% over the baseline G1, much worse than the
“Raw Parallel” barrier without chunk modification (65% over the baseline). At the same
time, the reduction in the garbage collection pause times provided by this change is not
sufficient to reach the application-level performance of the “Raw Parallel” variant. Figure
31 (table 18) compares pause time, mutator throughput and application throughput of
the BigRamTester benchmark for “Raw Parallel” variant with and without chunk dirtying
with baseline G1. Application-level throughput of the variant with chunk table modifica-
tion does not perform as well as the “Raw Parallel” variant — the reduction in garbage
collection pause times cannot fully compensate the drop in the mutator throughput.

4.5 Dynamic switch heuristic
This section provides a description and rationale for the write barrier dynamic switch
heuristic discussed in section 3.4. A heuristic has been formulated based on the analysis
of throughput-oriented barrier pause time impact done in section 4.4.3.

The core idea of dynamic switch heuristic is the estimation of throughput-oriented
write barrier impact on garbage collection pause times, performing the switch once the
anticipated impact is below certain threshold. As shown during the benchmark suite pause
time impact analysis, the pause time impact of throughput-oriented write barrier is often
modest, and the switch threshold set accordingly. The main contributor towards longer
pause times is the full card table scan, thus the number of dirty cards on the card table
can be used as a proxy to estimate potential impact of throughput write barriers. Based
on this assumption, the following formulas estimate the possible impact of switching into
the throughput mode and determine whether to switch:

Cbaseline = Crate × Tmutator + Cbuffers

Cthroughput = Cbaseline ×
Rtotal

Rold

× Ptotal

Ptotal − 0.25× Psame

T ′
scan = Cthroughput ×

Tscan

Cscanned

I0 =
T ′
scan − Tscan

Tpause

S =

{
1 if Predict(I0, I1, ..., In) ≤ 0.075,

0 otherwise

Where

Cbaseline is estimated total number of cards dirtied by the mutator in baseline
mode.
Cthroughput is estimated total number of cards dirtied by the mutator in through-
put mode.
Crate is predicted card dirtying rate of the mutator in baseline mode.
Cbuffers is predicted number of dirty cards in thread buffers in baseline mode.

61

Chapter 4. Evaluation

Cscanned is the actual number of scanned dirty cards during the last heap root
scan phase.
Tmutator is the actual duration of the last mutator time slice.
Tpause is the actual duration of the last garbage collection pause.
Tscan is the actual duration of the last heap root scan phase.
T ′
scan is estimated duration of heap root scan phase in the throughput mode.

Rtotal is the total number of active heap regions.
Rold is the number of old heap regions.
Ptotal is the total number of scanned references.
Psame is the number of scanned same-region references.
I0 is estimated impact of throughput mode on the last garbage collection.
Predict(I0, I1, ..., In) is predicted throughput mode impact based on estimates
done for the n last garbage collections.
S is the decision to switch into throughput mode.

The heuristic based on the throughput mode impact estimation formula depicted above
is as follows:

1. Estimation takes place at the end of young and mixed garbage collections, taking into
the account statistics collected during the last and previous collections. Estimation
only happens in baseline mode, rollback from the throughput to the baseline write
barrier uses a separate policy described later.

2. Number of cards dirtied during the last mutator time slice Cbaseline is estimated
using predicted card dirtying rate Crate (G1 already collects that information) and
a predicted number of cards in per-thread buffers Cbuffers. This number is taken as
a baseline which is used in further computations. In case when predicted number of
dirtied cards is below the number of actually scanned cards from the last garbage
collection, the latter is taken as a baseline.

3. The baseline number of dirty cards Cbaseline is up-scaled with two factors:

• Proportion of old regions among the total number of active heap regions (Rtotal

Rold
)

— to account for the absence of young generation region checks in the throughput
write barrier.

• Proportion of same-region references among the total number of references scanned
(Ptotal

Ptotal−0.25×Psame
) — to account for the absence of cross-region reference check in

the throughput write barrier. Additional statistics collection has been imple-
mented within G1 to gather that information. 0.25 coefficient is used to limit
the impact of up-scaling. The coefficient value has been determined empirically.

The resulting number Cthroughput is assumed to be a number of cards which would
have been dirtied by the throughput write barrier, had it been active during the last
mutator time slice.

4. Heap root scan phase duration in throughput mode T ′
scan is estimated based on the

previously computed number of dirty cards Cthroughput and the actual average card
scan rate of the last garbage collection Tscan

Cscanned
.

5. Finally, the relative impact of heap root scan phase duration increase is calculated
(T

′
scan−Tscan

Tpause
). If the impact has been sustained below the switch threshold for several

62

Chapter 4. Evaluation

garbage collections, the barrier switch activates. The default switch threshold is set
to 7.5% and can be configured at virtual machine startup using a JVM flag.

The described heuristic focuses on keeping the impact of the throughput write barrier on
the heap root scan phase at a reasonable level based on the data obtained during last
garbage collections. Deficiencies of the proposed approach include exclusive focus on a
single phase of garbage collection pause, as well as the inability to precisely know the
number of dirty cards produced by the mutator and its limited ability to adapt to sudden
changes in application behavior. In order to solve the latter, a policy to rollback to the
baseline write barrier is devised:

• Barrier rollback happens only when full garbage collection occurs — it is considered
a sign of G1 inability to keep up with the mutator activity. With no full garbage
collections the G1 collector can stay in throughput mode indefinitely, its state is not
reevaluated after switching to the throughput write barrier happens. Full garbage
collections caused by System.gc() calls are ignored.

• After full garbage collection happens, all statistics related to the throughput barrier
switch heuristic are reset to delay any possible switch back to the throughput barrier.
Furthermore, any future barrier switches are penalized by multiplying the switch
threshold by a factor, thus making it harder to reach. The default penalty factor is
0.9; it can be changed at virtual machine startup via a JVM flag.

Barrier switch and rollback logic is implemented as part of the G1 policy class, where
it is able to take advantage of existing G1 statistics collection and prediction functionality.

4.5.1 Dynamic switch evaluation
This section presents the essential results of the dynamically-switched barrier and the
switch policy described in the sections 3.4 and 4.5 from a throughput and pause time
impact perspective, comparing them to the baseline G1 and the “Raw Parallel” collector
variant the dynamic switch is based on. The same methodology, benchmark suite and
setup (sections 4.1 to 4.3) are used. In all benchmarks the heuristic triggered at most
once once per run with no rollbacks. All benchmarks except BigRamTester have been exe-
cuted with the default dynamic switch configuration1. For BigRamTester, a higher switch
threshold of 25% has been used to ensure consistent early switch during BigRamTester
startup phase. The figures discussed in this section are located in the appendix F.

Throughput evaluation results for the dynamically-switched barrier are presented on fig-
ure 32 (table 19). Overall, the performance of dynamic barrier switch heavily depends
on specific benchmark run time. In long-running benchmarks, such as Optaplanner and
BigRamTester, throughput achieved by the dynamically-switched barrier reaches results
of the “Raw Parallel” collector variant. In Rubykon — a benchmark of medium length
— the dynamically switched barrier achieves 3.5% improvement over the baseline G1,
which is far worse than the improvement (16.9%) produced by the “Raw Parallel” vari-
ant. In many other benchmarks, such as DaCapo, SPECjbb2005, pjbb2005, Renaissance,
SPECjvm2008, the difference between the baseline G1 and dynamically-switched barrier
is either minuscule, or is not present at all. At the same time, in these benchmarks the
gains produced by the “Raw Parallel” variant are also very limited. In short-running

17.5% switch threshold and 0.9 rollback penalty.

63

Chapter 4. Evaluation

CompilerSpeed and DelayInducer benchmarks the dynamically-switched barrier actually
performs worse than the baseline G1, in stark contrast with the “Raw Parallel” barrier
that shows substantial throughput increase in these benchmarks.

Shortcomings of the barrier switch implementation are the main reason for through-
put degradation in shorter workloads and insignificant throughput gains in some others.
The barrier switch happens via deoptimization of all JIT-compiled code, which imposes
a considerable throughput penalty. Furthermore, barrier switch is incomplete and the
dynamically switched barrier in throughput mode actually runs a mix of the baseline and
“Raw Parallel” barriers. The dynamically-switched barrier brings very limited benefit for
benchmarks that heavily rely on code paths that still contain the baseline barrier (e.g.
array copying). In combination, these factors limit the usefulness of dynamically-switched
barrier guided by the heuristic to a certain class of long-running workloads, where the
dynamic barrier switch can perform on a par with the “Raw Parallel” variant.

WriteBarrier microbenchmark cannot be executed with the automatic heuristic-guided
barrier switch due to the fact that the microbenchmark is short and automatic switch does
not happen before the microbenchmark finishes. For purpose of running this microbench-
mark, the dynamically switched barrier had been modified to perform an unconditional
switch after the first garbage collection. Figure 34 (table 21) shows the throughput results
for the switched barrier in that configuration. As expected, the results of barrier switch
are equivalent to the “Raw Parallel” variant, which it is based upon. The microbenchmark
does not exercise code paths where barrier switch is not possible and performs warm-up
rounds which ensure that the C2 compiler is activated and the throughput write bar-
rier is used in hot code paths, thus deficiencies of the barrier switch are not present in
WriteBarrier microbenchmark results.

Startup performance is an important use case for dynamic barrier switching. Instead of
relying on the heuristic to switch barriers automatically, the application uses the pro-
grammatic interface to enable the barrier that is the most favorable in a certain phase. In
some application classes, such as Web servers and databases, higher throughput is desired
at startup, because it enables quicker transition into the operational phase, where shorter
and more predictable garbage collection pauses are preferred over the gains in through-
put. Therefore, a special benchmark based on BigRamTester has been implemented to
evaluate this use case. The benchmark programmatically switches the barrier to enable
the throughput mode at the beginning of the BigRamTester run and rollbacks to the
baseline G1 barrier once startup finishes. Startup time is measured and the performance
is calculated as a reciprocal of the startup time. This benchmark uses the same heap
and workload size as BigRamTester, however it decreases the reserved space to 15 GB to
mitigate inherent randomness of BigRamTester startup garbage collections.

Figure 33 (table 20) demonstrates the startup performance improvements produced
by the dynamically-switched barrier over the baseline — the dynamically-switched barrier
exhibits 6.6% improvement in startup throughput (that is, 6.2% shorter startup times)
on the application level. Gains in mutator throughput are even higher — 17.5% bet-
ter throughput during startup. However, this substantial growth of mutator throughput
wanes on application level due to extensive use of System.gc()-induced garbage col-
lections that consume considerable amount of startup run time. Note that changes in
garbage collection pause times presented on the figure 33 are very minor, because full
garbage collections are excluded from the figure and the number of young collections is
low at startup time.

64

Chapter 4. Evaluation

Garbage collection pause times of the dynamically-switched barrier show mixed behavior,
which is demonstrated on the figure 35 (table 22). Pause time distribution produced
by the dynamically-switched barrier in BigRamTester benchmark is located between the
“Long” and “Raw Parallel” variants. Use of conditional refinement by the throughput
mode of dynamically-switched collector variant reduces its pause times compared to the
statically-configured “Raw Parallel” variant which does no refinement. At the same time,
due to use of unconditional minimal card marking write barrier, the mutator performance
of dynamically-switched collector variant in throughput mode is higher than that of the
“Long” variant and no filtration of references is happening, thus performant mutator also
produces extra load on the garbage collector. Furthermore, the implementation of dy-
namic barrier switch places additional conditions and statistics collection on G1 garbage
collector hot paths, thus introducing overhead. This additional overhead is apparent
when comparing the individual garbage collection pause times of the baseline G1 and
the dynamically-switched barrier (figure 36): at the early stages of execution, until the
switch happens, the dynamically-switched barrier exhibits slightly longer garbage collec-
tion pauses despite using functionally the same algorithm as the baseline G1.

In general, the results produced by the dynamically-switched barrier demonstrate
that the barrier switch at run time is not only possible within the G1 collector, but also
provides improved throughput in certain scenarios, while imposing minimal additional
overhead on top of static throughput-oriented barrier variants in terms of garbage col-
lection pause times. At the same time, deficiencies in the current implementation of
the dynamic switching limit its applicability in a broader context. A more sophisticated
implementation of the dynamic barrier switch, leveraging different set of techniques to
perform the barrier switch and minimize switch penalty, can be expected to offer more
uniform benefits across wide set of applications, while preserving flexibility of selecting
write barriers at run time.

65

Chapter 5

Conclusion

This chapter concludes the thesis, summarizes findings and provides an outline for possible
future work in the area.

5.1 Summary
The main objective of this thesis has been the exploration of alternative throughput-
oriented write barriers for the G1 collector and their impact on the throughput-pause time
balance. This thesis proposes and implements two alternative write barriers, which along
with necessary G1 adaptations in the stop-the-world pause constitute three throughput-
oriented G1 variants. The alternative write barrier designs are based on eliminating parts
of the existing G1 post-write barrier related to concurrent remembered set maintenance.
Changes in garbage collection pause time accommodate these new write barriers. These
new G1 variants have been evaluated on a comprehensive benchmark suite.

“Long” variant of the baseline G1 write barrier utilizes a conditional pre-filtering card
marking barrier combined with partial concurrent refinement. Throughput gains produced
by the “Long” variant are modest in most cases. With the exception for a large heap
benchmark, garbage collection pause time impact of the “Long” barrier is limited, and
pause time distributions exhibited widely intersect with the baseline G1 barrier, while
median garbage collection pause times are slightly higher.

“Raw Parallel” variant of the G1 collector uses a minimal unconditional card marking
barrier with no refinement. Throughput improvements produced by the “Raw Parallel”
variant are larger than those of the “Long” variant, showing performance gains in a major-
ity of benchmarks, in some cases approaching the performance of the Parallel Collector.
At the same time, pause time costs are only marginally higher than that of the “Long”
variant, with an exception for the same large heap benchmark, where pause times of this
variant are longer than those of the baseline G1 and “Long” variant.

Dynamically-switched barrier allows run-time heuristics guided switching to and from the
“Raw Parallel” variant. It shows a varying degree of throughput improvements, per-
forming on par with the “Raw Parallel” variant in long-running benchmarks, but also
degrading throughput in shorter ones. Specifically, the dynamic barrier switch is shown
to improve application startup times. From a pause time perspective, the dynamically-
switched barrier occupies a middle ground between the “Long” and “Raw Parallel” vari-

66

Chapter 5. Conclusion

ants, also introducing own overhead. The reason is the simplistic and limited barrier
switch mechanism.

Overall, the changes demonstrate significant throughput improvements at the expense
of moderate increases in pause times for a substantial number of benchmarks. The cost
of the throughput-oriented write barriers primarily depends on Java heap size — the
larger the Java heap, the larger the impact on garbage collection pause times. While the
proposed write barriers cannot fully replace the existing G1 barrier due to dependence on
the heap size, this thesis shows that the throughput-oriented write barriers have a positive
impact on G1 throughput-pause time balance for a significant number of benchmarks.
From the perspective of the write barrier evaluation, this thesis also demonstrates that
several widely known JVM benchmark suites are not well-suited for the write barrier
impact characterization.

5.2 Future work
There are multiple avenues for future research on G1 collector throughput improvements
via alternative write barriers. The barriers explored constitute only a fraction of possible
write barrier implementations. These alternative barriers were directly derived from the
existing G1 write barrier, ignoring other potential barrier candidates. Alternative write
barrier designs that require more substantial changes in the G1 collector should be also
interesting for investigation. Furthermore, even among the barrier and garbage collector
adaptation options proposed in the thesis, only a few combinations were selected for
thorough examination. Additional investigation on minimizing the pause time costs can
significantly extend the number of cases when throughput-oriented write barriers are
beneficial.

The dynamically-switched barrier proposed by this thesis uses a simplistic mechanism
of barrier switching and a crude heuristic. Exploration of efficient, complete and less
intrusive barrier switch approaches can lead to a considerable extension of dynamic barrier
switching utility in various workloads.

In addition, an optimization of the G1 collector redirtying mechanism has been iden-
tified but put out of scope as it is independent of the write barrier. Nevertheless, research
on G1 throughput improvement should not be limited with the write barriers, and ex-
tending the scope of changes to G1 can also be expected to bring significant throughput
benefits, which would compound with improvements derived from the alternative write
barriers.

Finally, despite the fact that the amount of benchmarking performed within the scope
of this thesis is sufficient to demonstrate benefits and trade-offs offered by the throughput-
oriented write barriers in G1, the write barriers devised in this thesis should be tested on
a wider variety of workloads, garbage collector configurations (particularly, heap sizes),
and hardware with different instruction set architectures to fully characterize the barrier
behavior and more subtle implications in real-life scenarios.

67

Bibliography

[1] A. Adamson. “SPECjbb2005-A Year in the Life of a Benchmark”. In: 2007 SPEC
Benchmark Workshop. 2007.

[2] B. Alpern et al. “The Jikes Research Virtual Machine Project: Building an Open-
Source Research Community”. In: IBM Systems Journal 44.2 (2005), pp. 399–417.
ISSN: 0018-8670. DOI: 10.1147/sj.442.0399. URL: http://ieeexplore.ieee.
org/document/5386722/ (visited on Feb. 28, 2023).

[3] Stephen M Blackburn. Pjbb2005. URL: https : / / users . cecs . anu . edu . au /
~steveb/research/research-infrastructure/pjbb2005/ (visited on Feb. 17,
2023).

[4] Stephen M Blackburn and Kathryn S. McKinley. “In or out?: Putting Write Barriers
in Their Place”. In: Proceedings of the 3rd International Symposium on Memory
Management. ISMM02: 2002 International Symposium on Memory Management (
Co-Located with PLDI 2002). Berlin Germany: ACM, June 20, 2002, pp. 175–184.
ISBN: 978-1-58113-539-8. DOI: 10.1145/512429.512452. URL: https://dl.acm.
org/doi/10.1145/512429.512452 (visited on Feb. 15, 2023).

[5] Stephen M. Blackburn and Antony L. Hosking. “Barriers: Friend or Foe?” In: Pro-
ceedings of the 4th International Symposium on Memory Management. ISMM04:
2004 International Symposium on Memory Management (in Conjunction with
OOPSLA 2004 Conference). Vancouver BC Canada: ACM, Oct. 24, 2004, pp. 143–
151. ISBN: 978-1-58113-945-7. DOI: 10.1145/1029873.1029891. URL: https:
//dl.acm.org/doi/10.1145/1029873.1029891 (visited on Feb. 15, 2023).

[6] Stephen M. Blackburn et al. “The DaCapo Benchmarks: Java Benchmarking Devel-
opment and Analysis”. In: Proceedings of the 21st Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming Systems, Languages, and Applications. OOP-
SLA06: ACM SIGPLAN Object Oriented Programming Systems and Applications
Conference. Portland Oregon USA: ACM, Oct. 16, 2006, pp. 169–190. ISBN: 978-1-
59593-348-5. DOI: 10.1145/1167473.1167488. URL: https://dl.acm.org/doi/
10.1145/1167473.1167488 (visited on Feb. 16, 2023).

[7] Man Cao. JEP Draft: Throughput Post-Write Barrier for G1. Sept. 5, 2019. URL:
https://openjdk.org/jeps/8230187JEP%20draft:%20Throughput%20post-
write%20barrier%20for%20G1 (visited on Feb. 28, 2023).

[8] Man Cao. Reduce G1’s CPU Cost with Simplified Write Post-Barrier and Disabling
Concurrent Refinement. JDK Bug System. Sept. 16, 2020. URL: https://bugs.
openjdk.org/browse/JDK-8226197 (visited on Feb. 28, 2023).

[9] Stephen Cass. Top Programming Languages 2022. IEEE Spectrum. Aug. 23, 2022.
URL: https://spectrum.ieee.org/top-programming-languages-2022 (visited
on May 4, 2023).

68

https://doi.org/10.1147/sj.442.0399
http://ieeexplore.ieee.org/document/5386722/
http://ieeexplore.ieee.org/document/5386722/
https://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005/
https://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005/
https://doi.org/10.1145/512429.512452
https://dl.acm.org/doi/10.1145/512429.512452
https://dl.acm.org/doi/10.1145/512429.512452
https://doi.org/10.1145/1029873.1029891
https://dl.acm.org/doi/10.1145/1029873.1029891
https://dl.acm.org/doi/10.1145/1029873.1029891
https://doi.org/10.1145/1167473.1167488
https://dl.acm.org/doi/10.1145/1167473.1167488
https://dl.acm.org/doi/10.1145/1167473.1167488
https://openjdk.org/jeps/8230187JEP%20draft:%20Throughput%20post-write%20barrier%20for%20G1
https://openjdk.org/jeps/8230187JEP%20draft:%20Throughput%20post-write%20barrier%20for%20G1
https://bugs.openjdk.org/browse/JDK-8226197
https://bugs.openjdk.org/browse/JDK-8226197
https://spectrum.ieee.org/top-programming-languages-2022

Bibliography

[10] Oracle Corporation. Java Platform, Standard Edition 20 Reference Implementations.
2023. URL: https://jdk.java.net/java-se-ri/20 (visited on Feb. 28, 2023).

[11] Standard Performance Evaluation Corporation. SPECjbb2005. URL: https://www.
spec.org/jbb2005/ (visited on Feb. 17, 2023).

[12] Standard Performance Evaluation Corporation. SPECjvm® 2008. URL: https://
www.spec.org/jvm2008/ (visited on Feb. 17, 2023).

[13] Geoffrey De Smet. How Much Faster Is Java 17? URL: https://www.optaplanner.
org/blog/2021/09/15/HowMuchFasterIsJava17.html (visited on Feb. 17, 2023).

[14] David Detlefs et al. “Garbage-First Garbage Collection”. In: Proceedings of the 4th
International Symposium on Memory Management. ISMM04: 2004 International
Symposium on Memory Management (in Conjunction with OOPSLA 2004 Confer-
ence). Vancouver BC Canada: ACM, Oct. 24, 2004, pp. 37–48. ISBN: 978-1-58113-
945-7. DOI: 10.1145/1029873.1029879. URL: https://dl.acm.org/doi/10.
1145/1029873.1029879 (visited on Feb. 15, 2023).

[15] David Dice. False Sharing Induced by Card Table Marking. Oracle Blogs. URL:
https://web.archive.org/web/20170215224753/https://blogs.oracle.com/
dave/entry/false_sharing_induced_by_card (visited on Feb. 14, 2011).

[16] Stijn Eyerman, James E. Smith, and Lieven Eeckhout. “Characterizing the Branch
Misprediction Penalty”. In: 2006 IEEE International Symposium on Performance
Analysis of Systems and Software. IEEE, 2006, pp. 48–58. ISBN: 1-4244-0186-0.

[17] Christine H. Flood and Roman Kennke. JEP 189: Shenandoah: A Low-Pause-Time
Garbage Collector (Experimental). Aug. 28, 2021. URL: https://openjdk.org/
jeps/189 (visited on Mar. 15, 2023).

[18] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically Rigorous Java
Performance Evaluation”. In: Proceedings of the 22nd Annual ACM SIGPLAN Con-
ference on Object-oriented Programming Systems, Languages and Applications. OOP-
SLA07: ACM SIGPLAN Object Oriented Programming Systems and Applications
Conference. Montreal Quebec Canada: ACM, Oct. 21, 2007, pp. 57–76. ISBN: 978-
1-59593-786-5. DOI: 10.1145/1297027.1297033. URL: https://dl.acm.org/
doi/10.1145/1297027.1297033 (visited on Feb. 16, 2023).

[19] James Gosling et al. The Java® Language Specification. Java SE 19 Edition. Aug. 31,
2022. URL: https://docs.oracle.com/javase/specs/jls/se19/html/index.
html (visited on Mar. 15, 2023).

[20] Webbug Group. Dramatic Difference between UseConcMarkSweepGC and UseG1GC.
JDK Bug System. Feb. 11, 2019. URL: https://bugs.openjdk.org/browse/JDK-
8062128 (visited on Feb. 17, 2023).

[21] Laurence Hellyer, Richard Jones, and Antony L. Hosking. “The Locality of Concur-
rent Write Barriers”. In: Proceedings of the 2010 International Symposium on Mem-
ory Management. ISMM ’10: International Symposium on Memory Management.
Toronto Ontario Canada: ACM, June 5, 2010, pp. 83–92. ISBN: 978-1-4503-0054-4.
DOI: 10.1145/1806651.1806666. URL: https://dl.acm.org/doi/10.1145/
1806651.1806666 (visited on Feb. 15, 2023).

[22] Urs Hölzle. “A Fast Write Barrier for Generational Garbage Collectors”. In: OOP-
SLA/ECOOP. Vol. 93. Citeseer, 1993.

69

https://jdk.java.net/java-se-ri/20
https://www.spec.org/jbb2005/
https://www.spec.org/jbb2005/
https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/
https://www.optaplanner.org/blog/2021/09/15/HowMuchFasterIsJava17.html
https://www.optaplanner.org/blog/2021/09/15/HowMuchFasterIsJava17.html
https://doi.org/10.1145/1029873.1029879
https://dl.acm.org/doi/10.1145/1029873.1029879
https://dl.acm.org/doi/10.1145/1029873.1029879
https://web.archive.org/web/20170215224753/https://blogs.oracle.com/dave/entry/false_sharing_induced_by_card
https://web.archive.org/web/20170215224753/https://blogs.oracle.com/dave/entry/false_sharing_induced_by_card
https://openjdk.org/jeps/189
https://openjdk.org/jeps/189
https://doi.org/10.1145/1297027.1297033
https://dl.acm.org/doi/10.1145/1297027.1297033
https://dl.acm.org/doi/10.1145/1297027.1297033
https://docs.oracle.com/javase/specs/jls/se19/html/index.html
https://docs.oracle.com/javase/specs/jls/se19/html/index.html
https://bugs.openjdk.org/browse/JDK-8062128
https://bugs.openjdk.org/browse/JDK-8062128
https://doi.org/10.1145/1806651.1806666
https://dl.acm.org/doi/10.1145/1806651.1806666
https://dl.acm.org/doi/10.1145/1806651.1806666

Bibliography

[23] Antony L. Hosking, J. Eliot B. Moss, and Darko Stefanovic. “A Comparative Per-
formance Evaluation of Write Barrier Implementation”. In: ACM SIGPLAN Notices
27.10 (Oct. 31, 1992), pp. 92–109. ISSN: 0362-1340, 1558-1160. DOI: 10.1145/
141937.141946. URL: https://dl.acm.org/doi/10.1145/141937.141946
(visited on Feb. 16, 2023).

[24] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual. Vol. Volume
3 (3A, 3B, 3C, & 3D): System Programming Guide. Mar. 2023. URL: https://
www.intel.com/content/www/us/en/developer/articles/technical/intel-
sdm.html (visited on Apr. 7, 2023).

[25] Stefan Johansson. JEP 248: Make G1 the Default Garbage Collector. Sept. 12, 2017.
URL: https://openjdk.org/jeps/248 (visited on Feb. 28, 2023).

[26] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Handbook:
The Art of Automatic Memory Management. Taylor & Francis Group, 6000 Broken
Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, Aug. 19,
2011. ISBN: 978-1-4200-8279-1 978-1-315-38801-4. DOI: 10.1201/9781315388021.
URL: https : / / www . taylorfrancis . com / books / 9781315388014 (visited on
Feb. 15, 2023).

[27] Roman Kennke. JEP 304: Garbage Collector Interface. Apr. 9, 2018. URL: https:
//openjdk.org/jeps/304 (visited on Mar. 15, 2023).

[28] B. Lang and F. Dupont. “Incremental Incrementally Compacting Garbage Collec-
tion”. In: ACM SIGPLAN Notices 22.7 (July 1987), pp. 253–263. ISSN: 0362-1340,
1558-1160. DOI: 10.1145/960114.29677. URL: https://dl.acm.org/doi/10.
1145/960114.29677 (visited on May 5, 2023).

[29] Doug Lea. The JSR-133 Cookbook for Compiler Writers. Mar. 22, 2011. URL: https:
//gee.cs.oswego.edu/dl/jmm/cookbook.html (visited on Mar. 25, 2023).

[30] Philipp Lengauer et al. “A Comprehensive Java Benchmark Study on Memory and
Garbage Collection Behavior of DaCapo, DaCapo Scala, and SPECjvm2008”. In:
Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering. ICPE ’17: ACM/SPEC International Conference on Performance En-
gineering. L’Aquila Italy: ACM, Apr. 17, 2017, pp. 3–14. ISBN: 978-1-4503-4404-3.
DOI: 10.1145/3030207.3030211. URL: https://dl.acm.org/doi/10.1145/
3030207.3030211 (visited on Feb. 17, 2023).

[31] Per Liden and Stefan Karlsson. JEP 333: ZGC: A Scalable Low-Latency Garbage
Collector (Experimental). Mar. 13, 2020. URL: https://openjdk.org/jeps/333
(visited on Mar. 10, 2023).

[32] Henry Lieberman and Carl Hewitt. “A Real-Time Garbage Collector Based on the
Lifetimes of Objects”. In: Communications of the ACM 26.6 (June 1983), pp. 419–
429. ISSN: 0001-0782, 1557-7317. DOI: 10.1145/358141.358147. URL: https:
//dl.acm.org/doi/10.1145/358141.358147 (visited on Mar. 23, 2023).

[33] Arm Limited. Learn the Architecture - Memory Systems, Ordering, and Barriers.
June 10, 2022. URL: https://developer.arm.com/documentation/102336/0100
(visited on Apr. 10, 2023).

[34] Tim Lindholm et al. The Java® Virtual Machine Specification. Java SE 19 Edition.
Aug. 31, 2022. URL: https://docs.oracle.com/javase/specs/jvms/se19/
html/index.html (visited on Feb. 28, 2023).

70

https://doi.org/10.1145/141937.141946
https://doi.org/10.1145/141937.141946
https://dl.acm.org/doi/10.1145/141937.141946
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://openjdk.org/jeps/248
https://doi.org/10.1201/9781315388021
https://www.taylorfrancis.com/books/9781315388014
https://openjdk.org/jeps/304
https://openjdk.org/jeps/304
https://doi.org/10.1145/960114.29677
https://dl.acm.org/doi/10.1145/960114.29677
https://dl.acm.org/doi/10.1145/960114.29677
https://gee.cs.oswego.edu/dl/jmm/cookbook.html
https://gee.cs.oswego.edu/dl/jmm/cookbook.html
https://doi.org/10.1145/3030207.3030211
https://dl.acm.org/doi/10.1145/3030207.3030211
https://dl.acm.org/doi/10.1145/3030207.3030211
https://openjdk.org/jeps/333
https://doi.org/10.1145/358141.358147
https://dl.acm.org/doi/10.1145/358141.358147
https://dl.acm.org/doi/10.1145/358141.358147
https://developer.arm.com/documentation/102336/0100
https://docs.oracle.com/javase/specs/jvms/se19/html/index.html
https://docs.oracle.com/javase/specs/jvms/se19/html/index.html

Bibliography

[35] John McCarthy. “Recursive Functions of Symbolic Expressions and Their Com-
putation by Machine, Part I”. In: Communications of the ACM 3.4 (Apr. 1960),
pp. 184–195. ISSN: 0001-0782, 1557-7317. DOI: 10.1145/367177.367199. URL:
https://dl.acm.org/doi/10.1145/367177.367199 (visited on Mar. 16, 2023).

[36] OpenJDK. Building the JDK. URL: https://openjdk.org/groups/build/doc/
building.html (visited on May 13, 2023).

[37] OpenJDK. HotSpot Glossary of Terms. URL: https://openjdk.org/groups/
hotspot/docs/HotSpotGlossary.html (visited on Mar. 15, 2023).

[38] OpenJDK. HotSpot Runtime Overview. URL: https://openjdk.org/groups/
hotspot/docs/RuntimeOverview.html (visited on Mar. 15, 2023).

[39] OpenJDK. Java Microbenchmark Harness (JMH). URL: https://github.com/
openjdk/jmh (visited on May 12, 2023).

[40] OpenJDK. JDK 20. Jan. 24, 2023. URL: https://openjdk.org/projects/jdk/
20/ (visited on Feb. 28, 2023).

[41] OpenJDK. The HotSpot Group. URL: https://openjdk.org/groups/hotspot/
(visited on Feb. 28, 2023).

[42] Oracle. Available Collectors. HotSpot Virtual Machine Garbage Collection Tuning
Guide. URL: https : / / docs . oracle . com / en / java / javase / 19 / gctuning /
available-collectors.html (visited on Mar. 15, 2023).

[43] Oracle. cardTableBarrierSetAssembler_x86.Cpp. JDK20. Aug. 30, 2022. URL: https:
//github.com/openjdk/jdk20/blob/master/src/hotspot/cpu/x86/gc/shared/
cardTableBarrierSetAssembler_x86.cpp (visited on Feb. 28, 2023).

[44] Oracle. collectedHeap.Hpp. JDK20. Nov. 3, 2022. URL: https://github.com/
openjdk/jdk20/blob/master/src/hotspot/share/gc/shared/collectedHeap.
hpp (visited on Mar. 15, 2023).

[45] Oracle. g1BarrierSetAssembler_x86.Cpp. JDK20. Sept. 6, 2022. URL: https://
github.com/openjdk/jdk20/blob/master/src/hotspot/cpu/x86/gc/g1/
g1BarrierSetAssembler_x86.cpp (visited on Feb. 28, 2023).

[46] Oracle. g1BarrierSetC1.Cpp. JDK20. Sept. 12, 2022. URL: https://github.com/
openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/c1/g1BarrierSetC1.
cpp (visited on Mar. 25, 2023).

[47] Oracle. g1BarrierSetC2.Cpp. JDK20. Oct. 26, 2022. URL: https://github.com/
openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/c2/g1BarrierSetC2.
cpp (visited on Mar. 25, 2023).

[48] Oracle. g1DirtyCardQueue.Cpp. JDK20. Nov. 25, 2022. URL: https://github.
com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/g1DirtyCardQueue.
cpp (visited on Mar. 25, 2023).

[49] Oracle. g1YoungCollector.Cpp. JDK20. Dec. 6, 2022. URL: https://github.com/
openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/g1YoungCollector.
cpp (visited on Mar. 31, 2023).

[50] Oracle. Garbage-First (G1) Garbage Collector. HotSpot Virtual Machine Garbage
Collection Tuning Guide. URL: https://docs.oracle.com/en/java/javase/
19/gctuning/garbage-first-g1-garbage-collector1.html (visited on Feb. 28,
2023).

71

https://doi.org/10.1145/367177.367199
https://dl.acm.org/doi/10.1145/367177.367199
https://openjdk.org/groups/build/doc/building.html
https://openjdk.org/groups/build/doc/building.html
https://openjdk.org/groups/hotspot/docs/HotSpotGlossary.html
https://openjdk.org/groups/hotspot/docs/HotSpotGlossary.html
https://openjdk.org/groups/hotspot/docs/RuntimeOverview.html
https://openjdk.org/groups/hotspot/docs/RuntimeOverview.html
https://github.com/openjdk/jmh
https://github.com/openjdk/jmh
https://openjdk.org/projects/jdk/20/
https://openjdk.org/projects/jdk/20/
https://openjdk.org/groups/hotspot/
https://docs.oracle.com/en/java/javase/19/gctuning/available-collectors.html
https://docs.oracle.com/en/java/javase/19/gctuning/available-collectors.html
https://github.com/openjdk/jdk20/blob/master/src/hotspot/cpu/x86/gc/shared/cardTableBarrierSetAssembler_x86.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/cpu/x86/gc/shared/cardTableBarrierSetAssembler_x86.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/cpu/x86/gc/shared/cardTableBarrierSetAssembler_x86.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/shared/collectedHeap.hpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/shared/collectedHeap.hpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/shared/collectedHeap.hpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/cpu/x86/gc/g1/g1BarrierSetAssembler_x86.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/cpu/x86/gc/g1/g1BarrierSetAssembler_x86.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/cpu/x86/gc/g1/g1BarrierSetAssembler_x86.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/c1/g1BarrierSetC1.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/c1/g1BarrierSetC1.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/c1/g1BarrierSetC1.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/c2/g1BarrierSetC2.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/c2/g1BarrierSetC2.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/c2/g1BarrierSetC2.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/g1DirtyCardQueue.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/g1DirtyCardQueue.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/g1DirtyCardQueue.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/g1YoungCollector.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/g1YoungCollector.cpp
https://github.com/openjdk/jdk20/blob/master/src/hotspot/share/gc/g1/g1YoungCollector.cpp
https://docs.oracle.com/en/java/javase/19/gctuning/garbage-first-g1-garbage-collector1.html
https://docs.oracle.com/en/java/javase/19/gctuning/garbage-first-g1-garbage-collector1.html

Bibliography

[51] Oracle. Java Support for Large Memory Pages. URL: https://www.oracle.com/
java/technologies/javase/largememory-pages.html (visited on May 11, 2023).

[52] Oracle. Java Virtual Machine Technology Overview. Java Virtual Machine Guide.
URL: https://docs.oracle.com/en/java/javase/19/vm/java- virtual-
machine-technology-overview.html (visited on Mar. 15, 2023).

[53] Oracle. The Java Command. URL: https://docs.oracle.com/en/java/javase/
20/docs/specs/man/java.html (visited on May 12, 2023).

[54] Oracle. The Parallel Collector. HotSpot Virtual Machine Garbage Collection Tuning
Guide. URL: https : / / docs . oracle . com / en / java / javase / 19 / gctuning /
parallel-collector1.html (visited on Mar. 1, 2023).

[55] Oracle. The Z Garbage Collector. HotSpot Virtual Machine Garbage Collection Tun-
ing Guide. URL: https://docs.oracle.com/en/java/javase/19/gctuning/z-
garbage-collector.html (visited on Mar. 10, 2023).

[56] Oracle. Timeline of Key Java Milestones. 2020. URL: https://www.oracle.com/
java/moved-by-java/timeline/ (visited on Feb. 28, 2023).

[57] Oracle. WriteBarrier.Java. Version jdk20. Aug. 3, 2022. URL: https://github.
com / openjdk / jdk20 / blob / master / test / micro / org / openjdk / bench / vm /
compiler/WriteBarrier.java (visited on Feb. 17, 2023).

[58] Aleksandar Prokopec et al. “Renaissance: Benchmarking Suite for Parallel Applica-
tions on the JVM”. In: Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’19: 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. Phoenix AZ
USA: ACM, June 8, 2019, pp. 31–47. ISBN: 978-1-4503-6712-7. DOI: 10.1145/
3314221.3314637. URL: https://dl.acm.org/doi/10.1145/3314221.3314637
(visited on Feb. 16, 2023).

[59] Jevgenijs Protopopovs. Jdk. URL: https://github.com/protopopov1122/jdk.
[60] Jevgenijs Protopopovs. Tp-Remset-Investigation-Benchmark-Runners. URL: https:

//github.com/protopopov1122/tp-remset-investigation-benchmark-runners
(visited on May 12, 2023).

[61] Thomas Schatzl. Card Table Card Size Shenanigans. Feb. 15, 2022. URL: https:
//tschatzl.github.io/2022/02/15/card-table-card-size.html (visited on
June 19, 2023).

[62] Thomas Schatzl. Concurrent Marking in G1. Aug. 4, 2022. URL: https://tschatzl.
github.io/2022/08/04/concurrent-marking.html (visited on Mar. 23, 2023).

[63] Thomas Schatzl. Contention on Allocating New TLABs Constrains Throughput on
G1. JDK Bug System. July 16, 2019. URL: https://bugs.openjdk.org/browse/
JDK-8131668 (visited on Mar. 13, 2023).

[64] Thomas Schatzl. G1 20% Slower than Parallel in JRuby Rubykon Benchmark. JDK
Bug System. Nov. 15, 2022. URL: https://bugs.openjdk.org/browse/JDK-
8253230 (visited on Feb. 17, 2023).

[65] Thomas Schatzl. G1 Compares Badly to Parallel GC on Throughput on Javac Bench-
mark. JDK Bug System. Sept. 16, 2020. URL: https://bugs.openjdk.org/
browse/JDK-8132937 (visited on Feb. 17, 2023).

72

https://www.oracle.com/java/technologies/javase/largememory-pages.html
https://www.oracle.com/java/technologies/javase/largememory-pages.html
https://docs.oracle.com/en/java/javase/19/vm/java-virtual-machine-technology-overview.html
https://docs.oracle.com/en/java/javase/19/vm/java-virtual-machine-technology-overview.html
https://docs.oracle.com/en/java/javase/20/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/20/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/19/gctuning/parallel-collector1.html
https://docs.oracle.com/en/java/javase/19/gctuning/parallel-collector1.html
https://docs.oracle.com/en/java/javase/19/gctuning/z-garbage-collector.html
https://docs.oracle.com/en/java/javase/19/gctuning/z-garbage-collector.html
https://www.oracle.com/java/moved-by-java/timeline/
https://www.oracle.com/java/moved-by-java/timeline/
https://github.com/openjdk/jdk20/blob/master/test/micro/org/openjdk/bench/vm/compiler/WriteBarrier.java
https://github.com/openjdk/jdk20/blob/master/test/micro/org/openjdk/bench/vm/compiler/WriteBarrier.java
https://github.com/openjdk/jdk20/blob/master/test/micro/org/openjdk/bench/vm/compiler/WriteBarrier.java
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1145/3314221.3314637
https://dl.acm.org/doi/10.1145/3314221.3314637
https://github.com/protopopov1122/jdk
https://github.com/protopopov1122/tp-remset-investigation-benchmark-runners
https://github.com/protopopov1122/tp-remset-investigation-benchmark-runners
https://tschatzl.github.io/2022/02/15/card-table-card-size.html
https://tschatzl.github.io/2022/02/15/card-table-card-size.html
https://tschatzl.github.io/2022/08/04/concurrent-marking.html
https://tschatzl.github.io/2022/08/04/concurrent-marking.html
https://bugs.openjdk.org/browse/JDK-8131668
https://bugs.openjdk.org/browse/JDK-8131668
https://bugs.openjdk.org/browse/JDK-8253230
https://bugs.openjdk.org/browse/JDK-8253230
https://bugs.openjdk.org/browse/JDK-8132937
https://bugs.openjdk.org/browse/JDK-8132937

Bibliography

[66] Thomas Schatzl. Guarantee Non-Humongous Object Allocation in Young Gen. JDK
Bug System. Apr. 6, 2022. URL: https://bugs.openjdk.org/browse/JDK-
8191342 (visited on Mar. 13, 2023).

[67] Thomas Schatzl. Purge CLDG Concurrently in G1. JDK Bug System. Mar. 18, 2019.
URL: https://bugs.openjdk.org/browse/JDK-8219643 (visited on Mar. 13,
2023).

[68] Thomas Schatzl. Remove StoreLoad in G1 Post Barrier. JDK Bug System. Sept. 16,
2020. URL: https://bugs.openjdk.org/browse/JDK-8226731 (visited on Mar. 13,
2023).

[69] Thomas Schatzl. Threads May Do Significant Work out of the Non-Shared Overflow
Buffer. JDK Bug System. URL: https : / / bugs . openjdk . org / browse / JDK -
8152438 (visited on Feb. 17, 2023).

[70] Aleksey Shipilev. JEP 318: Epsilon: A No-Op Garbage Collector (Experimental).
Sept. 24, 2018. URL: https://openjdk.org/jeps/318 (visited on Mar. 15, 2023).

[71] Patrick Sobalvarro. “A Lifetime-Based Garbage Collector for LISP Systems on
General-Purpose Computers”. In: (1988).

[72] TIOBE. TIOBE Index for February 2023. Feb. 2023. URL: https://www.tiobe.
com/tiobe-index/ (visited on Feb. 28, 2023).

[73] P. R. Wilson and T. G. Moher. “A “Card-Marking” Scheme for Controlling Intergen-
erational References in Generation-Based Garbage Collection on Stock Hardware”.
In: ACM SIGPLAN Notices 24.5 (May 1989), pp. 87–92. ISSN: 0362-1340, 1558-
1160. DOI: 10.1145/66068.66077. URL: https://dl.acm.org/doi/10.1145/
66068.66077 (visited on Feb. 15, 2023).

[74] Xi Yang et al. “Barriers Reconsidered, Friendlier Still!” In: ACM SIGPLAN No-
tices 47.11 (Jan. 8, 2013), pp. 37–48. ISSN: 0362-1340, 1558-1160. DOI: 10.1145/
2426642.2259004. URL: https://dl.acm.org/doi/10.1145/2426642.2259004
(visited on Feb. 15, 2023).

[75] Taiichi Yuasa. “Real-Time Garbage Collection on General-Purpose Machines”. In:
Journal of Systems and Software 11.3 (1990), pp. 181–198.

[76] Wenyu Zhao and Stephen M. Blackburn. “Deconstructing the Garbage-First Collec-
tor”. In: Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments. VEE ’20: 16th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments. Lausanne Switzerland:
ACM, Mar. 17, 2020, pp. 15–29. ISBN: 978-1-4503-7554-2. DOI: 10.1145/3381052.
3381320. URL: https://dl.acm.org/doi/10.1145/3381052.3381320 (visited on
Feb. 15, 2023).

[77] Benjamin Zorn. Barrier Methods for Garbage Collection. Citeseer, 1990.

73

https://bugs.openjdk.org/browse/JDK-8191342
https://bugs.openjdk.org/browse/JDK-8191342
https://bugs.openjdk.org/browse/JDK-8219643
https://bugs.openjdk.org/browse/JDK-8226731
https://bugs.openjdk.org/browse/JDK-8152438
https://bugs.openjdk.org/browse/JDK-8152438
https://openjdk.org/jeps/318
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/66068.66077
https://dl.acm.org/doi/10.1145/66068.66077
https://dl.acm.org/doi/10.1145/66068.66077
https://doi.org/10.1145/2426642.2259004
https://doi.org/10.1145/2426642.2259004
https://dl.acm.org/doi/10.1145/2426642.2259004
https://doi.org/10.1145/3381052.3381320
https://doi.org/10.1145/3381052.3381320
https://dl.acm.org/doi/10.1145/3381052.3381320

Appendix A

Source code listings

A.1 G1 post-write barrier for x86_64
1 ; %r11 = store location
2 ; %ebx = reference (compressed)
3 ; %r12b = 0
4 ;
5 ; Fast-path
6 ; Cross-region check:
7 da3b: xorq %r11, %r10
8 da3e: shrq $0x15, %r10
9 da42: testq %r10, %r10

10 da45: je 0x22
11 ; Null pointer check:
12 da47: testl %ebx, %ebx
13 da49: je 0x1e
14 ; Card address calculation:
15 da4b: shrq $0x9, %r11
16 da4f: movabsq $0x7f48d0c00000, %rdi
17 da59: addq %r11, %rdi
18 da5c: nopl (%rax)
19 ; Young gen. card check:
20 da60: cmpb $0x2, (%rdi)
21 da63: jne 0x166 ; => slow-path
22

23 ; Slow-path
24 ; Thread-local dirty card buffer:
25 dbcf: movq 0x48(%r15), %r10
26 dbd3: movq 0x58(%r15), %r11
27 ; Memory barrier:
28 dbd7: lock
29 dbd8: addl $0x0, -0x40(%rsp)
30 dbdd: nop
31 ; Dirty card check:
32 dbe0: cmpb $0x0, (%rdi)
33 dbe3: je -0x180
34 ; Dirty the card:
35 dbe9: movb %r12b, (%rdi)
36 ; Check if the buffer is full
37 dbec: testq %r10, %r10
38 dbef: jne 0x21
39 ; If full => call runtime

74

Appendix A. Source code listings

40 dbf1: movq %r15, %rsi
41 dbf4: nopl (%rax,%rax)
42 dbfc: nop
43 dc00: movabsq $0x7f48f236f860, %r10
44 dc0a: callq *%r10
45 dc0d: jmp -0x1a9
46 ; Else => enqueue the card
47 dc12: movq %rdi, -0x8(%r11,%r10)
48 dc17: addq $-0x8, %r10
49 dc1b: movq %r10, 0x48(%r15)
50 dc1f: nop
51 dc20: jmp -0x1bc

A.2 “Raw Parallel” barrier for x86_64
1 ; %r10 = store location
2 ; %ebp = reference (compressed)
3 ; %r12b = 0
4 ;
5 c9211: shrq $0x9, %r10
6 c9215: movabsq $0x7f4975093000, %r14
7 c921f: movb %r12b, (%r14,%r10)

A.3 “Long” barrier for x86_64
1 ; %r10 = store location
2 ; %ebp = reference (compressed)
3 ; %r12b = 0
4 ;
5 ; Cross-region check
6 c923d: xorq %r11, %r10
7 c9240: shrq $0x15, %r10
8 c9244: movabsq $0x7f0f5617b000, %r14
9 c924e: testq %r10, %r10

10 c9251: je 0x1e
11 ; Null pointer check
12 c9253: testl %ebp, %ebp
13 c9255: je 0x1a
14 ; Card address calculation
15 c9257: shrq $0x9, %r11
16 c925b: movabsq $0x7f0f5617b000, %r10
17 c9265: addq %r11, %r10
18 ; Dirty chard check
19 c9268: cmpb $0x0, (%r10)
20 c926c: je 0x3
21 ; Dirty the card
22 c926e: movb %r12b, (%r10)

75

Appendix B

Throughput-oriented garbage collector
configuration

Throughput-oriented G1 garbage collector behavior is controlled by the JVM flags de-
scribed in the table 4. These flags can be configured at startup time only in debug builds.
In release builds their values need to be set at build time in accordance with the table 5 —
the macros have to be specified in a form -DTP_REMSET_INVESTIGATION_*_FLAG=true|false
in extra-cxxflags parameter of configuration script.

HotSpot flag Description
G1TpRemsetInvestigationRawParallelBarrier Controls whether the “Raw Paral-

lel” barrier variant is enabled over
the default “Long” barrier.

G1TpRemsetInvestigationDirectUpdate Controls whether direct remem-
bered set update optimization is
applied.

G1TpRemsetInvestigationPostevacRefine Controls whether post-evacuation
refinement is enabled. The default
behavior is disabled refinement.

G1TpRemsetInvestigationConcurrentRefine Controls whether partial concur-
rent refinement is enabled; con-
flicts with the previous option.

G1TpRemsetInvestigationDirtyChunkAtBarrier Controls whether chunk dirtying is
included into the barrier.

Table 4: Throughput-oriented garbage collector configuration options

G1TpRemsetInvestigation... Macro name
RawParallelBarrier RAW_PARALLEL_BARRIER
DirectUpdate DIRECT_UPDATE
PostevacRefine POSTEVAC_REFINE
ConcurrentRefine CONCURRENT_REFINE
DirtyChunkAtBarrier DIRTY_CHUNK_AT_BARRIER

Table 5: Throughput-oriented garbage collector configuration macros

76

Appendix B. Throughput-oriented garbage collector configuration

Therefore, the“Long” collector variant is configured as follows:

-DTP_REMSET_INVESTIGATION_RAW_PARALLEL_BARRIER_FLAG=false
-DTP_REMSET_INVESTIGATION_DIRECT_UPDATE_FLAG=false
-DTP_REMSET_INVESTIGATION_POSTEVAC_REFINE_FLAG=false
-DTP_REMSET_INVESTIGATION_CONCURRENT_REFINE_FLAG=true
-DTP_REMSET_INVESTIGATION_DIRTY_CHUNK_AT_BARRIER_FLAG=false

Whereas the options for “Raw Parallel” collector variant are:

-DTP_REMSET_INVESTIGATION_RAW_PARALLEL_BARRIER_FLAG=true
-DTP_REMSET_INVESTIGATION_DIRECT_UPDATE_FLAG=false
-DTP_REMSET_INVESTIGATION_POSTEVAC_REFINE_FLAG=false
-DTP_REMSET_INVESTIGATION_CONCURRENT_REFINE_FLAG=false
-DTP_REMSET_INVESTIGATION_DIRTY_CHUNK_AT_BARRIER_FLAG=false

77

Appendix C

Benchmark suite throughput results

Figure 9: CompilerSpeed benchmark results

78

Appendix C. Benchmark suite throughput results

Figure 10: DaCapo benchmark results

Figure 11: DaCapo large workload benchmark results

79

Appendix C. Benchmark suite throughput results

Figure 12: DaCapo huge workload benchmark results

Figure 13: DelayInducer benchmark results

80

Appendix C. Benchmark suite throughput results

Figure 14: SPECjbb2005 benchmark results

Figure 15: pjbb2005 benchmark results

81

Appendix C. Benchmark suite throughput results

Figure 16: Rubykon benchmark results

82

Appendix C. Benchmark suite throughput results

Figure 17: Optaplanner benchmark results

83

Appendix C. Benchmark suite throughput results

Figure 18: Renaissance benchmark results

84

Appendix C. Benchmark suite throughput results

Figure 19: (Part 1) SPECjvm2008 benchmark results

85

Appendix C. Benchmark suite throughput results

Figure 20: (Part 2) SPECjvm2008 benchmark results

86

Appendix C. Benchmark suite throughput results

Figure 21: BigRamTester performance decomposition

87

Appendix C. Benchmark suite throughput results

Benchmark Baseline G1 “Long” variant “Raw Parallel”
variant

Parallel Collec-
tor

CompilerSpeed 1.0000 0.9979 1.0778 1.0193
DaCapo 1.0000 0.9988 1.0020 0.9693
DelayInducer 1.0000 1.8127 1.8216 1.3050
SPECjbb2005 1.0000 1.0066 1.0215 1.0450
Optaplanner 1.0000 1.0431 1.1067 1.1712
pjbb2005 1.0000 1.0141 1.0207 1.0262
Renaissance 1.0000 1.0210 1.0291 1.0634
Rubykon 1.0000 1.0641 1.1691 1.2058
SPECjvm2008 1.0000 1.0022 1.0041 1.0180
BigRamTester 1.0000 1.0412 1.0672 1.5256

Table 6: Mean throughput of benchmark suite

Benchmark Mean 5th Percentile 95th Percentile
CompilerSpeed

15x6 1.0000 0.9931 1.0069
60x6 1.0000 0.9969 1.0031
180x6 1.0000 0.9968 1.0032

DaCapo
batik 1.0000 0.9950 1.0050
biojava 1.0000 0.9769 1.0231
eclipse 1.0000 0.9941 1.0059
fop 1.0000 0.9634 1.0366
graphchi 1.0000 0.9763 1.0237
jython 1.0000 0.9818 1.0182
luindex 1.0000 0.9404 1.0596
lusearch 1.0000 0.9866 1.0134
sunflow 1.0000 0.9466 1.0534
xalan 1.0000 0.9954 1.0046
zxing 1.0000 0.9723 1.0277
avrora 1.0000 0.9934 1.0066
pmd 1.0000 0.9636 1.0364
sunflow (large) 1.0000 0.9859 1.0141
h2 1.0000 0.9617 1.0383

DelayInducer
1.0000 0.9959 1.0041

Optaplanner
1 1.0000 0.9799 1.0201
2 1.0000 0.9914 1.0086
3 1.0000 0.9329 1.0671
4 1.0000 0.9789 1.0211
5 1.0000 0.9891 1.0109
6 1.0000 0.9775 1.0225
7 1.0000 0.9893 1.0107
8 1.0000 0.9868 1.0132
9 1.0000 0.9791 1.0209
10 1.0000 0.9854 1.0146
11 1.0000 0.9681 1.0319

pjbb2005
1
2
4 1.0000 1.0000 1.0000

88

Appendix C. Benchmark suite throughput results

6 1.0000 0.9885 1.0115
8 1.0000 0.9873 1.0127
12 1.0000 0.9873 1.0127
16 1.0000 0.9953 1.0047

Renaissance
akka-uct 1.0000 0.9924 1.0076
als 1.0000 0.9551 1.0449
chi-square 1.0000 0.9850 1.0150
dec-tree 1.0000 0.9210 1.0790
dotty 1.0000 0.9029 1.0971
finagle-chirper 1.0000 0.9836 1.0164
finagle-http 1.0000 0.9127 1.0873
fj-kmeans 1.0000 0.9962 1.0038
future-genetic 1.0000 0.9979 1.0021
gauss-mix 1.0000 0.9633 1.0367
log-regression 1.0000 0.8658 1.1342
mnemonics 1.0000 0.9897 1.0103
movie-lens 1.0000 0.9856 1.0144
naive-bayes 1.0000 0.8969 1.1031
page-rank 1.0000 0.9475 1.0525
par-mnemonics 1.0000 0.9819 1.0181
philosophers 1.0000 0.9882 1.0118
reactors 1.0000 0.9772 1.0228
scala-doku 1.0000 0.9811 1.0189
scala-kmeans 1.0000 0.9889 1.0111

Rubykon
19x19 1000 1.0000 0.9956 1.0044

SPECjbb2005
1 1.0000 0.9937 1.0063
2 1.0000 0.9918 1.0082
4 1.0000 0.9921 1.0079
6 1.0000 0.9913 1.0087
8 1.0000 0.9928 1.0072
12 1.0000 0.9941 1.0059
16 1.0000 0.9939 1.0061

SPECjvm2008
compress 1.0000 0.9899 1.0101
crypto.aes 1.0000 0.9807 1.0193
crypto.rsa 1.0000 0.9979 1.0021
crypto.signverify 1.0000 0.9976 1.0024
derby 1.0000 0.9435 1.0565
mpegaudio 1.0000 0.9557 1.0443
scimark.fft.large 1.0000 0.9942 1.0058
scimark.fft.small 1.0000 0.9807 1.0193
scimark.lu.large 1.0000 0.9940 1.0060
scimark.lu.small 1.0000 0.9621 1.0379
scimark.sor.large 1.0000 0.9990 1.0010
scimark.sor.small 1.0000 0.9921 1.0079
scimark.sparse.large 1.0000 0.9856 1.0144
scimark.sparse.small 1.0000 0.9049 1.0951
serial 1.0000 0.9666 1.0334
startup.compress 1.0000 0.9774 1.0226
startup.crypto.aes 1.0000 0.9073 1.0927
startup.crypto.rsa 1.0000 0.9333 1.0667
startup.crypto.signverify 1.0000 0.9848 1.0152

89

Appendix C. Benchmark suite throughput results

startup.helloworld 1.0000 0.9813 1.0187
startup.mpegaudio 1.0000 0.9862 1.0138
startup.scimark.fft 1.0000 0.9877 1.0123
startup.scimark.lu 1.0000 0.9908 1.0092
startup.scimark.sor 1.0000 0.9930 1.0070
startup.scimark.sparse 1.0000 0.9378 1.0622
startup.serial 1.0000 0.9787 1.0213
startup.sunflow 1.0000 0.9550 1.0450
startup.xml.transform 1.0000 0.9936 1.0064
startup.xml.validation 1.0000 0.9834 1.0166
sunflow 1.0000 0.9708 1.0292
xml.transform 1.0000 0.9731 1.0269
xml.validation 1.0000 0.9545 1.0455

Table 7: Throughput of benchmark suite with the baseline G1

Benchmark Mean 5th Percentile 95th Percentile
CompilerSpeed

15x6 0.9861 0.9802 0.9920
60x6 1.0006 0.9973 1.0039
180x6 1.0071 1.0045 1.0097

DaCapo
batik 1.0051 1.0011 1.0091
biojava 1.0044 0.9852 1.0238
eclipse 1.0034 1.0008 1.0060
fop 0.9937 0.9764 1.0112
graphchi 1.0033 0.9796 1.0271
jython 1.0105 0.9981 1.0229
luindex 1.0542 0.9980 1.1105
lusearch 0.9996 0.9819 1.0173
sunflow 0.9729 0.8985 1.0472
xalan 0.9905 0.9814 0.9996
zxing 1.0027 0.9897 1.0157
avrora 0.9968 0.9929 1.0007
pmd 0.9602 0.9449 0.9756
sunflow (large) 0.9975 0.9718 1.0232
h2 0.9890 0.9736 1.0045

DelayInducer
1.8126 1.8050 1.8201

Optaplanner
1 1.0798 1.0612 1.0984
2 1.0827 1.0741 1.0914
3 1.0161 0.9765 1.0556
4 1.0132 0.9988 1.0276
5 1.0241 1.0092 1.0389
6 1.0380 1.0240 1.0520
7 1.0217 1.0046 1.0389
8 1.0114 0.9936 1.0292
9 1.0579 1.0305 1.0852
10 1.0544 1.0362 1.0726
11 1.0790 1.0357 1.1222

pjbb2005
1
2

90

Appendix C. Benchmark suite throughput results

4 1.0000 1.0000 1.0000
6 1.0242 1.0132 1.0352
8 1.0198 1.0137 1.0259
12 1.0119 0.9977 1.0260
16 1.0149 1.0061 1.0236

Renaissance
akka-uct 1.0067 0.9991 1.0142
als 0.9908 0.9468 1.0348
chi-square 1.0076 0.9933 1.0218
dec-tree 1.0040 0.9250 1.0830
dotty 0.9971 0.9000 1.0943
finagle-chirper 1.0179 1.0004 1.0355
finagle-http 1.0105 0.9168 1.1044
fj-kmeans 1.0088 1.0055 1.0121
future-genetic 1.0162 1.0143 1.0180
gauss-mix 1.0088 0.9710 1.0466
log-regression 0.9989 0.8636 1.1342
mnemonics 1.0354 1.0316 1.0392
movie-lens 1.0008 0.9871 1.0145
naive-bayes 1.0361 0.9255 1.1466
page-rank 1.0641 1.0048 1.1233
par-mnemonics 1.0669 1.0419 1.0919
philosophers 1.0967 1.0836 1.1098
reactors 1.0779 1.0488 1.1071
scala-doku 0.9926 0.9755 1.0095
scala-kmeans 0.9908 0.9806 1.0009

Rubykon
19x19 1000 1.0641 1.0597 1.0685

SPECjbb2005
1 0.9954 0.9844 1.0064
2 0.9994 0.9920 1.0068
4 1.0066 1.0031 1.0101
6 1.0073 1.0009 1.0137
8 1.0100 1.0063 1.0136
12 1.0135 1.0118 1.0153
16 1.0141 1.0105 1.0176

SPECjvm2008
compress 0.9901 0.9820 0.9981
crypto.aes 0.9176 0.8884 0.9468
crypto.rsa 0.9928 0.9894 0.9962
crypto.signverify 0.9994 0.9953 1.0036
derby 1.0184 1.0102 1.0265
mpegaudio 1.0228 1.0159 1.0296
scimark.fft.large 0.9987 0.9922 1.0052
scimark.fft.small 0.9864 0.9601 1.0127
scimark.lu.large 0.9964 0.9946 0.9982
scimark.lu.small 1.0349 0.9861 1.0837
scimark.sor.large 0.9996 0.9982 1.0010
scimark.sor.small 0.9993 0.9920 1.0066
scimark.sparse.large 0.9983 0.9800 1.0167
scimark.sparse.small 1.0176 0.9008 1.1345
serial 1.0106 0.9866 1.0346
startup.compress 1.0053 0.9838 1.0268
startup.crypto.aes 0.9672 0.8522 1.0821
startup.crypto.rsa 1.0399 0.9765 1.1034

91

Appendix C. Benchmark suite throughput results

startup.crypto.signverify 0.9718 0.9546 0.9890
startup.helloworld 1.0078 0.9894 1.0262
startup.mpegaudio 0.9941 0.9863 1.0020
startup.scimark.fft 0.9998 0.9831 1.0165
startup.scimark.lu 0.9991 0.9884 1.0098
startup.scimark.sor 0.9984 0.9904 1.0065
startup.scimark.sparse 1.0390 0.9604 1.1175
startup.serial 1.0018 0.9776 1.0261
startup.sunflow 0.9606 0.9229 0.9982
startup.xml.transform 1.0000 0.9936 1.0064
startup.xml.validation 1.0073 0.9729 1.0417
sunflow 1.0133 0.9933 1.0333
xml.transform 1.0209 1.0021 1.0398
xml.validation 1.0724 1.0388 1.1061

Table 8: Throughput of benchmark suite with the “Long” variant

Benchmark Mean 5th Percentile 95th Percentile
CompilerSpeed

15x6 1.0985 1.0885 1.1086
60x6 1.0700 1.0666 1.0734
180x6 1.0652 1.0617 1.0686

DaCapo
batik 1.0084 1.0046 1.0122
biojava 0.9956 0.9924 0.9988
eclipse 1.0152 1.0075 1.0231
fop 1.0007 0.9388 1.0626
graphchi 1.0120 0.9808 1.0433
jython 1.0420 1.0278 1.0562
luindex 1.0474 0.9883 1.1066
lusearch 1.0030 0.9947 1.0115
sunflow 0.9303 0.8772 0.9835
xalan 1.0220 1.0107 1.0333
zxing 0.9829 0.9572 1.0086
avrora 0.9973 0.9925 1.0020
pmd 0.9768 0.9601 0.9936
sunflow (large) 0.9945 0.9761 1.0130
h2 1.0075 0.9860 1.0289

DelayInducer
1.8215 1.8198 1.8235

Optaplanner
1 1.1882 1.1679 1.2086
2 1.1879 1.1740 1.2017
3 0.9988 0.9441 1.0534
4 1.0157 0.9834 1.0480
5 1.1062 1.0769 1.1354
6 1.1092 1.0823 1.1362
7 1.0678 1.0459 1.0896
8 1.0396 1.0280 1.0512
9 1.1513 1.1159 1.1867
10 1.1501 1.1266 1.1736
11 1.1818 1.1412 1.2224

pjbb2005
1

92

Appendix C. Benchmark suite throughput results

2
4 1.0000 1.0000 1.0000
6 1.0340 1.0286 1.0394
8 1.0338 1.0286 1.0390
12 1.0097 0.9988 1.0205
16 1.0264 1.0178 1.0350

Renaissance
akka-uct 0.9917 0.9847 0.9987
als 1.0012 0.9573 1.0451
chi-square 1.0536 1.0373 1.0701
dec-tree 1.0094 0.9307 1.0879
dotty 1.0243 0.9207 1.1279
finagle-chirper 1.0494 1.0321 1.0666
finagle-http 1.0678 0.9674 1.1683
fj-kmeans 1.0066 1.0032 1.0100
future-genetic 1.0300 1.0276 1.0323
gauss-mix 1.0236 0.9857 1.0616
log-regression 1.0086 0.8709 1.1461
mnemonics 1.0767 1.0718 1.0815
movie-lens 1.0169 1.0026 1.0312
naive-bayes 1.0239 0.9171 1.1306
page-rank 1.1156 1.0517 1.1793
par-mnemonics 1.0305 1.0134 1.0476
philosophers 0.9841 0.9751 0.9929
reactors 1.0878 1.0605 1.1151
scala-doku 1.0062 0.9880 1.0245
scala-kmeans 0.9854 0.9748 0.9960

Rubykon
19x19 1000 1.1691 1.1641 1.1741

SPECjbb2005
1 1.0183 1.0027 1.0339
2 1.0137 1.0021 1.0254
4 1.0251 1.0169 1.0332
6 1.0262 1.0194 1.0330
8 1.0230 1.0165 1.0296
12 1.0216 1.0161 1.0272
16 1.0222 1.0193 1.0251

SPECjvm2008
compress 0.9922 0.9903 0.9941
crypto.aes 0.9972 0.9548 1.0396
crypto.rsa 0.9937 0.9868 1.0005
crypto.signverify 1.0015 0.9985 1.0044
derby 1.0289 1.0124 1.0454
mpegaudio 1.0168 1.0108 1.0229
scimark.fft.large 0.9966 0.9897 1.0034
scimark.fft.small 0.9876 0.9488 1.0263
scimark.lu.large 0.9967 0.9954 0.9980
scimark.lu.small 1.0086 0.9752 1.0419
scimark.sor.large 1.0004 0.9995 1.0013
scimark.sor.small 1.0036 1.0032 1.0040
scimark.sparse.large 0.9918 0.9909 0.9927
scimark.sparse.small 0.9688 0.9588 0.9787
serial 1.0114 0.9870 1.0359
startup.compress 1.0135 1.0046 1.0225
startup.crypto.aes 0.9374 0.8247 1.0501

93

Appendix C. Benchmark suite throughput results

startup.crypto.rsa 1.0597 1.0283 1.0911
startup.crypto.signverify 0.9616 0.9190 1.0042
startup.helloworld 0.9961 0.9604 1.0317
startup.mpegaudio 1.0085 1.0016 1.0153
startup.scimark.fft 1.0004 0.9772 1.0237
startup.scimark.lu 0.9935 0.9656 1.0214
startup.scimark.sor 0.9991 0.9917 1.0066
startup.scimark.sparse 0.9823 0.9716 0.9930
startup.serial 1.0290 1.0197 1.0383
startup.sunflow 0.9691 0.9366 1.0017
startup.xml.transform 1.0025 0.9938 1.0111
startup.xml.validation 1.0264 0.9922 1.0606
sunflow 1.0241 0.9995 1.0488
xml.transform 1.0356 1.0178 1.0534
xml.validation 1.1117 1.0876 1.1358

Table 9: Throughput of benchmark suite with the “Raw Parallel” variant

Benchmark Mean 5th Percentile 95th Percentile
CompilerSpeed

15x6 1.0691 1.0620 1.0762
60x6 0.9982 0.9941 1.0022
180x6 0.9925 0.9899 0.9951

DaCapo
batik 0.9334 0.9300 0.9368
biojava 1.0395 1.0231 1.0558
eclipse 1.0592 1.0561 1.0625
fop 1.0054 0.9499 1.0609
graphchi 0.9798 0.9742 0.9855
jython 1.0767 1.0576 1.0957
luindex 1.0720 1.0071 1.1370
lusearch 0.7443 0.7306 0.7581
sunflow 0.9060 0.7882 1.0238
xalan 0.8098 0.8007 0.8190
zxing 0.9834 0.9679 0.9989
avrora 1.0000 0.9975 1.0026
pmd 1.0116 0.9631 1.0600
sunflow (large) 1.0045 0.9588 1.0502
h2 0.9827 0.9632 1.0022

DelayInducer
1.3050 1.2992 1.3108

Optaplanner
1 1.2886 1.2473 1.3300
2 1.2696 1.2315 1.3077
3 0.9994 0.9142 1.0846
4 1.1011 1.0720 1.1302
5 1.1403 1.1202 1.1605
6 1.1421 1.1204 1.1637
7 1.1394 1.1183 1.1605
8 1.0898 1.0811 1.0985
9 1.2536 1.2333 1.2739
10 1.2425 1.2201 1.2648
11 1.2546 1.2290 1.2801

pjbb2005

94

Appendix C. Benchmark suite throughput results

1
2
4 1.0000 1.0000 1.0000
6 1.0573 1.0495 1.0651
8 1.0457 1.0346 1.0568
12 1.0102 0.9824 1.0380
16 1.0192 1.0161 1.0223

Renaissance
akka-uct 1.0261 1.0169 1.0351
als 1.1278 1.0730 1.1827
chi-square 1.0680 1.0515 1.0846
dec-tree 1.0367 0.9545 1.1189
dotty 1.0382 0.9320 1.1444
finagle-chirper 1.0483 1.0313 1.0654
finagle-http 1.0653 0.9718 1.1588
fj-kmeans 1.1811 1.1763 1.1858
future-genetic 1.0483 1.0467 1.0501
gauss-mix 1.0946 1.0514 1.1376
log-regression 1.0626 0.9166 1.2085
mnemonics 1.0806 1.0756 1.0856
movie-lens 1.0661 1.0505 1.0817
naive-bayes 1.0899 0.9727 1.2073
page-rank 1.1358 1.0731 1.1985
par-mnemonics 1.1734 1.1544 1.1923
philosophers 1.0064 0.9985 1.0144
reactors 1.0646 1.0398 1.0894
scala-doku 0.9756 0.9628 0.9884
scala-kmeans 0.9135 0.9011 0.9258

Rubykon
19x19 1000 1.2058 1.2014 1.2103

SPECjbb2005
1 1.0403 1.0285 1.0521
2 1.0546 1.0442 1.0650
4 1.0641 1.0542 1.0739
6 1.0529 1.0486 1.0572
8 1.0469 1.0411 1.0528
12 1.0299 1.0202 1.0396
16 1.0270 1.0182 1.0357

SPECjvm2008
compress 0.9897 0.9860 0.9934
crypto.aes 0.9870 0.9475 1.0266
crypto.rsa 1.0023 0.9949 1.0097
crypto.signverify 1.0055 1.0010 1.0099
derby 1.0310 0.9874 1.0746
mpegaudio 0.9946 0.9792 1.0100
scimark.fft.large 0.8817 0.8038 0.9595
scimark.fft.small 0.9642 0.9128 1.0157
scimark.lu.large 1.0532 1.0450 1.0614
scimark.lu.small 1.0119 0.9667 1.0570
scimark.sor.large 0.9975 0.9964 0.9987
scimark.sor.small 1.0080 1.0062 1.0099
scimark.sparse.large 0.8659 0.8265 0.9052
scimark.sparse.small 1.0490 1.0241 1.0739
serial 1.0540 0.9967 1.1114
startup.compress 1.0431 1.0198 1.0664

95

Appendix C. Benchmark suite throughput results

startup.crypto.aes 1.0186 0.9194 1.1179
startup.crypto.rsa 1.0511 0.9993 1.1028
startup.crypto.signverify 1.0079 0.9799 1.0359
startup.helloworld 1.0422 1.0146 1.0698
startup.mpegaudio 0.9974 0.9844 1.0105
startup.scimark.fft 1.0146 0.9955 1.0337
startup.scimark.lu 1.0478 1.0265 1.0691
startup.scimark.sor 1.0083 0.9999 1.0167
startup.scimark.sparse 1.1069 1.0322 1.1816
startup.serial 1.0594 1.0461 1.0727
startup.sunflow 1.0091 0.9731 1.0451
startup.xml.transform 1.0025 0.9956 1.0093
startup.xml.validation 1.0960 1.0806 1.1113
sunflow 1.0118 0.9830 1.0405
xml.transform 1.0684 1.0333 1.1035
xml.validation 1.1411 1.1039 1.1783

Table 10: Throughput of benchmark suite with the Parallel Collector

Benchmark Mean 99% Error
Baseline G1

ArrayFastPathNullLarge 1.0000 0.0322
ArrayFastPathNullSmall 1.0000 0.0382
ArrayFastPathRealLarge 1.0000 0.0016
ArrayFastPathRealSmall 1.0000 0.0290
FieldWriteBarrierFastPath 1.0000 0.0009
Geometric Mean 1.0000

“Long” variant
ArrayFastPathNullLarge 1.5783 0.0264
ArrayFastPathNullSmall 1.0407 0.0462
ArrayFastPathRealLarge 1.5785 0.0035
ArrayFastPathRealSmall 1.1901 0.0020
FieldWriteBarrierFastPath 1.2273 0.0011
Geometric Mean 1.3051

“Raw Parallel” variant
ArrayFastPathNullLarge 2.0092 0.0343
ArrayFastPathNullSmall 1.7612 0.0006
ArrayFastPathRealLarge 1.6215 0.0342
ArrayFastPathRealSmall 1.7120 0.0161
FieldWriteBarrierFastPath 1.2415 0.0011
Geometric Mean 1.6491

Parallel Collector
ArrayFastPathNullLarge 2.4231 0.0012
ArrayFastPathNullSmall 2.2619 0.0164
ArrayFastPathRealLarge 2.0859 0.0078
ArrayFastPathRealSmall 1.9316 0.0657
FieldWriteBarrierFastPath 1.7915 0.0019
Geometric Mean 2.0868

Table 11: Results of WriteBarrier microbenchmark

96

Appendix D

Benchmark suite pause times

Figure 22: CompilerSpeed benchmark pause times

Variant Mutator time Pause time Application run time
Absolute, milliseconds

Baseline G1 3322393.18 17006.82 3339400
Long Barrier 3318196 18804 3337000
Raw Parallel Barrier 3318524.9 18075.1 3336600

Relative to application run time
Baseline G1 0.9949 0.0051 1.0000
Long Barrier 0.9944 0.0056 1.0000
Raw Parallel Barrier 0.9946 0.0054 1.0000

Table 12: Optaplanner benchmark mutator and pause times

97

Appendix D. Benchmark suite pause times

Figure 23: DelayInducer benchmark pause times

Figure 24: Rubykon benchmark pause times

98

Appendix D. Benchmark suite pause times

Figure 25: Optaplanner benchmark pause times

99

Appendix D. Benchmark suite pause times

Figure 26: BigRamTester benchmark pause times

Figure 27: BigRamTester benchmark individual garbage collection pause times

100

Appendix D. Benchmark suite pause times

Figure 28: BigRamTester benchmark heap root scan phase durations

Figure 29: BigRamTester benchmark mean garbage collection phase durations

101

Appendix D. Benchmark suite pause times

Benchmark Mean Median -1.5 IQR +1.5 IQR Min Max Total
Milliseconds

DaCapo
luindex 1.2226 1.11 0.865 1.381 0.865 3.242 62.353
zxing 1.7561 1.484 1.002 2.767 1.002 3.519 63.218
fop 4.6275 3.488 1.728 9.076 1.728 18.913 333.181
lusearch 1.0009 0.976 0.783 1.173 0.574 2.02 2309.176
batik 61.0769 43.4755 15.142 82.243 15.142 198.226 1710.152
eclipse 9.9093 5.951 1.453 27.622 1.453 34.429 2576.409
jython 2.2398 1.2155 0.811 2.101 0.811 13.01 1487.245
graphchi 1.9596 2.092 1.102 2.457 1.102 2.457 15.677
xalan 1.2194 1.194 1.048 1.348 0.889 11.668 6705.553
sunflow 1.7931 1.773 1.538 2.029 1.036 3.289 2960.409
biojava 3.5216 1.4875 1.144 3.766 1.144 29.141 647.972
pmd 7.7174 7.513 2.454 10.118 2.454 14.28 61.739
avrora 2.0553 1.709 1.096 4.269 1.096 4.269 59.603
sunflow
(large)

2.2664 2.202 1.723 2.732 1.723 3.22 276.497

h2 82.6334 73.171 16.923 216.967 16.923 216.967 3718.501
Renaissance

par-
mnemonics

3.7157 3.0530 1.2520 7.3540 1.2520 26.9300 3641.4300

scala-doku 18.1136 19.3950 2.5650 31.1330 2.1350 33.4630 1430.9720
log-
regression

3.5008 3.4070 2.1540 4.7360 2.1540 11.7580 889.1910

finagle-http 1.4123 1.3000 1.1110 1.5800 1.0810 6.5430 1687.7420
dec-tree 3.6340 2.8710 2.2410 8.7390 2.2410 9.8500 610.5140
gauss-mix 2.3021 2.1900 1.8570 2.5560 1.8150 5.1730 566.3280
future-
genetic

2.1995 2.1570 1.5390 2.8080 1.4320 3.8060 2971.5460

fj-kmeans 2.8071 2.8790 1.8700 3.7260 1.7490 10.9790 3601.4810
finagle-
chirper

4.4472 4.2650 3.1130 5.6100 3.1130 21.4390 12678.9580

scala-kmeans 6.9983 2.3950 1.1210 7.2860 1.1210 32.4790 48.9880
als 3.4513 2.9735 1.6550 5.6530 1.6550 30.7480 1822.2980
movie-lens 3.1802 2.9600 1.8010 4.5890 1.8010 8.0320 3377.3880
page-rank 126.1606 128.5890 3.2350 213.5390 3.2350 322.9280 19302.5670
naive-bayes 3.2357 3.0445 2.2950 3.7140 2.0910 9.8140 1216.6240
mnemonics 4.1293 2.8920 1.1220 6.4360 1.1220 95.4820 4872.5440
philosophers 2.0976 2.1400 0.7680 3.3980 0.7680 3.6030 10968.4880
reactors 49.7126 48.7095 1.3780 128.6280 1.3780 128.6280 5567.8150
chi-square 7.0031 5.0740 2.7080 16.2550 2.7080 18.9600 4699.0990
dotty 20.6530 21.2280 15.5960 25.4120 2.3670 31.5700 2499.0110
akka-uct 42.8692 43.2260 19.0420 67.1760 4.3740 77.4870 60831.3790

CompilerSpeed
15 sec 35.6279 37.3840 10.3070 74.9520 10.3070 99.7190 24155.7070
60 sec 37.2280 38.0345 20.6860 55.5700 8.5430 96.2850 40652.9440
180 sec 37.6892 38.4110 23.4550 52.8210 10.8760 80.6020 60302.7550

Optaplanner
Group I 3.3184 3.2270 2.4140 4.8820 2.4140 4.8820 225.6480
Group II 37.0009 33.2720 1.7560 76.6640 1.7560 202.1830 13505.3370

Other
DelayInducer 100.3440 82.0950 79.4790 112.1590 56.9790 223.1250 80275.1730
pjbb2005 10.2362 10.3390 4.4880 17.2600 4.4880 33.5280 11597.5600
Rubykon 5.4944 5.2800 1.8640 11.0490 1.8640 27.8240 9488.8670

102

Appendix D. Benchmark suite pause times

SPECjbb2005 11.5211 11.0610 6.0110 17.2020 3.5550 31.8280 8744.5200
SPECjvm2008 5.7196 3.3540 1.1610 6.6750 1.1610 52.2870 20047.0310
BigRamTester 484.2569 480.7530 475.7560 495.5820 475.7560 707.0220 117674.4260

1.5 IQR — bounds of ±1.5 ∗ IQR range; corresponds to the whiskers on pause time plots.

Table 13: Pause times of benchmark suite with Baseline G1

Benchmark Mean Median -1.5 IQR +1.5 IQR Min Max Total
Milliseconds

DaCapo
luindex 1.2654 1.16 0.927 1.436 0.927 3.266 68.332
zxing 1.7874 1.552 1.285 2.749 1.285 3.16 78.646
fop 4.8408 3.929 1.512 11.933 1.512 16.959 246.88
lusearch 1.0414 1.015 0.821 1.213 0.606 4.109 2003.662
batik 63.6793 45.358 9.955 93.968 9.955 195.541 1846.699
eclipse 12.1407 10.296 2.031 32.113 2.031 36.9 2391.716
jython 2.2918 1.31 0.822 2.491 0.822 13.564 1521.788
graphchi 2.2344 2.461 2.382 2.692 1.25 2.692 17.875
xalan 1.2448 1.222 1.09 1.358 0.927 11.511 6863.752
sunflow 1.8526 1.829 1.581 2.1 0.952 3.535 2039.76
biojava 3.7059 1.627 1.287 4.253 1.287 29.582 681.893
pmd 6.5545 6.5575 2.451 10.652 2.451 10.652 26.218
avrora 2.1661 1.765 0.939 4.214 0.939 4.214 62.816
sunflow
(large)

2.3588 2.2655 1.934 2.825 1.934 3.277 240.598

h2 87.5947 83.542 17.227 223.789 17.227 223.789 3941.761
Renaissance

par-
mnemonics

3.7094 2.9110 1.2740 7.7450 1.2740 41.2220 3624.0360

scala-doku 19.5477 20.5255 2.7020 33.2080 2.7020 33.2080 1602.9100
log-
regression

3.5706 3.4050 2.1220 5.1480 2.1220 11.3860 831.9590

finagle-http 1.4614 1.3500 1.1430 1.6330 1.1220 6.7920 1684.9410
dec-tree 3.8183 2.9940 2.5070 8.7330 2.5070 9.6780 656.7560
gauss-mix 2.3695 2.2485 1.9680 2.5540 1.9090 5.2510 582.9000
future-
genetic

2.2221 2.1645 1.4370 2.9770 1.2570 5.7420 3004.2950

fj-kmeans 2.9079 2.9990 1.9010 3.7990 1.8750 10.5220 3722.0850
finagle-
chirper

4.5279 4.3300 3.1940 5.7680 3.1940 16.5630 12664.4680

scala-kmeans 5.2729 3.0470 1.1090 5.3870 1.1090 20.5220 36.9100
als 3.6172 3.2310 1.9630 5.6620 1.9630 31.9630 1906.2650
movie-lens 3.3268 3.1320 1.8420 4.8830 1.8420 7.8160 3825.7820
page-rank 126.2425 117.0305 3.3520 216.7800 3.3520 325.9540 19946.3130
naive-bayes 3.4857 3.3155 2.4840 4.1050 2.3050 10.0820 1317.5920
mnemonics 4.5290 3.0400 1.0370 6.5010 1.0370 93.8640 5375.8810
philosophers 1.6785 1.6680 0.8010 2.6920 0.8010 3.2740 8001.4120
reactors 53.5849 48.9300 1.6270 137.9700 1.6270 137.9700 6215.8490
chi-square 7.1617 5.3350 3.2840 18.2110 3.2840 18.2110 4819.8170
dotty 21.8908 21.8395 14.2940 28.7330 2.6530 33.2580 2407.9830
akka-uct 44.5153 44.8035 20.0170 69.3470 4.6630 73.7160 62944.6930

CompilerSpeed
15 sec 38.5834 39.3760 10.9060 82.6940 10.9060 101.3420 26236.6980
60 sec 37.8703 38.4390 19.3830 56.7050 10.8430 92.3840 40786.3110
180 sec 38.0583 37.9395 22.9090 53.7950 10.9230 98.3690 60436.5950

103

Appendix D. Benchmark suite pause times

Optaplanner
Group I 3.6713 3.5570 2.6450 4.9130 2.6450 4.9130 260.6620
Group II 38.7378 35.5150 2.2980 80.6580 2.2980 212.0350 14371.7190

Other
DelayInducer 96.1223 79.3665 56.4890 115.7070 54.6640 211.4540 76897.8300
pjbb2005 10.6575 10.7495 4.7630 18.7650 4.7630 32.4700 12043.0060
Rubykon 5.8356 5.6240 1.9790 11.9790 1.9790 23.1650 10609.1740
SPECjbb2005 11.9452 11.3230 6.1790 17.0650 3.5410 31.5900 9197.8210
SPECjvm2008 6.0216 3.5715 1.3000 6.7260 1.3000 51.2710 21990.8660
BigRamTester 560.7872 517.8450 505.6840 554.5220 484.5990 861.1800 136271.2900

1.5 IQR — bounds of ±1.5 ∗ IQR range; corresponds to the whiskers on pause time plots.

Table 14: Pause times of benchmark suite with the “Long” variant

Benchmark Mean Median -1.5 IQR +1.5 IQR Min Max Total
Milliseconds

DaCapo
luindex 1.211 1.132 0.844 1.314 0.844 3.34 73.873
zxing 1.858 1.546 1.234 3.672 1.234 3.672 66.887
fop 4.7121 3.716 1.691 8.995 1.691 15.556 306.286
lusearch 1.0354 1.012 0.825 1.209 0.645 2.345 2001.409
batik 65.0242 45.1015 13.481 99.301 13.481 186.712 1820.678
eclipse 12.6327 10.034 1.912 34.456 1.912 34.456 2059.134
jython 2.2289 1.2045 0.782 2.208 0.782 13.361 1462.154
graphchi 2.2341 2.43 1.079 2.955 1.079 2.955 20.107
xalan 1.2499 1.227 1.109 1.359 0.941 11.795 6912.987
sunflow 1.8388 1.813 1.577 2.094 0.931 3.412 3035.817
biojava 4.0632 1.8805 1.381 3.494 1.381 29.958 747.631
pmd 6.593 7.4695 2.367 9.53 2.367 9.53 39.558
avrora 2.1131 1.758 1.133 4.487 1.133 4.487 61.281
sunflow
(large)

2.3757 2.2985 1.986 2.807 1.986 3.677 242.326

h2 88.1958 82.506 17.618 217.921 17.618 221.538 3792.42
Renaissance

par-
mnemonics

3.8587 3.0580 1.2110 7.2070 1.2110 66.6450 3773.8470

scala-doku 19.3720 20.3770 2.5260 32.7870 2.5260 34.5640 1569.1320
log-
regression

3.6526 3.4860 2.0190 5.1080 2.0190 11.4200 799.9130

finagle-http 1.4589 1.3430 1.1370 1.6270 1.1180 6.7680 1692.3130
dec-tree 3.8532 3.0940 2.5250 8.4480 2.5250 9.9730 662.7550
gauss-mix 2.3885 2.2510 1.9240 2.8130 1.9240 5.5920 587.5680
future-
genetic

2.1979 2.1470 1.4640 2.9120 1.3970 3.7400 2969.3570

fj-kmeans 3.1183 3.2570 1.8790 4.3770 1.8790 12.2760 3975.7860
finagle-
chirper

4.5423 4.3390 3.1460 5.7720 3.1460 9.4630 12514.1030

scala-kmeans 5.1801 2.4090 1.2000 5.5620 1.2000 20.5730 36.2610
als 3.6616 3.2460 1.9220 5.7680 1.9220 31.2760 1922.3650
movie-lens 3.3237 3.1220 1.8960 4.8380 1.8960 8.6620 3752.4310
page-rank 127.6821 141.4690 3.4970 326.3320 3.4970 326.3320 17237.0820
naive-bayes 3.5100 3.3625 2.3500 4.2890 2.2810 10.1200 1368.9060
mnemonics 4.5054 2.9000 0.9030 6.0660 0.9030 97.9070 5023.5540
philosophers 2.0000 2.0250 0.8170 3.5710 0.8170 4.4580 9062.2000
reactors 60.4364 68.0330 1.5210 154.6450 1.5210 154.6450 6587.5650

104

Appendix D. Benchmark suite pause times

chi-square 7.2522 5.2640 3.0400 17.1280 3.0400 20.5470 4880.7210
dotty 22.6573 22.5185 17.3440 29.8180 2.9490 31.2850 2492.3030
akka-uct 45.6847 45.9685 20.7860 70.4380 5.2730 89.4190 64598.1340

CompilerSpeed
15 sec 35.7892 37.1290 11.1490 72.3070 11.1490 96.4490 23799.8080
60 sec 37.4904 37.9875 19.1390 56.0530 10.3800 102.1120 41764.3250
180 sec 38.6305 38.8780 21.7900 55.5610 11.4280 107.6320 64165.1850

Optaplanner
Group I 3.4427 3.3400 2.6920 5.0930 2.6920 5.0930 258.2040
Group II 38.7302 35.0955 2.1610 81.3860 2.1610 213.3050 14717.4820

Other
DelayInducer 96.8066 79.1930 54.7080 119.9020 48.0030 220.1870 77445.2420
pjbb2005 10.6529 10.7870 4.7510 17.5870 4.7510 32.5130 12037.8050
Rubykon 5.8830 5.7255 1.9810 12.2050 1.9810 21.1490 11613.1180
SPECjbb2005 12.0602 12.0375 6.2480 17.4370 3.6270 32.5840 9286.3700
SPECjvm2008 6.1772 3.6130 1.2200 6.8850 1.2200 49.0990 22905.0120
BigRamTester 605.7378 558.1280 541.9700 594.6250 521.1840 953.3130 147194.2820

1.5 IQR — bounds of ±1.5 ∗ IQR range; corresponds to the whiskers on pause time plots.

Table 15: Pause times of benchmark suite with the “Raw Parallel” variant

Phase Duration, milliseconds
Baseline G1

Merge Heap Roots 4.1609
Object Copy 369.5757
Other 0.7330
Post Evacuate Collection Set 1.0494
Pre Evacuate Collection Set 0.2070
Scan Heap Roots 108.5309

“Long” variant
Merge Heap Roots 1.4160
Object Copy 394.1407
Other 0.7963
Post Evacuate Collection Set 1.3053
Pre Evacuate Collection Set 0.2033
Scan Heap Roots 162.9255

“Raw Parallel” variant
Merge Heap Roots 0.4391
Object Copy 396.4667
Other 0.7826
Post Evacuate Collection Set 1.6165
Pre Evacuate Collection Set 0.2041
Scan Heap Roots 206.2288

Table 16: BigRamTester benchmark garbage collection phase durations

105

Appendix E

Chunk table modification benchmark re-
sults

Figure 30: WriteBarrier microbenchmark results for the barrier with chunk table modifi-
cation

106

Appendix E. Chunk table modification benchmark results

Figure 31: BigRamTester benchmark results for the barrier with chunk table modification

Benchmark Mean 99% Error
Baseline G1

ArrayFastPathNullLarge 1.0000 0.0322
ArrayFastPathNullSmall 1.0000 0.0382
ArrayFastPathRealLarge 1.0000 0.0016
ArrayFastPathRealSmall 1.0000 0.0290
FieldWriteBarrierFastPath 1.0000 0.0009
Geometric Mean 1.0000

“Raw Parallel” variant
ArrayFastPathNullLarge 2.0092 0.0343
ArrayFastPathNullSmall 1.7612 0.0006
ArrayFastPathRealLarge 1.6215 0.0342
ArrayFastPathRealSmall 1.7120 0.0161
FieldWriteBarrierFastPath 1.2415 0.0011
Geometric Mean 1.6491

“Raw Parallel” variant + chunk dirtying
ArrayFastPathNullLarge 1.7103 0.0088
ArrayFastPathNullSmall 1.2353 0.0011
ArrayFastPathRealLarge 1.4251 0.0049
ArrayFastPathRealSmall 1.2201 0.0054
FieldWriteBarrierFastPath 0.9728 0.0009
Geometric Mean 1.2902

Table 17: Throughput of WriteBarrier microbenchmark with the chunk dirtying barrier

107

Appendix E. Chunk table modification benchmark results

Measure Mean 5th Percentile 95th Percentile
Baseline G1

GC pause time 1.000 0.995 1.005
Mutator throughput 1.000 0.995 1.005
Application throughput 1.000 0.996 1.004

Raw Parallel Barrier
GC pause time 1.246 1.242 1.250
Mutator throughput 1.178 1.174 1.182
Application throughput 1.060 1.058 1.062

Raw Parallel Barrier + Chunk Dirtying
GC pause time 1.152 1.144 1.160
Mutator throughput 1.129 1.126 1.131
Application throughput 1.053 1.051 1.056

Table 18: BigRamTester benchmark results for the chunk dirtying barrier

108

Appendix F

Dynamically-switched barrier evaluation

Figure 32: Throughput results of benchmark suite for dynamically-switched barrier

109

Appendix F. Dynamically-switched barrier evaluation

Figure 33: Startup performance results of BigRamTester for dynamically-switched barrier

Figure 34: WriteBarrier microbenchmark results for dynamically-switched barrier

110

Appendix F. Dynamically-switched barrier evaluation

Figure 35: BigRamTester garbage collection pause time statistics for dynamically-
switched barrier

Figure 36: BigRamTester garbage collection individual pause times for dynamically-
switched barrier

111

Appendix F. Dynamically-switched barrier evaluation

Benchmark Baseline G1 “Raw Parallel” vari-
ant

Dynamically-
switched barrier

CompilerSpeed 1.0000 1.0778 0.6789
DaCapo 1.0000 1.0020 0.9915
DelayInducer 1.0000 1.8216 0.9724
SPECjbb2005 1.0000 1.0215 1.0049
Optaplanner 1.0000 1.1067 1.1005
pjbb2005 1.0000 1.0207 1.0215
Renaissance 1.0000 1.0291 1.0016
Rubykon 1.0000 1.1691 1.0355
SPECjvm2008 1.0000 1.0041 1.0067
BigRamTester 1.0000 1.0672 1.0640

Table 19: Mean throughput of benchmark suite with the dynamically-switched barrier

Measure Mean 5th Percentile 95th Percentile
Baseline G1

GC pause time 1.0000 0.9875 1.0125
Mutator throughput 1.0000 0.9930 1.0070
Application through-
put

1.0000 0.9894 1.0106

Dynamically-switched barrier
GC pause time 0.9727 0.9600 0.9854
Mutator throughput 1.1749 1.1666 1.1831
Application through-
put

1.0661 1.0555 1.0768

Table 20: Startup performance results of BigRamTester benchmark for dynamically-
switched barrier

Benchmark Mean 99% Error
Baseline G1

ArrayFastPathNullLarge 1.0000 0.0322
ArrayFastPathNullSmall 1.0000 0.0382
ArrayFastPathRealLarge 1.0000 0.0016
ArrayFastPathRealSmall 1.0000 0.0290
FieldWriteBarrierFastPath 1.0000 0.0009
Geometric Mean 1.0000

“Raw Parallel” variant
ArrayFastPathNullLarge 2.0092 0.0343
ArrayFastPathNullSmall 1.7612 0.0006
ArrayFastPathRealLarge 1.6215 0.0342
ArrayFastPathRealSmall 1.7120 0.0161
FieldWriteBarrierFastPath 1.2415 0.0011
Geometric Mean 1.6491

Dynamically-switched barrier
ArrayFastPathNullLarge 2.0235 0.0054
ArrayFastPathNullSmall 1.7610 0.0004
ArrayFastPathRealLarge 1.6440 0.0055
ArrayFastPathRealSmall 1.7063 0.0166
FieldWriteBarrierFastPath 1.2409 0.0010
Geometric Mean 1.6547

Table 21: Throughput of WriteBarrier microbenchmark for dynamically-switched barrier

112

Appendix F. Dynamically-switched barrier evaluation

Variant Mean Median -1.5 IQR +1.5 IQR Min Max Total
Milliseconds

Baseline
G1

484.2569 480.7530 475.7560 495.5820 475.7560 707.0220 117674.4260

“Long”
variant

560.7872 517.8450 505.6840 554.5220 484.5990 861.1800 136271.2900

“Raw Par-
allel” vari-
ant

605.7378 558.1280 541.9700 594.6250 521.1840 953.3130 147194.2820

Dynamically-
switched
barrier

575.8991 534.0750 513.2510 571.8530 485.3860 877.2350 139943.4770

1.5 IQR — bounds of ±1.5 ∗ IQR range; corresponds to the whiskers on pause time plots.

Table 22: Pause times of BigRamTester benchmark with dynamically-switched barrier

113

	Introduction
	Motivation
	Problem
	Proposed solution
	Related work
	Structure of the thesis

	Background
	OpenJDK & Java Virtual Machine
	Garbage collection
	Generational & Incremental garbage collection
	Remembered sets
	Card table
	Barriers

	Garbage-First collector
	Barriers
	Refinement
	Evacuation process

	Problem analysis

	Implementation
	Throughput-oriented barriers
	Post-write barrier decomposition
	``Raw Parallel'' barrier
	``Long'' barrier
	Post-write barrier implementation

	Garbage-First collector adaptation
	Heap root scan
	Refinement
	Other adaptations

	Selected implementation variants
	Dynamically-switched barriers
	Barrier switch technique
	Garbage collector adjustments
	Barrier switching policy

	Evaluation
	Methodology
	Measurement mechanism & scope
	Configuration
	Statistically rigorous measurements

	Benchmark suite
	Hardware & Software setup
	Analysis & Interpretation
	WriteBarrier microbenchmark
	Application-level throughput
	Pause time analysis
	Other aspects

	Dynamic switch heuristic
	Dynamic switch evaluation

	Conclusion
	Summary
	Future work

	Bibliography
	Source code listings
	G1 post-write barrier for x86_64
	``Raw Parallel'' barrier for x86_64
	``Long'' barrier for x86_64

	Throughput-oriented garbage collector configuration
	Benchmark suite throughput results
	Benchmark suite pause times
	Chunk table modification benchmark results
	Dynamically-switched barrier evaluation

