

JOHANNES KEPLER
UNIVERSITÄT LINZ
Altenberger Straße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Master's Thesis

A Generic Machine Code Instrumentation Library

Student: Alexander Voglsperger (12005568)
Advisor: Prof. Hanspeter Mössenböck
Co-Advisors: DI Peter Feichtiger, DI Michael Obermüller
Begin: 1.10.2024

Binary instrumentation is a technique where the machine code of a running process is modified
so it can be analyzed in some way. By attaching so-called hooks to specific pieces of the
program, arbitrary code may be run when they are executed. This is particularly interesting for
use cases such as performance measurements or monitoring, e.g. by hooking the entry points
of specific functions of interest.

The goal of this thesis is to implement a generic C++ library that allows performing this kind of
modification on arbitrary function entry points to attach a hook (function pointer or other callable
object) provided by the user. The hook should receive all the necessary context for inspecting
the program’s state, such as register contents and stack pointer. Interpreting the context (e.g.
reading local variables) is outside the library’s scope, but rather the hook’s responsibility.

One straightforward way to implement this kind of instrumentation is to use function trampo-
lines. To instrument a piece of code, its first few machine instructions are replaced by a jump
instruction to a so-called trampoline. The trampoline code takes care of preserving the neces-
sary context, calling the actual hook, restoring context, and then executing the original instruc-
tions before returning execution to the instrumented function. To achieve this on x86, the library
will have to be capable of copying machine code in memory while preserving its semantics.

The library implemented in this thesis should target x86, ideally both 32 and 64 bit. Since x86
is only one of several planned target architectures, the library should be easily extensible to
support other architectures such as aarch64. The library need only support the architecture it’s
compiled for, i.e. running on x86_64 only needs to support hooking of x86_64 functions.

An existing library that might be of interest is Microsoft Detours [1], which implements function
trampolines (and the necessary code copying) for Windows. As for a disassembler, it might be
possible to use Capstone [2] rather than implementing everything from scratch.

The task requires a solid understanding of machine code and assembly language, and a com-
mitment to implementing a user-friendly and extensible library that can be used by program-
mers for their daily work.

The work's progress should be discussed with the advisor at least every 2 weeks. Please follow
the guidelines of the Institute for System Software when preparing the written thesis. The dead-
line for submitting the written thesis is 30.09.2025.

References:
[1] https://github.com/microsoft/detours
[2] https://www.capstone-engine.org

o.Univ.-Prof. Dr.
Hanspeter Mössenböck
Institute for System Software

T +43 732 2468 4340
F +43 732 2468 4345
hanspeter.moessenboeck@jku.at

Secretary:
Karin Gusenbauer
Ext 4342
karin.gusenbauer@jku.at

https://github.com/microsoft/detours
https://www.capstone-engine.org/

